Deep Learning for SAR Image Despeckling
<p>Example of single look image detected by the Sentinel-1 mission.</p> "> Figure 2
<p>SAR-DRN architecture.</p> "> Figure 3
<p>Dataset generation process.</p> "> Figure 4
<p>Adopted architecture. The network takes a single-channel image as input and produces, through stacked convolutional blocks, a single-channel prediction. Each of the four encoding levels extracts features at different scales, which are then concatenated to the corresponding decoding features through the system of skip-connections.</p> "> Figure 5
<p>Despeckling procedure.</p> "> Figure 6
<p>Qualitative results on Basketball Court, Bridge, Christmass Tree Farm and Transformer Station single look images from the test set.</p> "> Figure 7
<p>Ablation: network configurations and data augmentation.</p> "> Figure 8
<p>Qualitative results on Sentinel-1 (1-st column), COSMO-SkyMed (2-nd column), and RADARSAT (3-th column) single look images from the test set. The red boxes point out the homogeneous regions selected for the computation of the ENL metric. As can be observed, the reconstructions provided by the proposed method are sharper and less affected by residual artefacts.</p> "> Figure 9
<p>Qualitative comparison between the proposed method and the DespecKS multi-temporal algorithm. The regions within the blue circles highlight the main differences between the two approaches.</p> ">
Abstract
:1. Introduction
2. Related Works
3. Speckle Model for Data Generation
3.1. Speckle Model
3.2. Speckled Image Simulation
4. Proposed Method
4.1. Architecture
4.2. Learning
5. Experimental Results
5.1. Synthetic Dataset
5.2. Real SAR Dataset
5.3. Training
5.4. Metrics for Evaluation
5.5. Results on Synthetic Images
5.5.1. Ablation Study
5.5.2. Results on Real SAR Images
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1–R54. [Google Scholar] [CrossRef]
- Lee, J. Digital Image Enhancement and Noise Filtering by Use of Local Statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 165–168. [Google Scholar] [CrossRef]
- Kuan, D.T.; Sawchuk, A.A.; Strand, T.C.; Chavel, P. Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise. IEEE Trans. Pattern Anal. Mach. Intell. 1985, PAMI-7, 165–177. [Google Scholar] [CrossRef]
- Frost, V.S.; Stiles, J.A.; Shanmugan, K.S.; Holtzman, J.C. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise. IEEE Trans. Pattern Anal. Mach. Intell. 1982, PAMI-4, 157–166. [Google Scholar] [CrossRef]
- Shi, Z.; Fung, K.B. A comparison of digital speckle filters. In Proceedings of the IGARSS’94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 4, pp. 2129–2133. [Google Scholar] [CrossRef]
- Lopes, A.; Touzi, R.; Nezry, E. Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens. 1990, 28, 992–1000. [Google Scholar] [CrossRef]
- Xie, H.; Pierce, L.E.; Ulaby, F.T. SAR speckle reduction using wavelet denoising and Markov random field modeling. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2196–2212. [Google Scholar] [CrossRef] [Green Version]
- Espinoza Molina, D.; Gleich, D.; Datcu, M. Evaluation of Bayesian Despeckling and Texture Extraction Methods Based on Gauss–Markov and Auto-Binomial Gibbs Random Fields: Application to TerraSAR-X Data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2001–2025. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F. The Effect of PolSAR Image De-speckling on Wetland Classification: Introducing a New Adaptive Method. Can. J. Remote Sens. 2017, 43, 485–503. [Google Scholar] [CrossRef]
- Argenti, F.; Alparone, L. Speckle removal from SAR images in the undecimated wavelet domain. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2363–2374. [Google Scholar] [CrossRef]
- Solbo, S.; Eltoft, T. Homomorphic wavelet-based statistical despeckling of SAR images. IEEE Trans. Geosci. Remote Sens. 2004, 42, 711–721. [Google Scholar] [CrossRef]
- Lopes, A.; Nezry, E.; Touzi, R.; Laur, H. Maximum A Posteriori Speckle Filtering And First Order Texture Models In Sar Images. In Proceedings of the 10th Annual International Symposium on Geoscience and Remote Sensing, College Park, MD, USA, 20–24 May 1990; pp. 2409–2412. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 60–65. [Google Scholar] [CrossRef]
- Deledalle, C.; Denis, L.; Tupin, F. Iterative Weighted Maximum Likelihood Denoising With Probabilistic Patch-Based Weights. IEEE Trans. Image Process. 2009, 18, 2661–2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Parrilli, S.; Poderico, M.; Angelino, C.V.; Verdoliva, L. A Nonlocal SAR Image Denoising Algorithm Based on LLMMSE Wavelet Shrinkage. IEEE Trans. Geosci. Remote Sens. 2012, 50, 606–616. [Google Scholar] [CrossRef]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Aubert, G.; Aujol, J.F. A Variational Approach to Removing Multiplicative Noise. SIAM J. Appl. Math. 2008, 68, 925–946. [Google Scholar] [CrossRef]
- Steidl, G.; Teuber, T. Removing Multiplicative Noise by Douglas-Rachford Splitting Methods. J. Math. Imaging Vis. 2010, 36, 168–184. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Figueiredo, M.A.T. Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization. IEEE Trans. Image Process. 2010, 19, 1720–1730. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Osher, S. A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model. SIAM J. Img. Sci. 2008, 1, 294–321. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, J.G.; Zhang, B.; Hong, W.; Wu, Y. Adaptive Total Variation Regularization Based SAR Image Despeckling and Despeckling Evaluation Index. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2765–2774. [Google Scholar] [CrossRef]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O.; Benediktsson, J.A. SAR image denoising using total variation based regularization with sure-based optimization of the regularization parameter. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 2160–2163. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Chierchia, G.; Gheche, M.E.; Scarpa, G.; Verdoliva, L. Multitemporal SAR Image Despeckling Based on Block-Matching and Collaborative Filtering. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5467–5480. [Google Scholar] [CrossRef]
- Zhao, W.; Deledalle, C.A.; Denis, L.; Maître, H.; Nicolas, J.M.; Tupin, F. Ratio-based multi-temporal SAR images denoising. IEEE Trans. Geosci. Remote. Sens. 2018. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Zhang, Y.; Cao, Y. Study on the comparison of the land cover classification for multitemporal MODIS images. In Proceedings of the 2008 International Workshop on Earth Observation and Remote Sensing Applications, Beijing, China, 30 June–2 July 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. arXiv 2016, arXiv:1612.08242. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. arXiv 2017, arXiv:1703.06870. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. arXiv 2015, arXiv:1511.00561. [Google Scholar] [CrossRef]
- Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. arXiv 2016, arXiv:1606.00915. [Google Scholar] [CrossRef]
- Lin, G.; Milan, A.; Shen, C.; Reid, I.D. RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation. arXiv 2016, arXiv:1611.06612. [Google Scholar]
- Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Xue, X.; Jiang, Y.; Shen, Q. Deep learning for remote sensing image classification: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1264. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Gao, Y.; Li, Y. Rapid Target Detection in High Resolution Remote Sensing Images Using Yolo Model. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2018, XLII-3, 1915–1920. [Google Scholar] [CrossRef]
- Zhen, Y.; Liu, H.; Li, J.; Hu, C.; Pan, J. Remote sensing image object recognition based on convolutional neural network. In Proceedings of the 2017 First International Conference on Electronics Instrumentation Information Systems (EIIS), Harbin, China, 3–5 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. arXiv 2016, arXiv:1608.03981. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Chierchia, G.; Cozzolino, D.; Poggi, G.; Verdoliva, L. SAR image despeckling through convolutional neural networks. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5438–5441. [Google Scholar]
- Wang, P.; Zhang, H.; Patel, V.M. SAR Image Despeckling Using a Convolutional Neural Network. arXiv 2017, arXiv:1706.00552. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.; Yuan, Q.; Li, J.; Ma, X.; Shen, H.; Zhang, L. Learning a Dilated Residual Network for SAR Image Despeckling. arXiv 2017, arXiv:1709.02898. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Luo, W.; Li, Y.; Urtasun, R.; Zemel, R.S. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks. arXiv 2017, arXiv:1701.04128. [Google Scholar]
- Goodman, J.W. Some fundamental properties of speckle*. J. Opt. Soc. Am. 1976, 66, 1145–1150. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Dobson, M.C. Handbook of radar scattering statistics for terrain (Artech House Remote Sensing Library); Artech House: Norwood, MA, USA, 1989. [Google Scholar]
- Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and Composing Robust Features with Denoising Autoencoders. In Proceedings of the 25th International Conference on Machine Learning, ICML’08, Helsinki, Finland, 5–9 July 2008; ACM: New York, NY, USA, 2008; pp. 1096–1103. [Google Scholar] [CrossRef]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Machine Learning Research, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010; Teh, Y.W., Titterington, M., Eds.; PMLR: Sardinia, Italy, 2010; Volume 9, pp. 249–256. [Google Scholar]
- Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2016, arXiv:1603.07285. [Google Scholar]
- Yang, Y.; Newsam, S. Bag-of-visual-words and Spatial Extensions for Land-use Classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS’10, San Jose, CA, USA, 2–5 November 2010; ACM: New York, NY, USA, 2010; pp. 270–279. [Google Scholar] [CrossRef]
- Zhou, W.; Newsam, S.D.; Li, C.; Shao, Z. PatternNet: A Benchmark Dataset for Performance Evaluation of Remote Sensing Image Retrieval. arXiv 2017, arXiv:1706.03424. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Bridge | Basketball Court | Christmas Tree Farm | Transformer Station | |||||
---|---|---|---|---|---|---|---|---|
mean | std | mean | std | mean | std | mean | std | |
Noisy | 18.3489 | 0.0354 | 14.6548 | 0.0211 | 17.6521 | 0.0289 | 10.7685 | 0.0235 |
SAR-BM3D | 29.6914 | 0.1222 | 28.7579 | 0.0516 | 28.2377 | 0.0733 | 20.4701 | 0.0627 |
SAR-DRN | 30.2771 | 0.1271 | 29.3548 | 0.0995 | 29.3019 | 0.0524 | 22.0661 | 0.0588 |
Ours | 30.9079 | 0.1122 | 29.5644 | 0.0906 | 29.9250 | 0.0915 | 22.3491 | 0.0316 |
Bridge | Basketball Court | Christmas Tree Farm | Transformer Station | |||||
---|---|---|---|---|---|---|---|---|
mean | std | mean | std | mean | std | mean | std | |
Noisy | 0.1748 | 0.0010 | 0.1093 | 0.0011 | 0.4735 | 0.0012 | 0.2496 | 0.0013 |
SAR-BM3D | 0.8949 | 0.0026 | 0.6904 | 0.0046 | 0.8860 | 0.0022 | 0.6227 | 0.0025 |
SAR-DRN | 0.9003 | 0.0024 | 0.7126 | 0.0057 | 0.9044 | 0.0014 | 0.7005 | 0.0047 |
Ours | 0.9154 | 0.0020 | 0.7217 | 0.0066 | 0.9167 | 0.0019 | 0.7161 | 0.0036 |
Bridge | Basketball Court | Christmas Tree Farm | Transformer Station | |||||
---|---|---|---|---|---|---|---|---|
mean | std | mean | std | mean | std | mean | std | |
U-Net (Skip Conn.) | 30.9079 | 0.1122 | 29.5644 | 0.0906 | 29.9250 | 0.0915 | 22.3491 | 0.0316 |
U-Net (No Skip Conn.) | 23.5270 | 0.0613 | 20.1949 | 0.0451 | 23.3897 | 0.0327 | 15.6169 | 0.0441 |
U-Net with 3 layers (No Skip Conn.) | 29.1355 | 0.0749 | 27.8118 | 0.0592 | 28.5495 | 0.0526 | 20.9529 | 0.0392 |
U-Net with 3 layers (Skip Conn.) | 30.7633 | 0.1310 | 29.4011 | 0.1065 | 29.6186 | 0.0619 | 22.2423 | 0.0437 |
Bridge | Basketball Court | Christmas Tree Farm | Transformer Station | |||||
---|---|---|---|---|---|---|---|---|
mean | std | mean | std | mean | std | mean | std | |
U-Net (Skip Conn.) | 0.9154 | 0.0020 | 0.7217 | 0.0066 | 0.9167 | 0.0019 | 0.7161 | 0.0036 |
U-Net (No Skip Conn.) | 0.3195 | 0.0020 | 0.1992 | 0.0037 | 0.6916 | 0.0030 | 0.3258 | 0.0019 |
U-Net with 3 layers (No Skip Conn.) | 0.7457 | 0.0158 | 0.5143 | 0.0175 | 0.8663 | 0.0023 | 0.5145 | 0.0038 |
U-Net with 3 layers (Skip Conn.) | 0.8917 | 0.0055 | 0.6610 | 0.0152 | 0.8964 | 0.0027 | 0.7076 | 0.0052 |
Sentinel-1 | COSMO-SkyMed | RADARSAT | |
---|---|---|---|
Noisy | 3.3924 | 3.3495 | 3.7294 |
SAR-BM3D | 22.9585 | 22.7635 | 31.7460 |
U-Net | 31.7973 | 33.8462 | 59.9067 |
U-Net + TV | 43.1660 | 75.5402 | 196.8434 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lattari, F.; Gonzalez Leon, B.; Asaro, F.; Rucci, A.; Prati, C.; Matteucci, M. Deep Learning for SAR Image Despeckling. Remote Sens. 2019, 11, 1532. https://doi.org/10.3390/rs11131532
Lattari F, Gonzalez Leon B, Asaro F, Rucci A, Prati C, Matteucci M. Deep Learning for SAR Image Despeckling. Remote Sensing. 2019; 11(13):1532. https://doi.org/10.3390/rs11131532
Chicago/Turabian StyleLattari, Francesco, Borja Gonzalez Leon, Francesco Asaro, Alessio Rucci, Claudio Prati, and Matteo Matteucci. 2019. "Deep Learning for SAR Image Despeckling" Remote Sensing 11, no. 13: 1532. https://doi.org/10.3390/rs11131532
APA StyleLattari, F., Gonzalez Leon, B., Asaro, F., Rucci, A., Prati, C., & Matteucci, M. (2019). Deep Learning for SAR Image Despeckling. Remote Sensing, 11(13), 1532. https://doi.org/10.3390/rs11131532