Comparing Thresholding with Machine Learning Classifiers for Mapping Complex Water
"> Figure 1
<p>Study area and location of field survey sites.</p> "> Figure 2
<p>Pre-processing steps for Sentinel-1 data.</p> "> Figure 3
<p>The selected GPS points collected on Site G showing the temporal and spatial variability in (<b>a</b>) NDWI, (<b>b</b>) MNDWI, (<b>c</b>) VH/VV on different dates, and (<b>d</b>) shows the spectral variability on a Sentinel-2 image acquired on 22 November 2016.</p> "> Figure 4
<p>Detailed (large-scale) examples of the 10 m true colour maps of Sentinel-2 (4, 3, 2), MNDWI, and NDWI images. The first column represents site A and the second column is for site F.</p> "> Figure 5
<p>Visual comparison of Sentinel-2 (<b>a</b>) true colour image (4, 3, 2), (<b>b</b>) MNDWI, and (<b>c</b>) NDWI on mountain slopes showing the misrepresentation of shadows by MNDWI.</p> "> Figure 6
<p>Visualisation of water masks derived from T1 (NDWI), T2 (SAR VH polarisation), and T1+T2 (fusion of T1 and T2). The background image is an aerial photograph taken in November 2014 when water levels were very low.</p> "> Figure 7
<p>Comparison between thresholding and MLAs for all sites</p> ">
Abstract
:1. Introduction
- To compare the performance of simple rule-based methods, i.e., the application of dynamic thresholds that can be easily incorporated into operational workflows, to the performance of supervised learning approaches (i.e., MLAs).
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preparation
2.2.1. Test Sites and Data Collection
2.2.2. Multispectral Images Pre-Processing
2.2.3. SAR Data Pre-Processing
2.3. Feature Set Generation for Classification
2.4. Experimental Design
2.5. Image Thresholding
2.6. Machine Learning
2.7. Accuracy Assessment
3. Results
3.1. Thresholding
3.2. Benchmarking Thresholding to Machine Learning
4. Discussion
5. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Water | Trees & Shrubs | Bare & Built | Grass | Shadow | TOTALS | PA*% | EO†% | |
---|---|---|---|---|---|---|---|---|
Water | 3607 | 69 | 88 | 54 | 183 | 4160 | 86.7 | 13.3 |
Trees & shrubs | 67 | 2645 | 123 | 326 | 68 | 3329 | 79.5 | 20.5 |
Bare & built | 104 | 87 | 4162 | 189 | 248 | 4990 | 83.4 | 16.6 |
Grass | 27 | 458 | 101 | 1794 | 66 | 2496 | 71.9 | 28.1 |
Shadow | 119 | 38 | 62 | 21 | 1425 | 1665 | 85.6 | 14.4 |
TOTALS | 3924 | 3297 | 4536 | 2384 | 1990 | 16,640 | ||
CA‡% | 91.9 | 80.2 | 91.7 | 75.3 | 71.6 | |||
EC§% | 8.1 | 19.8 | 8.3 | 24.7 | 28.4 | |||
Overall accuracy | 81.6 | |||||||
Overall kappa | 0.76 |
Water | Trees & Shrubs | Bare & Built | Grass | Shadow | TOTALS | PA*% | EO†% | |
---|---|---|---|---|---|---|---|---|
Water | 3597 | 83 | 79 | 89 | 262 | 4110 | 86.5 | 13.5 |
Trees & shrubs | 88 | 2679 | 60 | 218 | 284 | 3329 | 80.5 | 19.5 |
Bare & built | 179 | 193 | 3805 | 381 | 145 | 4703 | 76.3 | 23.7 |
Grass | 41 | 303 | 158 | 1920 | 49 | 2471 | 76.9 | 23.1 |
Shadow | 168 | 104 | 162 | 63 | 1168 | 1665 | 70.1 | 29.9 |
TOTALS | 4073 | 3362 | 4264 | 2671 | 1908 | 16,640 | ||
CA‡% | 88.3 | 79.7 | 89.2 | 71.9 | 61.2 | |||
EC§% | 11.7 | 20.3 | 10.8 | 28.1 | 38.8 | |||
Overall accuracy | 77.7 | |||||||
Overall kappa | 0.71 |
Water | Trees & Shrubs | Bare & Built | Grass | Shadow | TOTALS | PA*% | EO†% | |
---|---|---|---|---|---|---|---|---|
Water | 3271 | 85 | 189 | 56 | 469 | 4160 | 83.5 | 16.5 |
Trees & shrubs | 69 | 2879 | 97 | 128 | 56 | 3329 | 78.2 | 21.8 |
Bare & built | 90 | 126 | 4271 | 147 | 186 | 4990 | 73.8 | 26.2 |
Grass | 49 | 401 | 93 | 1625 | 48 | 2496 | 74.1 | 25.9 |
Shadow | 463 | 49 | 97 | 89 | 857 | 1665 | 70.2 | 29.8 |
TOTALS | 3942 | 3540 | 4747 | 2045 | 1616 | |||
CA‡% | 83 | 81.3 | 89 | 79.5 | 53 | |||
EC§% | 17 | 18.7 | 11 | 20.5 | 47 | |||
Overall accuracy | 73.8 | |||||||
Overall kappa | 0.69 |
References
- Araujo, J.A.; Abiodun, B.J.; Crespo, O. Impacts of drought on grape yields in western cape, South Africa. Theor. Appl. Climatol. 2016, 123, 117–130. [Google Scholar] [CrossRef]
- Botai, C.; Botai, J.; de Wit, J.; Ncongwane, K.; Adeola, A. Drought characteristics over the western cape province, South Africa. Water 2017, 9, 876. [Google Scholar] [CrossRef]
- Gilbertson, J.K.; Kemp, J.; Van Niekerk, A. Effect of pan-sharpening multi-temporal landsat 8 imagery for crop type differentiation using different classification techniques. Comput. Electron. Agric. 2017, 134, 151–159. [Google Scholar] [CrossRef]
- DAFF. Abstract of Western Cape Province Agricultural Statistics. 2018. Available online: http://www.daff.gov.za/Daffweb3/Portals/0/Statistics%20and%20Economic%20Analysis/Statistical%20Information/Abstract%202018.pdf (accessed on 23 April 2018).
- Hoffman, M.T.; Carrick, P.; Gillson, L.; West, A. Drought, climate change and vegetation response in the succulent karoo, South Africa. S. Afr. J. Sci. 2009, 105, 54–60. [Google Scholar] [CrossRef]
- Engelbrecht, C.J.; Landman, W.A.; Engelbrecht, F.A.; Malherbe, J. A synoptic decomposition of rainfall over the cape south coast of South Africa. Clim. Dyn. 2015, 44, 2589–2607. [Google Scholar] [CrossRef]
- Evans, J. Western cape dam levels drop even more. Mail & Guardian, 5 March 2018. [Google Scholar]
- Bangira, T.; Maathuis, B.H.; Dube, T.; Gara, T.W. Investigating flash floods potential areas using ascat and trmm satellites in the western cape province, South Africa. Geocarto Int. 2015, 30, 737–754. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the swir band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef]
- Hanqiu, X. A study on information extraction of waterbody with the modified normalized difference water index (mndwi). J. Remote Sens. 2005, 5, 589–595. [Google Scholar]
- Yang, X.; Zhao, S.; Qin, X.; Zhao, N.; Liang, L. Mapping of urban surface water bodies from sentinel-2 msi imagery at 10 m resolution via ndwi-based image sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef]
- Bangira, T.; Alfieri, S.; Menenti, M.; van Niekerk, A.; Vekerdy, Z. A spectral unmixing method with ensemble estimation of endmembers: Application to flood mapping in the caprivi floodplain. Remote Sens. 2017, 9, 1013. [Google Scholar] [CrossRef]
- Schlaffer, S.; Chini, M.; Dettmering, D.; Wagner, W. Mapping wetlands in zambia using seasonal backscatter signatures derived from envisat asar time series. Remote Sens. 2016, 8, 402. [Google Scholar] [CrossRef]
- Pham-Duc, B.; Prigent, C.; Aires, F. Surface water monitoring within cambodia and the vietnamese mekong delta over a year, with sentinel-1 sar observations. Water 2017, 9, 366. [Google Scholar] [CrossRef]
- Chini, M.; Hostache, R.; Giustarini, L.; Matgen, P. A hierarchical split-based approach for parametric thresholding of sar images: Flood inundation as a test case. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6975–6988. [Google Scholar] [CrossRef]
- Zhang, X.-K.; Zhang, X.; Lan, Q.; Baig, M.H.A. Automated Detection of Coastline Using Landsat tm Based on Water Index and Edge Detection Methods. Paper Presented at Second International Workshop on Earth Observation and Remote Sensing Applications, Shanghai, China, 8–11 June 2012; pp. 153–156. [Google Scholar]
- Pierdicca, N.; Pulvirenti, L.; Chini, M.; Guerriero, L.; Candela, L. Observing floods from space: Experience gained from cosmo-skymed observations. Acta Astronaut. 2013, 84, 122–133. [Google Scholar] [CrossRef]
- Foody, G.M.; Muslim, A.M.; Atkinson, P.M. Super-resolution mapping of the waterline from remotely sensed data. Int. J. Remote Sens. 2005, 26, 5381–5392. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Vitti, A. Reconstruction of river boundaries at sub-pixel resolution: Estimation and spatial allocation of water fractions. ISPRS Int. J. Geo-Inf. 2017, 6, 383. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.; Xu, T.; Liu, R.; Shi, K.; Huang, C. Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm. Remote Sens. Environ. 2015, 164, 142–154. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated water extraction index (awei): A new technique for surface water mapping using landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 23–27. [Google Scholar] [CrossRef]
- Martinis, S.; Twele, A.; Voigt, S. Unsupervised extraction of flood-induced backscatter changes in sar data using markov image modeling on irregular graphs. IEEE Trans. Geosci. Remote Sens. 2011, 49, 251–263. [Google Scholar] [CrossRef]
- Hasmadi, M.; Pakhriazad, H.; Shahrin, M. Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Geogr. Malays. J. Soc. Space 2009, 5, 1–10. [Google Scholar]
- Xie, H.; Luo, X.; Xu, X.; Pan, H.; Tong, X. Evaluation of landsat 8 oli imagery for unsupervised inland water extraction. Int. J. Remote Sens. 2016, 37, 1826–1844. [Google Scholar] [CrossRef]
- Pradhan, B.; Tehrany, M.S.; Jebur, M.N. A new semiautomated detection mapping of flood extent from terrasar-x satellite image using rule-based classification and taguchi optimization techniques. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4331–4342. [Google Scholar] [CrossRef]
- Feng, Q.; Gong, J.; Liu, J.; Li, Y. Flood mapping based on multiple endmember spectral mixture analysis and random forest classifier—The case of yuyao, China. Remote Sens. 2015, 7, 12539. [Google Scholar] [CrossRef]
- Verpoorter, C.; Kutser, T.; Tranvik, L. Automated mapping of water bodies using landsat multispectral data. Limnol. Oceanogr. Methods 2012, 10, 1037–1050. [Google Scholar] [CrossRef]
- Gilbertson, J.K.; Van Niekerk, A. Value of dimensionality reduction for crop differentiation with multi-temporal imagery and machine learning. Comput. Electron. Agric. 2017, 142, 50–58. [Google Scholar] [CrossRef]
- Harding, W.R.; Quick, A.J.R. Management options for shallow hypertrophic lakes, with particular refernce to zeekovlei, western cape. S. Afr. J. Aquat. Sci. 1992, 18, 3–19. [Google Scholar]
- Dalvie, M.A.; Cairncross, E.; Solomon, A.; London, L. Contamination of rural surface and ground water by endosulfan in farming areas of the Western Cape, South Africa. Environ. Health 2003, 2, 1. [Google Scholar] [CrossRef]
- Hong, S.; Jang, H.; Kim, N.; Sohn, H.-G. Water area extraction using radarsat sar imagery combined with landsat imagery and terrain information. Sensors 2015, 15, 6652–6667. [Google Scholar] [CrossRef]
- Frazier, P.S.; Page, K.J. Waterbody detection and delineation with landsat tm data. Photogramm. Eng. Remote Sens. 2000, 66, 1461–1468. [Google Scholar]
- Yang, X.; Chen, L. Evaluation of Automated Urban Surface Water Extraction from Sentinel-2a Imagery Using Different Water Indices; SPIE: Bellingham, DC, USA, 2017; p. 11. [Google Scholar]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The global monitoring for environment and security (gmes) sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Matthews, M.W. Eutrophication and cyanobacterial blooms in South African inland waters: 10years of meris observations. Remote Sens. Environ. 2014, 155, 161–177. [Google Scholar] [CrossRef]
- Matthews, M.W.; Bernard, S. Eutrophication and cyanobacteria in South Africa’s standing water bodies: A view from space. S. Afr. J. Sci. 2015, 111, 1–8. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 sen2cor: L2a processor for users. Paper Presented at Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; pp. 1–8. [Google Scholar]
- McFeeters, S.K. The use of the normalized difference water index (ndwi) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of landsat tm imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (ndwi) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Shen, L.; Li, C. Waterbody extraction from landsat etm+ imagery using adaboost algorithm. Paper presented at 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–4. [Google Scholar]
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent 6 011 875, 4 January 2000. [Google Scholar]
- Shensa, M.J. The discrete wavelet transform: Wedding the a trous and mallat algorithms. IEEE Trans. Signal Process. 1992, 40, 2464–2482. [Google Scholar] [CrossRef]
- Kalantari, Z.; Nickman, A.; Lyon, S.W.; Olofsson, B.; Folkeson, L. A method for mapping flood hazard along roads. J. Environ. Manag. 2014, 133, 69–77. [Google Scholar] [CrossRef]
- Hall-Beyer, M. Practical guidelines for choosing glcm textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, J.; Wang, W.; Lin, C. A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm. Sensors 2017, 17, 1474. [Google Scholar] [CrossRef]
- Salehi, M.; Mohammadzadeh, A.; Maghsoudi, Y. Adaptive speckle filtering for time series of polarimetric sar images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 2841–2848. [Google Scholar] [CrossRef]
- Lee, J.-S.; Jurkevich, L.; Dewaele, P.; Wambacq, P.; Oosterlinck, A. Speckle filtering of synthetic aperture radar images: A review. Remote Sens. Rev. 1994, 8, 313–340. [Google Scholar] [CrossRef]
- Lee, J.; Ainsworth, T.L.; Wang, Y. A review of polarimetric sar speckle filtering. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5303–5306. [Google Scholar]
- Argenti, F.; Lapini, A.; Bianchi, T.; Alparone, L. A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–35. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418. [Google Scholar] [CrossRef]
- Skidmore, A.K.; Watford, F.; Luckananurug, P.; Ryan, P. An operational gis expert system for mapping forest soils. Photogramm. Eng. Remote Sens. 1996, 62, 501–511. [Google Scholar]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S. Water observations from space: Mapping surface water from 25 years of landsat imagery across australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Z.; Wang, R. Assessing methods of identifying open waterbodies using landsat 8 oli imagery. Environ. Earth Sci. 2016, 75, 873. [Google Scholar] [CrossRef]
- Al-Bayati, M.; El-Zaart, A. Automatic thresholding techniques for sar images. In Proceedings of the International Conference of Soft Computing, Dubai, United Arab Emirates, 2–3 November 2013; pp. 18–19. [Google Scholar]
- Liu, Y. Why ndwi threshold varies in delineating waterbody from multitemporal images? In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 4375–4378. [Google Scholar]
- Myburgh, G.; Van Niekerk, A. Impact of training set size on object-based land cover classification: A comparison of three classifiers. Int. J. Appl. Geospatial Res. 2014, 5, 49–67. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Cham, Switzerland, 2013. [Google Scholar]
- Steinwart, I.; Christmann, A. Support Vector Machines; Springer Science & Business Media: Cham, Switzerland, 2008. [Google Scholar]
- Jia, K.; Wu, B.; Li, Q. Crop classification using hj satellite multispectral data in the north china plain. APPRES 2013, 7, 073576. [Google Scholar] [CrossRef]
- Sun, D.; Yu, Y.; Goldberg, M.D. Deriving water fraction and flood maps from modis images using a decision tree approach. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2011, 4, 814–825. [Google Scholar] [CrossRef]
- Mather, P.; Tso, B. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Amani, M.; Salehi, B.; Mahdavi, S.; Granger, J.; Brisco, B. Wetland classification in newfoundland and labrador using multi-source sar and optical data integration. GISci. Remote Sens. 2017, 54, 779–796. [Google Scholar] [CrossRef]
- Garage, W. Opencv 2.0 and 2.2 Open Source Computer Vision Library. 2011. Available online: http://opencv. willowgarage. com/wiki/ (accessed on 15 January 2011).
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 2015, 7, 153–168. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Ballanti, L.; Blesius, L.; Hines, E.; Kruse, B. Tree species classification using hyperspectral imagery: A comparison of two classifiers. Remote Sens. 2016, 8, 445. [Google Scholar] [CrossRef]
- Adedokun, O.A.; Burgess, W.D. Analysis of paired dichotomous data: A gentle introduction to the mcnemar test in spss. J. MultiDiscip. Eval. 2011, 8, 125–131. [Google Scholar]
- Zhai, K.; Wu, X.; Qin, Y.; Du, P. Comparison of surface water extraction performances of different classic water indices using oli and tm imageries in different situations. Geo-Spat. Inf. Sci. 2015, 18, 32–42. [Google Scholar] [CrossRef]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water feature extraction and change detection using multitemporal landsat imagery. Remote Sens. 2014, 6, 4173–4189. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Clement, M.A.; Kilsby, C.G.; Moore, P. Multi-temporal synthetic aperture radar flood mapping using change detection. J. Flood Risk Manag. 2018, 11, 152–168. [Google Scholar] [CrossRef]
- Sarp, G.; Ozcelik, M. Waterbody extraction and change detection using time series: A case study of lake burdur, turkey. J. Taibah Univ. Sci. 2017, 11, 381–391. [Google Scholar] [CrossRef]
- Verhulp, J.; Van Niekerk, A. Transferability of decision trees for land cover classification in a heterogeneous area. S. Afr. J. Geomat. 2017, 6, 30–46. [Google Scholar] [CrossRef]
- Ireland, G.; Volpi, M.; Petropoulos, G. Examining the capability of supervised machine learning classifiers in extracting flooded areas from landsat tm imagery: A case study from a mediterranean flood. Remote Sens. 2015, 7, 3372–3399. [Google Scholar] [CrossRef]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A comparison of land surface water mapping using the normalized difference water index from tm, etm+ and ali. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef]
- Du, Z.; Li, W.; Zhou, D.; Tian, L.; Ling, F.; Wang, H.; Gui, Y.; Sun, B. Analysis of landsat-8 oli imagery for land surface water mapping. Remote Sens. Lett. 2014, 5, 672–681. [Google Scholar] [CrossRef]
Site | Description | Size (km2) |
---|---|---|
Site A | Very shallow and turbid | 0.8 |
Site B | Shallow with moderate turbidity and eutrophication | 0.4 |
Site C | Clear with moderate eutrophication | 1.6 |
Site D | Shallow and humic-rich (black) water | 2.7 |
Site E | Very shallow and eutrophied | 2.3 |
Site F | Shallow, sediment and humic-rich (black) water | 1.7 |
Site G | Shallow and moderate turbidity | 3.1 |
Site H | Shallow, clear, and wind-induced turbulence | 4.88 |
Field Visit | Sentinel-1 Image | Sentinel-2 Image |
---|---|---|
27 October 2016 | 27 October 2016 | 23 October 2016 |
26 November 2016 | 25 November 2016 | 22 November 2016 |
28 January 2017 | 31 January 2017 | 31 January 2017 |
25 February 2017 | 24 February 2017 | 03 March 2017 |
Class | % | No. of Samples from Imagery | No. of GPS Samples | Total |
---|---|---|---|---|
Water | 26 | 3350 | 1045 | 4395 |
Grass | 16 | 2660 | 0 | 2660 |
Shadow | 10 | 1695 | 0 | 1695 |
Bare & built up | 28 | 4660 | 0 | 4660 |
Trees & shrubs | 20 | 3330 | 0 | 3330 |
Total | 100 | 16,640 |
Data | Type | Subtype | Description | Total Features |
---|---|---|---|---|
Sentinel-1 | Speckle filters based on polarisations | HV | Boxcar, none, median (5 × 5), Lee-sigma, refined Lee, frost, gamma MAP, IDAN, and Lee | 9 |
VV | 9 | |||
Polarisation ratios | Boxcar, none, median (5 × 5), Lee-sigma, refined Lee, frost, gamma MAP, IDAN, and Lee | 9 | ||
Sentinel-2 | Spectral indices | Reflectance bands and mean of the six bands | B2, B3, B4, B6, B8, B11, and Mean | 7 |
Normalised difference spectral indices (NDSIs) | Band combinations from Sentinel-2 bands (B2, B3, B4, B6, B8, B11, and B12) e.g., (B2-B3)/(B2+B3) | 21 | ||
Pan-sharpening of SWIR (Band 11) | Band combinations P1 of B11 | 6 | ||
Band combinations P2 of B11 | 6 | |||
Textural features | Grey level co-occurrence matrix (GLCM) | Correlation, Homogeneity | 2 | |
Grey level difference vector (GLDV) | Contrast, Entropy, Mean | 3 | ||
Image transform | Principle components | PC1 and PC2 | 2 |
Index | Equation |
---|---|
Normalized difference water index (NDWI) | NDWI = |
Normalized difference moisture index (NDMI) | NDMI = |
Modified normalized difference water index (MNDWI) | MNDWI = |
Water ratio index (WRI) | WRI = |
B2 | B3 | B4 | B6 | B8 | B11 | B12 | |
---|---|---|---|---|---|---|---|
B2 | |||||||
B3 | |||||||
B4 | |||||||
B6 | |||||||
B8 | |||||||
B11 | |||||||
B12 | |||||||
B11ATWT | |||||||
B11GS |
Experiment Set | Classification Method | Input Features | Number of Experiments |
---|---|---|---|
A | Thresholding | Each feature individually | 296 × 9 = 2664 |
B | k-NN | All features combined | 1 × 9 = 9 |
C | DT | All features combined | 1 × 9 = 9 |
D | RF | All features combined | 1 × 9 = 9 |
E | SVM | All features combined | 1 × 9 = 9 |
F | c-SVM | All features combined | 1 × 9 = 9 |
SITE | Thresholding | Average | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T6 | OA | K | |||||||||
NDWI | VH PolRL | MNDWIATWT | Band 8 | Band 11ATWT | MNDWIGS | |||||||||||
OA | K | OA | K | OA | K | OA | K | OA | K | OA | K | δ | δ | |||
A | 88.2 | 0.83 | 85.5 | 0.65 | 73.2 | 0.59 | 74 | 0.53 | 63.7 | 0.53 | 64.2 | 0.51 | 77.6 | 9.5 | 0.50 | 0.27 |
B | 91.8 | 0.84 | 88.5 | 0.77 | 68.3 | 0.58 | 77.6 | 0.55 | 75.4 | 0.51 | 71.6 | 0.54 | 76.8 | 12.1 | 0.40 | 0.38 |
C | 90.8 | 0.83 | 88.4 | 0.77 | 93.6 | 0.87 | 81.2 | 0.73 | 78 | 0.57 | 84.2 | 0.89 | 86.9 | 7.1 | 0.78 | 0.15 |
D | 91.6 | 0.89 | 89.6 | 0.79 | 75.8 | 0.62 | 76.7 | 0.53 | 65.9 | 0.51 | 65.7 | 0.51 | 77.8 | 11.4 | 0.49 | 0.30 |
E | 90.7 | 0.81 | 89.5 | 0.79 | 94.6 | 0.89 | 80.8 | 0.62 | 75.9 | 0.52 | 85.1 | 0.92 | 87.1 | 8.0 | 0.78 | 0.17 |
F | 89.1 | 0.78 | 88.7 | 0.77 | 65.9 | 0.55 | 78.9 | 0.58 | 73.1 | 0.57 | 64.3 | 0.51 | 75.4 | 16.0 | 0.38 | 0.37 |
G | 96.1 | 0.92 | 92.4 | 0.85 | 98.2 | 0.91 | 88.8 | 0.78 | 88.6 | 0.77 | 93.2 | 0.93 | 90.5 | 6.0 | 0.81 | 0.11 |
H | 90.3 | 0.81 | 82.8 | 0.71 | 91.1 | 0.82 | 76.3 | 0.53 | 75.7 | 0.52 | 70.4 | 0.54 | 83.9 | 11.0 | 0.63 | 0.20 |
90.7 | 0.82 | 86.3 | 0.70 | 85.2 | 0.67 | 81.3 | 0.61 | 77.8 | 0.55 | 75.2 | 0.73 | 82.8 | 5.8 | 0.7 | 0.13 | |
SD | 1.57 | 0.03 | 3.1 | 0.10 | 11.8 | 0.20 | 4.5 | 0.10 | 6.2 | 0.05 | 13.2 | 0.15 | 6.73 | 4.75 | 0.11 | 0.06 |
All sites | 81.6 | 0.76 | 77.7 | 0.71 | 73.8 | 0.69 | 69.5 | 0.57 | 67.7 | 0.57 | 65.2 | 0.56 | 72.3 | 6.25 | 0.64 | 0.08 |
SITE | Classifier | Overall Average | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM | c-SVM | k-NN | RF | DT | OA | K | ||||||||
OA K | OA K | OA K | OA K | OA K | δ | δ | ||||||||
A | 95.8 | 0.91 | 92.7 | 0.90 | 87.2 | 0.85 | 88.7 | 0.86 | 81.7 | 0.79 | 89.2 | 4.73 | 0.86 | 0.05 |
B | 97.4 | 0.93 | 94.2 | 0.91 | 89.0 | 0.87 | 89.8 | 0.86 | 85.0 | 0.82 | 91 | 4.07 | 0.88 | 0.05 |
C | 96.8 | 0.94 | 94.4 | 0.91 | 90.5 | 0.89 | 89.3 | 0.86 | 86.2 | 0.83 | 91.2 | 3.39 | 0.88 | 0.04 |
D | 95 | 0.94 | 90.7 | 0.92 | 91.8 | 0.90 | 91.3 | 0.89 | 90.2 | 0.89 | 93.9 | 1.89 | 0.91 | 0.02 |
E | 96.3 | 0.88 | 93.3 | 0.95 | 93.6 | 0.90 | 91.4 | 0.89 | 91.2 | 0.89 | 93 | 1.52 | 0.90 | 0.03 |
F | 94.5 | 0.90 | 92.2 | 0.90 | 89.7 | 0.87 | 88.7 | 0.86 | 86.2 | 0.83 | 90 | 2.1 | 0.87 | 0.03 |
G | 98.2 | 0.96 | 95.7 | 0.95 | 93.8 | 0.89 | 92.5 | 0.89 | 94.6 | 0.95 | 94 | 2.67 | 0.93 | 0.03 |
H | 94.6 | 0.91 | 94.3 | 0.93 | 91.5 | 0.89 | 92.7 | 0.90 | 91.3 | 0.90 | 93 | 1.08 | 0.91 | 0.02 |
95.9 | 0.93 | 93.3 | 0.92 | 90.8 | 0.9 | 90.5 | 0.88 | 88.4 | 0.89 | 91.8 | 2.89 | 0.90 | 0.03 | |
SD | 2.17 | 0.03 | 1.1 | 0.02 | 2.26 | 0.02 | 2.6 | 0.04 | 3.7 | 0.03 | 2.37 | 0.93 | 0.03 | 0.01 |
All | 91.7 | 0.82 | 89.6 | 0.81 | 80.7 | 0.78 | 79.5 | 0.77 | 78.7 | 0.76 | 81.2 | 2.32 | 0.79 | 0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bangira, T.; Alfieri, S.M.; Menenti, M.; van Niekerk, A. Comparing Thresholding with Machine Learning Classifiers for Mapping Complex Water. Remote Sens. 2019, 11, 1351. https://doi.org/10.3390/rs11111351
Bangira T, Alfieri SM, Menenti M, van Niekerk A. Comparing Thresholding with Machine Learning Classifiers for Mapping Complex Water. Remote Sensing. 2019; 11(11):1351. https://doi.org/10.3390/rs11111351
Chicago/Turabian StyleBangira, Tsitsi, Silvia Maria Alfieri, Massimo Menenti, and Adriaan van Niekerk. 2019. "Comparing Thresholding with Machine Learning Classifiers for Mapping Complex Water" Remote Sensing 11, no. 11: 1351. https://doi.org/10.3390/rs11111351
APA StyleBangira, T., Alfieri, S. M., Menenti, M., & van Niekerk, A. (2019). Comparing Thresholding with Machine Learning Classifiers for Mapping Complex Water. Remote Sensing, 11(11), 1351. https://doi.org/10.3390/rs11111351