Generation and Evaluation of LAI and FPAR Products from Himawari-8 Advanced Himawari Imager (AHI) Data
<p>Flow chart of generating Advanced Himawari Imager (AHI) leaf area index/fraction of photosynthetically active radiation (LAI/FPAR) products.</p> "> Figure 2
<p>Daily cycle for three biome types on different days of 2017: (<b>a</b>) LAI; (<b>b</b>) FPAR; (<b>c</b>) normalized difference vegetation index (NDVI).</p> "> Figure 3
<p>Comparison of spatial distributions of LAI from AHI and moderate resolution imaging spectroradiometer (MODIS) products over the whole AHI domain during the summer (13–20 August) of year 2017: (<b>a</b>) AHI LAI; (<b>b</b>) MODIS LAI; (<b>c</b>) LAI difference between AHI and MODIS. No-data pixels in white color are observations contaminated by cloud, cloud shadow, aerosol, etc. The missing data rate of AHI LAI (10.83%) is much lower than that of MODIS LAI (26.77%) benefiting from more frequent observations.</p> "> Figure 4
<p>Comparison of spatial distributions of FPAR from AHI and MODIS products over the whole AHI domain during the summer (13–20 August) of year 2017: (<b>a</b>) AHI FPAR; (<b>b</b>) MODIS FPAR; (<b>c</b>) FPAR difference between AHI and MODIS. No-data pixels in white color are observations contaminated by cloud, cloud shadow, aerosol, etc. The missing data rate of AHI FPAR (10.83%) is much lower than that of MODIS FPAR (26.77%) benefiting from more frequent observations.</p> "> Figure 5
<p>Histogram depicting LAI/FPAR comparison between AHI and MODIS over the whole domain during the summer (13–20 August) of year 2017: (<b>a</b>) LAI; (<b>b</b>) FPAR.</p> "> Figure 6
<p>Density scatter plots of biome-specific AHI and MODIS LAI during the summer (13–20 August) of year 2017: (<b>a</b>) all biomes (biomes 1–8); (<b>b</b>) non-forest biomes (biomes 1–4); (<b>c</b>) broadleaf forest biomes (biomes 5–6); (<b>d</b>) needleleaf forest biomes (biomes 7–8).</p> "> Figure 7
<p>Density scatter plots of biome-specific AHI and MODIS FPAR during the summer (13–20 August) of year 2017: (<b>a</b>) all biomes (biomes 1–8); (<b>b</b>) non-forest biomes (biomes 1–4); (<b>c</b>) broadleaf forest biomes (biomes 5–6); (<b>d</b>) needleleaf forest biomes (biomes 7–8).</p> "> Figure 8
<p>Latitudinal distributions of LAI and FPAR. The latitude interval is 0.1°. AHI and MODIS products are red and blue lines, respectively. Solid and dashed lines depict February and August in 2017: (<b>a</b>) LAI; (<b>b</b>) FPAR.</p> "> Figure 9
<p>Temporal comparison between AHI LAI/FPAR and MODIS LAI/FPAR over the AHI domain. Global mean LAI/FPAR time series from AHI and MODIS at a 4-day interval during 2016–2017 are shown here. The top panel shows the missing data rate, while the bottom two panels show the seasonal variation of AHI and MODIS LAI/FPAR retrievals and the mean of difference between them: (<b>a</b>) LAI; (<b>b</b>) FPAR.</p> "> Figure 10
<p>Comparison between field measurements and LAI products: (<b>a</b>) MCD LAI versus field measured LAI (2012–2013); (<b>b</b>) AHI LAI versus MCD LAI (2016–2017).</p> "> Figure 11
<p>Phenology of four sites in 2017. The upper two panels show phenological development from LAI and FPAR products and the following two panels show that from enhanced vegetation index (EVI) and NDVI products: (<b>a</b>) Biome 1: grasses and cereal crops (115.3258°E, 45.1314°N); (<b>b</b>) biome 3: broadleaf crops (122.2832°E, 42.3646°N); (<b>c</b>) biome 6: deciduous broadleaf forests (134.0063°E, 44.1454°N); (<b>d</b>) biome 6: deciduous broadleaf forest (112.4660°E, 36.8757°N).</p> ">
Abstract
:1. Introduction
2. Materials
2.1. AHI NDVI Products
2.2. MODIS Biome Map
2.3. MODIS C6 LAI/FPAR Product
2.4. MODIS C6 Vegetation Index Product
2.5. Field Sites
3. Methods
3.1. Estimation of AHI LAI/FPAR Using ANN
3.2. Comparison between AHI and MODIS Products
3.3. Site Selection
4. Results
4.1. Daily Cycle
4.2. Comparison with MODIS LAI/FPAR
4.2.1. Spatial Consistency
4.2.2. Temporal Consistency
4.3. Validation with Field Measurements
4.4. Evaluation of Phenology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, J.M.; Black, T. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Myneni, R.B.; Ramakrishna, R.; Nemani, R.; Running, S.W. Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1380–1393. [Google Scholar] [CrossRef] [Green Version]
- Garrigues, S.; Lacaze, R.; Baret, F.; Morisette, J.; Weiss, M.; Nickeson, J.; Fernandes, R.; Plummer, S.; Shabanov, N.; Myneni, R. Validation and intercomparison of global leaf area index products derived from remote sensing data. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef]
- Chen, J.M. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1353–1368. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S. Evaluation of modis lai, fapar and the relation between fapar and ndvi in a semi-arid environment using in situ measurements. Remote Sens. Environ. 2004, 91, 490–507. [Google Scholar] [CrossRef]
- Sellers, P.; Dickinson, R.; Randall, D.; Betts, A.; Hall, F.; Berry, J.; Collatz, G.; Denning, A.; Mooney, H.; Nobre, C. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef]
- Knorr, W.; Kattge, J. Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by monte carlo sampling. Glob. Chang. Biol. 2005, 11, 1333–1351. [Google Scholar] [CrossRef]
- Richardson, A.D.; Anderson, R.S.; Arain, M.A.; Barr, A.G.; Bohrer, G.; Chen, G.; Chen, J.M.; Ciais, P.; Davis, K.J. Terrestrial biosphere models need better representation of vegetation phenology: Results from the north american carbon program site synthesis. Glob. Chang. Biol. 2012, 18, 566–584. [Google Scholar] [CrossRef]
- Winkler, A.J.; Myneni, R.B.; Alexandrov, G.A.; Brovkin, V. Earth system models underestimate carbon fixation by plants in the high latitudes. Nat. Commun. 2019, 10, 885. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G. Global products of vegetation leaf area and fraction absorbed par from year one of modis data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Sun, R.; Wang, J.; Jiang, B. Estimating the fraction of absorbed photosynthetically active radiation from the modis data based glass leaf area index product. Remote Sens. Environ. 2015, 171, 105–117. [Google Scholar] [CrossRef]
- Chen, C.; Knyazikhin, Y.; Park, T.; Yan, K.; Lyapustin, A.; Wang, Y.; Yang, B.; Myneni, R. Prototyping of lai and fpar retrievals from modis multi-angle implementation of atmospheric correction (maiac) data. Remote Sens. 2017, 9, 370. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, T.; Jiang, B. Retrieval of leaf area index (lai) and fraction of absorbed photosynthetically active radiation (fapar) from viirs time-series data. Remote Sens. 2016, 8, 351. [Google Scholar] [CrossRef]
- Yan, K.; Park, T.; Chen, C.; Xu, B.; Song, W.; Yang, B.; Zeng, Y.; Liu, Z.; Yan, G.; Knyazikhin, Y. Generating global products of lai and fpar from snpp-viirs data: Theoretical background and implementation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2119–2137. [Google Scholar] [CrossRef]
- Ma, H.; Liang, S.; Xiao, Z.; Wang, D. Simultaneous estimation of multiple land-surface parameters from viirs optical-thermal data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 156–160. [Google Scholar] [CrossRef]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O.; et al. Lai, fapar and fcover cyclopes global products derived from vegetation: Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. Geov1: Lai and fapar essential climate variables and fcover global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Weiss, M.; Filella, I.; Peñuelas, J. Geoclim: A global climatology of lai, fapar, and fcover from vegetation observations for 1999–2010. Remote Sens. Environ. 2015, 166, 126–137. [Google Scholar] [CrossRef]
- Vinué Visús, D.; Camacho de Coca, F.; Fuster, B. Validation of sentinel-2 lai and fapar products derived from snap toolbox over the barrax cropland site (spain). In Proceedings of the 5th International Symposium on Recent Advances in Quantitative Remote Sensing, Valencia, Spain, 18–22 September 2017. [Google Scholar]
- Vuolo, F.; Żółtak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C. Data service platform for sentinel-2 surface reflectance and value-added products: System use and examples. Remote Sens. 2016, 8, 938. [Google Scholar] [CrossRef]
- Li, W.; Weiss, M.; Waldner, F.; Defourny, P.; Demarez, V.; Morin, D.; Hagolle, O.; Baret, F. A generic algorithm to estimate lai, fapar and fcover variables from spot4_hrvir and landsat sensors: Evaluation of the consistency and comparison with ground measurements. Remote Sens. 2015, 7, 15494–15516. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Liu, Q.; Fan, W.; Zhong, B.; Wu, S.; Yang, L.; Zeng, Y.; Xu, B.; Yin, G. Leaf area index retrieval combining hj1/ccd and landsat8/oli data in the heihe river basin, China. Remote Sens. 2015, 7, 6862–6885. [Google Scholar] [CrossRef]
- Ovakoglou, G.; Alexandridis, T.K.; Clevers, J.G.; Cherif, I.; Kasampalis, D.A.; Navrozidis, I.; Iordanidis, C.; Moshou, D.; Laneve, G.; Beltran, J.S. Spatial enhancement of modis leaf area index using regression analysis with landsat vegetation index. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 8232–8235. [Google Scholar]
- Zhou, J.; Zhang, S.; Yang, H.; Xiao, Z.; Gao, F. The retrieval of 30-m resolution lai from landsat data by combining modis products. Remote Sens. 2018, 10, 1187. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F.; Gao, F. A spatio-temporal enhancement method for medium resolution lai (stem-lai). Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 15–29. [Google Scholar] [CrossRef]
- Da, C. Preliminary assessment of the advanced himawari imager (ahi) measurement onboard himawari-8 geostationary satellite. Remote Sens. Lett. 2015, 6, 637–646. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Yu, F.; Wu, X. Radiometric inter-calibration between himawari-8 ahi and s-npp viirs for the solar reflective bands. Remote Sens. 2016, 8, 165. [Google Scholar] [CrossRef]
- Claverie, M.; Matthews, J.L.; Vermote, E.F.; Justice, C.O. A 30+ year avhrr lai and fapar climate data record: Algorithm description and validation. Remote Sens. 2016, 8, 263. [Google Scholar] [CrossRef]
- Zhu, Z.; Bi, J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.; Myneni, R. Global data sets of vegetation leaf area index (lai) 3g and fraction of photosynthetically active radiation (fpar) 3g derived from global inventory modeling and mapping studies (gimms) normalized difference vegetation index (ndvi3g) for the period 1981 to 2011. Remote Sens. 2013, 5, 927–948. [Google Scholar] [CrossRef]
- Okuyama, A.; Andou, A.; Date, K.; Hoasaka, K.; Mori, N.; Murata, H.; Tabata, T.; Takahashi, M.; Yoshino, R.; Bessho, K. Preliminary Validation of Himawari-8/ahi Navigation and Calibration; Earth Observing Systems XXP; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; p. 96072E. [Google Scholar]
- Okuyama, A.; Takahashi, M.; Date, K.; Hosaka, K.; Murata, H.; Tabata, T.; Yoshino, R. Validation of himawari-8/ahi radiometric calibration based on two years of in-orbit data. J. Meteorol. Soc. Jpn. Ser. II 2018, 96, 91–109. [Google Scholar] [CrossRef]
- Lyapustin, A.; Martonchik, J.; Wang, Y.; Laszlo, I.; Korkin, S. Multiangle implementation of atmospheric correction (maiac): 1. Radiative transfer basis and look-up tables. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Lyapustin, A.I.; Wang, Y.; Laszlo, I.; Hilker, T.; Hall, F.G.; Sellers, P.J.; Tucker, C.J.; Korkin, S.V. Multi-angle implementation of atmospheric correction for modis (maiac): 3. Atmospheric correction. Remote Sens. Environ. 2012, 127, 385–393. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. Modis collection 6 maiac algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [PubMed]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 26 June 2019).
- Ahl, D.E.; Gower, S.T.; Burrows, S.N.; Shabanov, N.V.; Myneni, R.B.; Knyazikhin, Y. Monitoring spring canopy phenology of a deciduous broadleaf forest using modis. Remote Sens. Environ. 2006, 104, 88–95. [Google Scholar] [CrossRef]
- Narasimhan, R.; Stow, D. Daily modis products for analyzing early season vegetation dynamics across the north slope of alaska. Remote Sens. Environ. 2010, 114, 1251–1262. [Google Scholar] [CrossRef]
- Bi, J.; Myneni, R.; Lyapustin, A.; Wang, Y.; Park, T.; Chi, C.; Yan, K.; Knyazikhin, Y. Amazon forests’ response to droughts: A perspective from the maiac product. Remote Sens. 2016, 8, 356. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R. China and india lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Fellows, A.; Flerchinger, G.N.; Flores, A.N. Examining interactions between and among predictors of net ecosystem exchange: A machine learning approach in a semi-arid landscape. Sci. Rep. 2019, 9, 2222. [Google Scholar] [CrossRef]
- Tian, Y.; Woodcock, C.E.; Wang, Y.; Privette, J.L.; Shabanov, N.V.; Zhou, L.; Zhang, Y.; Buermann, W.; Dong, J.; Veikkanen, B. Multiscale analysis and validation of the modis lai product: I. Uncertainty assessment. Remote Sens. Environ. 2002, 83, 414–430. [Google Scholar] [CrossRef]
- Serbin, S.P.; Ahl, D.E.; Gower, S.T. Spatial and temporal validation of the modis lai and fpar products across a boreal forest wildfire chronosequence. Remote Sens. Environ. 2013, 133, 71–84. [Google Scholar] [CrossRef]
- Yan, K.; Park, T.; Yan, G.; Chen, C.; Yang, B.; Liu, Z.; Nemani, R.; Knyazikhin, Y.; Myneni, R. Evaluation of modis lai/fpar product collection 6. Part 1: Consistency and improvements. Remote Sens. 2016, 8, 359. [Google Scholar] [CrossRef]
- Yan, K.; Park, T.; Yan, G.; Liu, Z.; Yang, B.; Chen, C.; Nemani, R.; Knyazikhin, Y.; Myneni, R. Evaluation of modis lai/fpar product collection 6. Part 2: Validation and intercomparison. Remote Sens. 2016, 8, 460. [Google Scholar] [CrossRef]
- Xu, B.; Park, T.; Yan, K.; Chen, C.; Zeng, Y.; Song, W.; Yin, G.; Li, J.; Liu, Q.; Knyazikhin, Y.; et al. Analysis of global lai/fpar products from viirs and modis sensors for spatio-temporal consistency and uncertainty from 2012–2016. Forests 2018, 9, 73. [Google Scholar] [CrossRef]
- Li, X.; Lu, H.; Yu, L.; Yang, K. Comparison of the spatial characteristics of four remotely sensed leaf area index products over china: Direct validation and relative uncertainties. Remote Sens. 2018, 10, 148. [Google Scholar] [CrossRef]
- Myneni, R.; Knyazikhin, Y.; Park, T. MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. Available online: https://catalog.data.gov/dataset/modis-terraaqua-leaf-area-index-fpar-4-day-l4-global-500m-sin-grid-v006 (accessed on 26 June 2019).
- Didan, K. MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC. Available online: https://lpdaac.usgs.gov/products/mod13a2v006/ (accessed on 26 June 2019).
- Camacho, F.; Lacaze, R.; Latorre, C.; Baret, F.; De la Cruz, F.; Demarez, V.; Di Bella, C.; García-Haro, J.; González-Dugo, M.P.; Kussul, N.; et al. Collection of ground biophysical measurements in support of copernicus global land product validation: The imagines database. In Proceedings of the EGU General Assembly, Vienna, Austria, 17–22 April 2015; Geophysical Research Abstracts, 17 EGU2015-2209-1. Available online: http://adsabs.harvard.edu/abs/2015EGUGA..17.2209C (accessed on 26 June 2019).
- Zeng, Y.; Li, J.; Liu, Q.; Qu, Y.; Huete, A.; Xu, B.; Yin, G.; Zhao, J. An optimal sampling design for observing and validating long-term leaf area index with temporal variations in spatial heterogeneities. Remote Sens. 2015, 7, 1300–1319. [Google Scholar] [CrossRef]
- Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.; Fernandes, R.A.; Leblanc, S.G. Validation of global moderate-resolution lai products: A framework proposed within the ceos land product validation subgroup. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1804–1817. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y. Heihe watershed allied telemetry experimental research (hiwater): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C.M. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens. Environ. 2003, 86, 120–131. [Google Scholar] [CrossRef]
- Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of ndvi with leaf area index in a deciduous forest site. Remote Sens. Environ. 2005, 94, 244–255. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Ovakoglou, G.; Clevers, J.G. Relationship between modis evi and lai across time and space. Geocarto Int. 2019, 1–15. [Google Scholar] [CrossRef]
- Houborg, R.; Soegaard, H.; Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using terra and aqua modis reflectance data. Remote Sens. Environ. 2007, 106, 39–58. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Weiss, M. Performances of neural networks for deriving lai estimates from existing cyclopes and modis products. Remote Sens. Environ. 2008, 112, 2789–2803. [Google Scholar] [CrossRef]
- Heermann, P.D.; Khazenie, N. Classification of multispectral remote sensing data using a back-propagation neural network. IEEE Trans. Geosci. Remote Sens. 1992, 30, 81–88. [Google Scholar] [CrossRef]
- Kaishan, S.; Shuwen, N. Soybean lai estimation with in-situ collected hyperspectral data based on bp-neural networks. In Proceedings of the 2007 3rd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 14–16 June 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 331–336. [Google Scholar]
- Weiss, M.; Baret, F.; Garrigues, S.; Lacaze, R. Lai and fapar cyclopes global products derived from vegetation. Part 2: Validation and comparison with modis collection 4 products. Remote Sens. Environ. 2007, 110, 317–331. [Google Scholar] [CrossRef]
- Birky, A.K. Ndvi and a simple model of deciduous forest seasonal dynamics. Ecol. Model. 2001, 143, 43–58. [Google Scholar] [CrossRef]
- Lüdeke, M.; Janecek, A.; Kohlmaier, G.H. Modelling the seasonal co2 uptake by land vegetation using the global vegetation index. Tellus B 1991, 43, 188–196. [Google Scholar] [CrossRef]
- Adams, J. Vegetation-Climate Interaction: How Plants Make the Global Environment; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
LAI | FPAR | ||
---|---|---|---|
>45°N | Feb | 0.031 ± 0.197 | −0.013 ± 0.042 |
Aug | −0.191 ± 0.856 | 0.049 ± 0.102 | |
23°N–45°N | Feb | −0.031 ± 0.557 | 0.012 ± 0.091 |
Aug | 0.107 ± 0.964 | 0.054 ± 0.118 | |
23°S–23°N | Feb | 0.017 ± 0.726 | 0.032 ± 0.073 |
Aug | 0.102 ± 0.653 | 0.025 ± 0.083 | |
23°S–45°S | Feb | 0.130 ± 0.431 | 0.048 ± 0.074 |
Aug | 0.194 ± 0.525 | 0.061 ± 0.079 |
Biome Type | LAI | FPAR | ||||||
---|---|---|---|---|---|---|---|---|
MAM | JJA | SON | DJF | MAM | JJA | SON | DJF | |
Biome 1 | 0.02 ± 0.43 | 0.06 ± 0.36 | 0.03 ± 0.34 | 0.05 ± 0.67 | 0.02 ± 0.09 | 0.02 ± 0.08 | 0.02 ± 0.08 | 0.08 ± 0.12 |
Biome 2 | 0.02 ± 0.20 | 0.04 ± 0.15 | 0.04 ± 0.14 | 0.06 ± 0.18 | 0.01 ± 0.05 | 0.03 ± 0.06 | 0.02 ± 0.06 | 0.03 ± 0.06 |
Biome 3 | 0.05 ± 0.56 | 0.06 ± 0.49 | 0.04 ± 0.52 | 0.13 ± 0.77 | 0.03 ± 0.09 | 0.02 ± 0.09 | 0.03 ± 0.09 | 0.06 ± 0.10 |
Biome 4 | 0.06 ± 0.66 | 0.11 ± 0.65 | 0.01 ± 0.66 | 0.03 ± 0.72 | 0.03 ± 0.09 | 0.03 ± 0.09 | 0.02 ± 0.10 | 0.02 ± 0.09 |
Biome 5 | 0.14 ± 1.19 | −0.22 ± 1.14 | −0.10 ± 1.28 | 0.14 ± 1.22 | 0.05 ± 0.09 | 0.06 ± 0.09 | 0.04 ± 0.10 | 0.05 ± 0.10 |
Biome 6 | −0.04 ± 0.85 | 0.17 ± 0.49 | −0.06 ± 0.82 | 0.02 ± 1.12 | 0.04 ± 0.11 | 0.04 ± 0.10 | 0.03 ± 0.10 | 0.03 ± 0.09 |
Biome 7 | 0.07 ± 0.94 | −0.05 ± 0.96 | −0.07 ± 0.83 | 0.07 ± 1.21 | 0.04 ± 0.13 | 0.04 ± 0.15 | 0.03 ± 0.13 | 0.05 ± 0.12 |
Biome 8 | −0.10 ± 0.56 | 0.27 ± 0.78 | −0.04 ± 0.45 | 0.03 ± 1.12 | 0.03 ± 0.09 | 0.10 ± 0.16 | 0.03 ± 0.09 | 0.03 ± 0.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Sun, K.; Chen, C.; Bai, T.; Park, T.; Wang, W.; Nemani, R.R.; Myneni, R.B. Generation and Evaluation of LAI and FPAR Products from Himawari-8 Advanced Himawari Imager (AHI) Data. Remote Sens. 2019, 11, 1517. https://doi.org/10.3390/rs11131517
Chen Y, Sun K, Chen C, Bai T, Park T, Wang W, Nemani RR, Myneni RB. Generation and Evaluation of LAI and FPAR Products from Himawari-8 Advanced Himawari Imager (AHI) Data. Remote Sensing. 2019; 11(13):1517. https://doi.org/10.3390/rs11131517
Chicago/Turabian StyleChen, Yepei, Kaimin Sun, Chi Chen, Ting Bai, Taejin Park, Weile Wang, Ramakrishna R. Nemani, and Ranga B. Myneni. 2019. "Generation and Evaluation of LAI and FPAR Products from Himawari-8 Advanced Himawari Imager (AHI) Data" Remote Sensing 11, no. 13: 1517. https://doi.org/10.3390/rs11131517