Spatiotemporal Comparison and Validation of Three Global-Scale Fractional Vegetation Cover Products
"> Figure 1
<p>Monthly average global FVC maps from bioGEOphysical product Version 2 (GEOV2), bioGEOphysical product Version 3 (GEOV3), and Global LAnd Surface Satellite (GLASS) FVC products in January (<b>top</b>) and July (<b>bottom</b>), 2015.</p> "> Figure 2
<p>Difference maps among GEOV2, GEOV3, and GLASS FVC products in January (<b>top</b>) and July (<b>bottom</b>), 2015.</p> "> Figure 3
<p>Histograms of GEOV2, GEOV3, and GLASS FVC products from 2014 to 2016 with different vegetation types.</p> "> Figure 4
<p>Temporal profiles of mean FVC data for GLASS, GEOV2, and GEOV3 FVC products over different vegetation types.</p> "> Figure 5
<p>Temporal profiles of the GEOV2, GEOV3, and GLASS FVC products. (<b>a</b>) Rice. (<b>b</b>) Wheat, barley, corn, sunflower, and soybean. (<b>c</b>) Grass. (<b>d</b>) Tree, tea, and coffee. (<b>e</b>) Wheat, corn, and soybean. (<b>f</b>) Wheat and sunflower.</p> "> Figure 6
<p>Scatterplots between different FVC products and high-spatial resolution reference FVC data.</p> "> Figure A1
<p>Frequency of missing values for evergreen needle forest in GEOV3 FVC product during 2014 to 2016.</p> ">
Abstract
:1. Introduction
2. Data
2.1. GEOV2 FVC Product
2.2. GEOV3 FVC Product
2.3. GLASS FVC Product
2.4. Field Survey Based Reference Data and MODIS Land Cover Data
3. Methodology
4. Results
4.1. Spatial Consistency
4.2. Temporal Consistency
4.3. Accuracy Validation
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Camacho, F.; Cernicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sens. Environ. 2013, 137, 310–329. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, C.; Li, J.; Sun, Q. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. Int. J. Appl. Earth Obs. Geoinform. 2013, 21, 506–512. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X.; Yao, Y.; Yang, L.; Li, Y. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191. [Google Scholar] [CrossRef]
- Godínez-Alvarez, H.; Herrick, J.; Mattocks, M.; Toledo, D.; Van Zee, J. Comparison of three vegetation monitoring methods: Their relative utility for ecological assessment and monitoring. Ecol. Indic. 2009, 9, 1001–1008. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.; Sobrino, J.; Plaza, A.; Guanter, L.; Moreno, J.; Martínez, P. Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area. Sensors 2009, 9, 768–793. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jia, K.; Liang, S.; Liu, J.; Wang, X. Comparison of four machine learning methods for generating the GLASS fractional vegetation cover product from MODIS data. Remote Sens. 2016, 8, 682. [Google Scholar] [CrossRef]
- Wu, D.; Wu, H.; Zhao, X.; Zhou, T.; Tang, B.; Zhao, W.; Jia, K. Evaluation of spatiotemporal variations of global fractional vegetation cover based on GIMMS NDVI data from 1982 to 2011. Remote Sens. 2014, 6, 4217–4239. [Google Scholar] [CrossRef]
- Zeng, X.; Dickinson, R.E.; Walker, A.; Shaikh, M.; DeFries, R.S.; Qi, J. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteorol. 2000, 39, 826–839. [Google Scholar] [CrossRef]
- Xiao, J.; Moody, A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sens. Environ. 2005, 98, 237–250. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Liu, S.; Li, Y.; Xiao, Z.; Yao, Y.; Jiang, B.; Zhao, X.; Wang, X.; Xu, S. Global land surface fractional vegetation cover estimation using general regression neural networks from MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4787–4796. [Google Scholar] [CrossRef]
- Jiapaer, G.; Chen, X.; Bao, A. A comparison of methods for estimating fractional vegetation cover in arid regions. Agric. For. Meteorol. 2011, 151, 1698–1710. [Google Scholar] [CrossRef]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site. J. Geophys. Res. Solid Earth 1986, 91, 8098–8112. [Google Scholar] [CrossRef]
- Zou, J.; Lan, J.; Shao, Y. A hierarchical sparsity unmixing method to address endmember variability in hyperspectral image. Remote Sens. 2018, 10, 738. [Google Scholar] [CrossRef]
- Shao, Y.; Lan, J.; Zhang, Y.; Zou, J. Spectral unmixing of hyperspectral remote sensing imagery via preserving the intrinsic structure invariant. Sensors 2018, 18, 3528. [Google Scholar] [CrossRef] [PubMed]
- Roujean, J.L.; Lacaze, R. Global mapping of vegetation parameters from POLDER multiangular measurements for studies of surface-atmosphere interactions: A pragmatic method and its validation. J. Geophys. Res. Atmos. 2002, 107, ACL–6. [Google Scholar] [CrossRef]
- Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. Atmos. 1992, 97, 20455–20468. [Google Scholar] [CrossRef]
- García-Haro, F.; Camacho, F.; Verger, A.; Meliá, J. Current status and potential applications of the LSA SAF suite of vegetation products. Proceedings of 29th EARSeL Symposium, Chania, Greece, 15–18 June 2009. [Google Scholar]
- García-Haro, F.; Sommer, S.; Kemper, T. Variable multiple endmember spectral mixture analysis (VMESMA): A high performance computing and environment analysis tool. Remote Sens. Environ. 2001. ready for submission. [Google Scholar]
- García-Haro, F.; Camacho-de Coca, F.; Meliá, J.; Martínez, B. Operational derivation of vegetation products in the framework of the LSA SAF project. In Proceedings of the 2005 EUMETSAT Meteorological Satellite Conference, Dubrovnik, Croatia, 19–23 September 2005; pp. 19–23. [Google Scholar]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Verger, A. Analisi comparativa d‘algorismes operacionals d‘estimacio de parametres biofisics de la coberta vegetal amb teledeteccio. Ph.D. Thesis, Universitat de Valencia, Valencia, Spain, 2008. [Google Scholar]
- Ding, Y.; Zheng, X.; Jiang, T.; Zhao, K. Comparison and validation of long time serial global geov1 and regional Australian modis fractional vegetation cover products over the Australian continent. Remote Sens. 2015, 7, 5718–5733. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Fillol, E.; Baret, F.; Weiss, M.; Dedieu, G.; Demarez, V.; Gouaux, P.; Ducrot, D. Cover fraction estimation from high resolution SPOT HRV & HRG and medium resolution SPOT-VEGETATION sensors. Validation and comparison over South-west France. In Proceedings of the Second International Symposium on Recent Advances in Quantitative Remote Sensing, Torrent, Valencia, Spain, 25–29 September 2006; pp. 25–29. [Google Scholar]
- Mu, X.; Huang, S.; Ren, H.; Yan, G.; Song, W.; Ruan, G. Validating GEOV1 fractional vegetation cover derived from coarse-resolution remote sensing images over croplands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 439–446. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Weiss, M. GEOV2/VGT: Near real time estimation of global biophysical variables from VEGETATION-P data. In Proceedings of the MultiTemp 2013: 7th International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Banff, AB, Canada, 25–27 June 2013; pp. 1–4. [Google Scholar]
- Verger, A.; Baret, F.; Weiss, M. Algorithm Theorethical Basis Document of GEOV2 FVC. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_FCOVER1km-V2_I1.41.pdf (accessed on 22 September 2019).
- Baret, F.; Weiss, M.; Verger, A.; Smets, B. ATBD for LAI, FAPAR and FCOVER from PROBA-V products at 300m resolution (GEOV3). Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/ImagineS_RP2.1_ATBD-FCOVER300m_I1.73.pdf (accessed on 22 September 2019).
- Camacho, F.; Sánchez, J.; Lacaze, R.; Weiss, M.; Baret, F.; Verger, A.; Smets, B.; Latorre, C. Validating GEOV3 LAI, FAPAR and vegetation cover estimates derived from PROBA-V observations at 333m over Europe. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Jia, K.; Yang, L.; Liang, S.; Xiao, Z.; Zhao, X.; Yao, Y.; Zhang, X.; Jiang, B.; Liu, D. Long-term Global Land Surface Satellite (GLASS) fractional vegetation cover product derived from MODIS and AVHRR Data. IEEE J. Sel. Top. Appl Earth Obs. Remote Sens. 2019, 12, 508–518. [Google Scholar] [CrossRef]
- García-Haro, F.J.; Camacho-de Coca, F.; Miralles, J.M. Inter-comparison of SEVIRI/MSG and MERIS/ENVISAT biophysical products over Europe and Africa. In Proceedings of the 2nd MERIS/(A) ATSR User Workshop, Frascati, Italy, 22–26 September 2008; pp. 22–26. [Google Scholar]
- Xiao, Z.; Wang, T.; Liang, S.; Sun, R. Estimating the fractional vegetation cover from GLASS leaf area index product. Remote Sens. 2016, 8, 337. [Google Scholar] [CrossRef]
- Baret, F.; Pavageau, K.; Béal, D.; Weiss, M.; Berthelot, B.; Regner, P. Algorithm Theoretical Basis Document for MERIS Top of Atmosphere Land Products (TOA_VEG); INRA-CSE: Avignon, France, 2006. [Google Scholar]
- Baret, F.; Weiss, M.; Verger, A.; Kandasamy, S. BioPar Methods Compendium-LAI, FAPAR and FCOVER from LTDR AVHRR Series; INRA-EMMAH: Avignon, France, 2011. [Google Scholar]
- Verger, A.; Baret, F.; Weiss, M. Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products. Remote Sens. Environ. 2008, 112, 2789–2803. [Google Scholar] [CrossRef]
- Baret, F.; Morissette, J.T.; Fernandes, R.A.; Champeaux, J.L.; Myneni, R.B.; Chen, J.; Plummer, S.; Weiss, M.; Bacour, C.; Garrigues, S. Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: Proposition of the CEOS-BELMANIP. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1794–1803. [Google Scholar] [CrossRef]
- Maisongrande, P.; Duchemin, B.; Dedieu, G. VEGETATION/SPOT: An operational mission for the Earth monitoring; presentation of new standard products. Int. J. Remote Sens. 2004, 25, 9–14. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Weiss, M. A multisensor fusion approach to improve LAI time series. Remote Sens. Environ. 2011, 115, 2460–2470. [Google Scholar] [CrossRef] [Green Version]
- Verger, A.; Baret, F.; Weiss, M.; Kandasamy, S.; Vermote, E. The CACAO method for smoothing, gap filling, and characterizing seasonal anomalies in satellite time series. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1963–1972. [Google Scholar] [CrossRef]
- Dierckx, W.; Sterckx, S.; Benhadj, I.; Livens, S.; Duhoux, G.; Van Achteren, T.; Francois, M.; Mellab, K.; Saint, G. PROBA-V mission for global vegetation monitoring: Standard products and image quality. Int. J. Remote Sens. 2014, 35, 2589–2614. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, X.; Xiao, Z.; Cheng, J.; Liu, Q.; Zhao, X. Global LAnd Surface Satellite (GLASS) products: Algorithms, Validation and Analysis; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Liang, S.; Zhao, X.; Liu, S.; Yuan, W.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H.; et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Dig. Earth 2013, 6, 5–33. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Yang, L.; Zhang, X.; Liu, D. Validation of Global LAnd Surface Satellite (GLASS) fractional vegetation cover product from MODIS data in an agricultural region. Remote Sens. Lett. 2018, 9, 847–856. [Google Scholar] [CrossRef]
- Camacho, F.; Lacaze, R.; Latorre, C.; Baret, F.; De la Cruz, F.; Demarez, V.; Di Bella, C.; García-Haro, J.; González-Dugo, M.P.; Kussul, N. Collection of ground biophysical measurements in support of copernicus global land product validation: The ImagineS database. Geophys. Res. Abstr. 2015, 17, EGU2015–2209. [Google Scholar]
- Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.; Fernandes, R.A.; Leblanc, S.G. Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1804–1817. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product; USGS: Reston, VA, USA, 2018.
- Xiao, Z.; Liang, S.; Sun, R. Evaluation of three long time series for global fraction of absorbed photosynthetically active radiation (FAPAR) products. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5509–5524. [Google Scholar] [CrossRef]
- Prajapati, A.; Naik, S.; Mehta, S. Evaluation of different image interpolation algorithms. Int. J. Comput. Appl. 2012, 58, 6–12. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Weiss, M. Near real-time vegetation monitoring at global scale. IEEE J. Sel. Top. Appl Earth Obs. Remote Sens. 2014, 7, 3473–3481. [Google Scholar] [CrossRef]
- Smets, B.; Verger, A.; Camacho, F.; Goten, R.V.d.; Jacobs, T. Product User Manual for GEOV2 Products. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_PUM_FCOVER1km-V2_I1.33.pdf (accessed on 22 September 2019).
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; D‘amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C. Terrestrial ecoregions of the world: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Tang, H.; Yu, K.; Hagolle, O.; Jiang, K.; Geng, X.; Zhao, Y. A cloud detection method based on a time series of MODIS surface reflectance images. Int. J. Dig. Earth 2013, 6, 157–171. [Google Scholar] [CrossRef]
- Smets, B.; Jacobs, T.; Verger, A. Product User Manual for GEOV3 Products. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/GIOGL1_PUM_FCOVER300m-V1_I1.60.pdf (accessed on 22 September 2019).
- Sánchez-Zapero, J.; Fuster, B.; Camacho, F. Quality Assessment Report for GEOV3 Products. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_QAR_FCOVER300-V1_I2.00.pdf (accessed on 22 September 2019).
Products | Sensor | Methods | Spatial Resolution | Temporal Resolution | Spatial Coverage | Temporal Coverage | References |
---|---|---|---|---|---|---|---|
CNES/ POLDER | POLDER | Empirical model | 6 km | 10 days | Global | 1996-1997, 2003 | [17] |
EUMETSAT/LSA SAF | SEVIRI | The dimidiate pixel model | 3km | Daily | Europe, Africa, South American | 2005-present | [21] |
EP5/ CYCLOPES | SPOT VGT | Machine learning methods | 1/112° | 10days | Global | 1998-2007 | [22] |
ESA/ MERIS | MERIS | Machine learning methods | 300m | Month/ 10days | Global | 2002-2012 | [35] |
GEOV2 FVC | SPOT VGT, PROBA-V | Machine learning methods | 1/112° | 10 days | Global | 1999-present | [28,29] |
GEOV3 FVC | PROBA-V | Machine learning methods | 300m | 10days | Global | 2014-present | [30] |
GLASS FVC | MODIS | Machine learning methods | 500m | 8 days | Global | 2000-present | [12] |
Site Name | Country | Lat (°) | Lon (°) | DOY (a) | Year | Crop Type (b) | FVC | RMSE |
---|---|---|---|---|---|---|---|---|
LaReina_Cordoba_1 | Spain | 37.8189 | -4.8624 | 140 | 2014 | 2,6,8,12 | 0.297 | 0.120 |
LaReina_Cordoba_2 | Spain | 37.7929 | -4.82668 | 140 | 2014 | 2,6,8,12 | 0.407 | 0.120 |
Barrax-LasTiesas | Spain | 39.05437 | -2.10068 | 149 | 2014 | 2,3,4,5,6,8,12,13 | 0.367 | 0.060 |
Albufera | Spain | 39.27437 | -0.31644 | 158 | 2014 | 1 | 0.180 | 0.076 |
Albufera | Spain | 39.27437 | -0.31644 | 175 | 2014 | 1 | 0.350 | 0.125 |
Albufera | Spain | 39.27437 | -0.31644 | 196 | 2014 | 1 | 0.590 | 0.120 |
Albufera | Spain | 39.27437 | -0.31644 | 219 | 2014 | 1 | 0.740 | 0.128 |
Albufera | Spain | 39.27437 | -0.31644 | 234 | 2014 | 1 | 0.800 | 0.100 |
Pshenichne | Ukraine | 50.07657 | 30.23224 | 163 | 2014 | 2,3,4,6,7 | 0.550 | 0.120 |
Pshenichne | Ukraine | 50.07657 | 30.23224 | 212 | 2014 | 2,3,4,6,7 | 0.680 | 0.070 |
Ottawa | Canada | 45.3056 | -75.7673 | 159 | 2014 | 2,4,7 | 0.391 | 0.103 |
Ottawa | Canada | 45.3056 | -75.7673 | 176 | 2014 | 2,4,7 | 0.480 | 0.006 |
Ottawa | Canada | 45.3056 | -75.7673 | 187 | 2014 | 2,4,7 | 0.487 | 0.020 |
Ottawa | Canada | 45.3056 | -75.7673 | 210 | 2014 | 2,4,7 | 0.786 | 0.005 |
SanFernando | Chile | -34.7228 | -71.0019 | 19 | 2015 | 4,5,7,8,12 | 0.440 | 0.126 |
Barrax-LasTiesas | Spain | 39.05437 | -2.10068 | 145 | 2015 | 2,3,4,5,6,8,12,13 | 0.268 | 0.130 |
Barrax-LasTiesas | Spain | 39.05437 | -2.10068 | 203 | 2015 | 2,3,4,5,6,8,12,13 | 0.223 | 0.047 |
Pshenichne | Ukraine | 50.07657 | 30.23224 | 174 | 2015 | 2,4,7 | 0.460 | 0.084 |
Pshenichne | Ukraine | 50.07657 | 30.23224 | 188 | 2015 | 4,7 | 0.619 | 0.075 |
Pshenichne | Ukraine | 50.07657 | 30.23224 | 204 | 2015 | 4,7 | 0.528 | 0.078 |
AHSPECT-Meteopol | France | 43.57281 | 1.374512 | 173 | 2015 | 11 | 0.260 | 0.090 |
AHSPECT-Peyrousse | France | 43.66623 | 0.21954 | 174 | 2015 | 2,6 | 0.380 | 0.090 |
AHSPECT-Urgons | France | 43.6397 | -0.43396 | 174 | 2015 | 4 | 0.550 | 0.090 |
AHSPECT-Creón D’armagnac | France | 43.9936 | -0.0469 | 175 | 2015 | 4,11 | 0.590 | 0.090 |
AHSPECT-Condom | France | 43.97429 | 0.335969 | 176 | 2015 | 2,5,6 | 0.331 | 0.090 |
AHSPECT-Savenès | France | 43.82422 | 1.174945 | 176 | 2015 | 2,6,7 | 0.286 | 0.090 |
Collelongo | Italy | 41.85 | 13.59 | 189 | 2015 | 16 | 0.840 | 0.030 |
Collelongo | Italy | 41.85 | 13.59 | 266 | 2015 | 16 | 0.860 | 0.040 |
Maragua_UpperTana | Kenya | -0.77202 | 36.9742 | 68 | 2016 | 5, 14,15 | 0.580 | 0.130 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Jia, K.; Wei, X.; Xia, M.; Zhang, X.; Yao, Y.; Zhang, X.; Wang, B. Spatiotemporal Comparison and Validation of Three Global-Scale Fractional Vegetation Cover Products. Remote Sens. 2019, 11, 2524. https://doi.org/10.3390/rs11212524
Liu D, Jia K, Wei X, Xia M, Zhang X, Yao Y, Zhang X, Wang B. Spatiotemporal Comparison and Validation of Three Global-Scale Fractional Vegetation Cover Products. Remote Sensing. 2019; 11(21):2524. https://doi.org/10.3390/rs11212524
Chicago/Turabian StyleLiu, Duanyang, Kun Jia, Xiangqin Wei, Mu Xia, Xiwang Zhang, Yunjun Yao, Xiaotong Zhang, and Bing Wang. 2019. "Spatiotemporal Comparison and Validation of Three Global-Scale Fractional Vegetation Cover Products" Remote Sensing 11, no. 21: 2524. https://doi.org/10.3390/rs11212524
APA StyleLiu, D., Jia, K., Wei, X., Xia, M., Zhang, X., Yao, Y., Zhang, X., & Wang, B. (2019). Spatiotemporal Comparison and Validation of Three Global-Scale Fractional Vegetation Cover Products. Remote Sensing, 11(21), 2524. https://doi.org/10.3390/rs11212524