Ground Deformations Controlled by Hidden Faults: Multi-Frequency and Multitemporal InSAR Techniques for Urban Hazard Monitoring
"> Figure 1
<p>The location of the study area. The upper left Google Earth view localizes the Colima and Ciudad Guzmàn regions (in the Colima Graben area) with respect to the Middle America trench (Central-Western Mexico). The physical map shows the subdivision of the Colima Graben (CG) in the three segments, namely, the Northern Colima Graben (NCG), Central Colima Graben (CCG) and Southern Colima Graben (SCG) between the Jalisco and the Michoacán blocks. Ciudad Guzmàn is located in the South-Eastern part of the NCG, and in the Northern side of the Nevado de Colima (NC) and Fuego de Colima (FC) volcanic structures (the Colima Volcanic Complex-CVC).</p> "> Figure 2
<p>Simplified Geological map of Ciudad Guzman. (VS) Volcanic Sediments; (BT) Brown Tuffs—Plio-Quaternary deposits; (Rb) Red beds—Late Cretaceous; (Li) Limestone; (Da) Dacites—Early Cretaceous. On the bottom, the schematic geological cross-section relative to the AA’ profile in <a href="#remotesensing-11-02246-f002" class="html-fig">Figure 2</a>a (modified from [<a href="#B19-remotesensing-11-02246" class="html-bibr">19</a>]).</p> "> Figure 3
<p>Maps of the deformation rate from the ENV dataset (2003–2010 time period descending and ascending paths, upper panels on the left and right, respectively) and from the CSK dataset (2011–2015 time period ascending path, lower panel). Both the ENV and CSK datasets were processed using the IPTA multi-baseline technique. The white circles indicate three selected sites individuating different displacements rates: (A) stable or light-positive ground velocities (toward the satellite); (B) intermediate values of negative velocities (moving away from the satellite), near the fractured area; (C) highest values of negative ground velocities. A ground urban survey performed in CG in November 2012 assessed the deformations and associated fractures (black points alignment on the maps) that occurred on 21 September 2012 [<a href="#B13-remotesensing-11-02246" class="html-bibr">13</a>].</p> "> Figure 4
<p>Deformation rate maps from the 2016–2018 S1 dataset (ascending path). PS (<b>a</b>) and SBAS (<b>b</b>) techniques results. The white circles indicate the selected sites individuating different displacements rates: (A) stable; (B) intermediate/fractured; (C) highest values. The black ellipses surround a particular area of CG that will be discussed in the Discussion section.</p> "> Figure 5
<p>Mean LOS ground velocity of S1 ascending stack: the SBAS vs. PS cross-comparison analysis for the A, B and C selected sites of <a href="#remotesensing-11-02246-f004" class="html-fig">Figure 4</a>.</p> "> Figure 6
<p>LOS ground velocity of the S1 ascending stack: the SBAS vs. PS cross-comparison analysis for the A, B and C selected sites of <a href="#remotesensing-11-02246-f004" class="html-fig">Figure 4</a>.</p> "> Figure 7
<p>Acquisition geometry of the S1 and CSK satellites used to project the vertical component of deformation of the S1 dataset onto the CSK line of sight. It is worth remarking that even though the ENV LOS is not present in this figure, the same approach has been applied to such dataset considering the proper incidence angle, i.e., equal to the standard acquisition off-nadir of 23°.</p> "> Figure 8
<p>Example of three deformation trends in the (<b>A</b>), (<b>B</b>) and (<b>C</b>) sites of <a href="#remotesensing-11-02246-f004" class="html-fig">Figure 4</a>. The displacements were estimated by ENV, CSK and S1 datasets (from ascending orbit only). The ENV and S1 displacement data are projected along the LOS<sub>CSK</sub>. Each of the three colors (black, blue and red) represents the three satellite-derived displacement measures. The A displacement points are relative to the part of the CG that lies on the bedrock and thus shows a stable behavior. The B displacement points are relative to a site located in correspondence of the cracks that opened on September 2012 (indicated by the green line). The C displacement points are relative to the northwestern part of CG, with high deformation rates.</p> "> Figure 9
<p>Vertical deformation rate retrieved from S1 ascending and descending data. In the A-A’ velocity profile, the horizontal axis gives the distances (m), the vertical axis the velocities (mm/yr): positive and negative values indicate Eastward and Westward movements respectively.</p> "> Figure 10
<p>East-West deformation rate retrieved from S1 ascending and descending data. In the A-A’ velocity profile, the horizontal axis gives the distances (m), the vertical axis the velocities (mm/yr): the negative velocity values identify the subsidence area.</p> "> Figure 11
<p>Greenhouse “time-lapse” of evolution in the 2000–2018 period (<b>a</b>–<b>d</b>). Time series of images with the Google Earth Time Slider tool provided by Google Earth Pro (v. 7.1.5.1557).</p> "> Figure 12
<p>The urban expansion localized on the North-Western side of Ciùdad Guzman. The yellow lines indicate areas experiencing urban expansion in the 2005–2018 time period and, in particular after 2014. Time series of images with the Google Earth Time Slider tool provided by Google Earth Pro (v. 7.1.5.1557). The considered area refers to the black ellipses of <a href="#remotesensing-11-02246-f004" class="html-fig">Figure 4</a> and to the yellow ones in <a href="#remotesensing-11-02246-f013" class="html-fig">Figure 13</a>.</p> "> Figure 13
<p>GC growth in the 1984–2018 period (<b>a</b>–<b>f</b>). The trends reported in <a href="#remotesensing-11-02246-f014" class="html-fig">Figure 14</a> relevant to the urban sprawl experienced by CG are relative to the surfaces evaluated from the polygons reported here. Time series of images with the Google Earth Time Slider tool (Google Earth Pro (v. 7.1.5.1557). Yellow ellipses identify the analysis in this section and reported in <a href="#remotesensing-11-02246-f012" class="html-fig">Figure 12</a>.</p> "> Figure 14
<p>Trend of the urban sprawl in the municipality of Zapotlàn El Grande (blue dotted line) and of the growth of the greenhouse structures in square kilometers (red dotted line) compared with the deformation retrieved from the complete series of SAR data in the 2003–2018 period at site C (located in the northwestern part of CG, the one characterized by the highest deformation rates).</p> "> Figure 15
<p>Overlay between S1 velocity map (ascending, values are expressed in [mm/year]) the fault mapped by the 2015 Development Plan (Government of the Municipality of Zapotlan el Grande [<a href="#B35-remotesensing-11-02246" class="html-bibr">35</a>]). The black lines are the faults traced in the framework of the “development map of the sub-district affected by the fault”.</p> ">
Abstract
:1. Introduction
2. Geological Overview
3. Materials and Methods
3.1. Sentinel-1 SBAS Processing
3.2. Sentinel-1 PS Processing
4. Results
4.1. Comparison between SBAS and PS Processing
4.2. Deformation Time-Series Analysis
4.3. Vertical and East-West Components Estimation
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brunori, C.A.; Bignami, C.; Stramondo, S.; Bustos, E. 20 years of active deformation on volcano caldera: Joint analysis of InSAR and AInSAR techniques. Int. J. Appl. Earth Obs. Geoinf. 2013. [Google Scholar] [CrossRef]
- Polcari, M.; Albano, M.; Atzori, S.; Bignami, C.; Stramondo, S. The Intraplate 2016 Mw 6.0 Australia Earthquake Studied by Insar Data. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 7283–7285. [Google Scholar]
- Chen, B.; Gong, H.; Lei, K.; Li, J.; Zhou, C.; Gao, M.; Guan, H.; Lv, W. Land subsidence lagging quantification in the main exploration aquifer layers in Beijing plain, China. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 54–67. [Google Scholar] [CrossRef]
- Cianflone, G.; Tolomei, C.; Brunori, C.A.; Monna, S.; Dominici, R. Landslides and subsidence assessment in the Crati Valley (Southern Italy) using insar data. Geosciences (Switzerland) 2018, 8, 67. [Google Scholar] [CrossRef]
- Cianflone, G.; Tolomei, C.; Brunori, C.A.; Dominici, R. InSAR Time Series Analysis of Natural and Anthropogenic Coastal Plain Subsidence: The Case of Sibari (Southern Italy). Remote Sens. 2015, 7, 16004–16023. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Wegmüller, U.; Tosi, L.; Bitelli, G.; Spreckels, V. Land subsidence monitoring with differential SAR interferometry. Photogramm. Eng. Remote Sens. 2001, 67, 1261–1270. [Google Scholar]
- Cheloni, D.; De Novellis, V.; Albano, M.; Antonioli, A.; Anzidei, M.; Atzori, S.; Avallone, A.; Bignami, C.; Bonano, M.; Calcaterra, S.; et al. Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data. Geophys. Res. Lett. 2017, 44, 6778–6787. [Google Scholar] [CrossRef]
- Abelson, M.; Raz, E.; Magen, M.; Atzori, S.; Salvi, S.; Baer, G. SAR Interferometry for Sinkhole Early Warning and Susceptibility Assessment along the Dead Sea, Israel. Remote Sens. 2019, 1, 89. [Google Scholar] [CrossRef]
- Norini, G.; Capra, L.; Groppelli, G.; Agliardi, F.; Pola, A.; Cortes, A. Structural architecture of the Colima Volcanic Complex. J. Geophys. Res. 2010, 115, B12209. [Google Scholar] [CrossRef]
- Zobin, V.M.; Orozco-Rojas, J.; Reyes-Davila, G.A.; Navarro, C. Seismicity of an andesitic volcano during block-lava effusion: Volcan de Colima, Mexico. Bull. Volcanol. 2005, 67, 679–688. [Google Scholar] [CrossRef]
- Zobin, V.M.; Melnik, O.E.; González, M.; Macedo, O.; Bretón, M. Swarms of microearthquakes associated with the 2005 Vulcanian expLoSion sequence at Volcán de Colima. Geophys. J. Int. 2010, 182, 808–828. [Google Scholar] [CrossRef]
- Bouwer, H. Land subsidence and cracking due to ground-water depletion. Ground Water 1977, 15, 358–364. [Google Scholar] [CrossRef]
- Brunori, C.A.; Bignami, C.; Albano, M.; Zucca, F.; Samsonov, S.; Groppelli, G. Land subsidence, ground fissures and buried faults: InSAR monitoring of Ciudad Guzmán (Jalisco—Mexico). Remote Sens. 2015, 7, 8610–8630. [Google Scholar] [CrossRef]
- Bignami, C.; Brunori, C.A. The unfruitful monitoring of a tropical volcano using ENVISAT and COSMO-SkyMed time-series: Unexpected results. In Proceedings of the European Geosciences Union General Assembly 2018, Vienna, Austria, 8–13 April 2018. [Google Scholar]
- Bommer, J.J.; Rodríguez, C.E. Earthquake-induced landslides in Central America. Eng. Geol. 2002, 63, 189–220. [Google Scholar] [CrossRef]
- Ferrari, L.; Garduno, V.H.; Pasquarè, G.; Tibaldi, A. Volcanic and tectonic evolution of central Mexico: Oligocene to present. Geofis. Int. 1994, 33, 91–105. [Google Scholar]
- Ferrari, L.; Orozco-Esquivel, T.; Manea, V.; Manea, M. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 2012, 522, 122–149. [Google Scholar] [CrossRef]
- Latest Earthquakes. Available online: https://earthquake.usgs.gov/earthquakes/map/ (accessed on 10 December 2018).
- Gutierrez-Martinez, C.A.; Franco-Sànchez, M. Análisis de “Efecto de Sitio” en Ciudad Guzmán, Jalisco, México. Available online: http://www.funvisis.gob.ve/old/archivos/www/terremoto/Papers/Doc001/doc001.htm (accessed on 20 May 2019).
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ferretti, A.; Novali, F.; Bürgmann, R.; Hilley, G.; Prati, C. InSAR permanent scatterer analysis reveals ups and downs in San Francisco Bay Area. Eos Trans. AGU 2004, 85, 317–324. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential sar interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Sansosti, E.; Casu, F.; Manzo, M.; Lanari, R. Spaceborne radar interferometry techniques for the generation of deformation time series: An advanced tool for Earth’s surface displacement analysis. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Lauknes, T.R.; Dehls, J.; Larsen, Y.; Høgda, K.A.; Weydahl, D.J. A Comparison of SBAS and PS ERS InSAR for Subsidence Monitoring in Oslo, Norway. In Proceedings of the Fringe 2005 Workshop, Frascati, Italy, 28 November–2 December 2005; pp. 58–66. [Google Scholar]
- Bignami, C.; Brunori, C.A.; Murgia, F. Multi-sensor monitoring of Ciudad Guzmán (Mexico) ground subsidence. Procedia Comput. Sci. 2018, 138, 362–365. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Interferometric Point Target Analysis for deformation mapping. In Proceedings of the 2003 IEEE Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–25 July 2003. [Google Scholar]
- PS Tutorial. Available online: http://www.sarmap.ch/tutorials/PS_Tutorial_V_0_9.pdf (accessed on 11 July 2019).
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Ma, G.; Wang, Q.; Yang, T.; Liu, M.; Gao, W.; Falabella, F.; Mastro, P.; Pepe, A. Generation of long-term InSAR ground displacement time-series through a novel multi-sensor data merging technique: The case study of the Shanghai coastal area. ISPRS J. Photogramm. Remote Sens. 2019, 154, 10–27. [Google Scholar] [CrossRef]
- Estadísticas del Agua en México. Edición 2013–2018 Conagua-Comisión Nacional del Agua, Annual Report. Available online: http://sina.conagua.gob.mx/sina/index.php?publicaciones=1 (accessed on 7 February 2019).
- ACUERDO. Available online: https://www.ceajalisco.gob.mx/img/cuencas/acuerdo.pdf (accessed on 1 March 2019).
- Dalla Via, G.; Crosetto, M.; Crippa, B. Resolving vertical and east-west horizontal motion from differential interferometric synthetic aperture radar: The L’Aquila earthquake: Resolving z and e-w motion from D-InSAR. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- INEGI. Available online: https://www.inegi.org.mx/datos (accessed on 13 February 2019).
- Available online: http://www.ciudadGuzmán.gob.mx/Documentos/Paginas/DocEjec_POEL_ZapotlanelGrande_ver1.pdf (accessed on 18 February 2019).
- Available online: http://www.ciudadguzman.gob.mx/Documentos/General/pcivilGeneralPeligroGuzmanFoto.pdf (accessed on 12 March 2019).
- Zamudio-Zavala, P.; Andalón, M.; Mora, I. Atlas Municipal de Peligros y Riesgos Naturales del municipio de Zapotlán El Grande (Cd. Guzmán), Jalisco, 2016. Available online: https://fuegolentoblog.files.wordpress.com/2016/07/atlas-de-peligros-y-riesgos-natuarales-zapotlc3a1n-2015-capitulo-iv-falla-pag-14.pdf (accessed on 7 February 2019).
# | Bias [mm/y] | Std Difference [mm/y] | Correlation |
---|---|---|---|
A | 0.832 | 0.731 | 0.767 |
B | 2.903 | 2.794 | 0.975 |
C | 8.866 | 2.587 | 0.957 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murgia, F.; Bignami, C.; Brunori, C.A.; Tolomei, C.; Pizzimenti, L. Ground Deformations Controlled by Hidden Faults: Multi-Frequency and Multitemporal InSAR Techniques for Urban Hazard Monitoring. Remote Sens. 2019, 11, 2246. https://doi.org/10.3390/rs11192246
Murgia F, Bignami C, Brunori CA, Tolomei C, Pizzimenti L. Ground Deformations Controlled by Hidden Faults: Multi-Frequency and Multitemporal InSAR Techniques for Urban Hazard Monitoring. Remote Sensing. 2019; 11(19):2246. https://doi.org/10.3390/rs11192246
Chicago/Turabian StyleMurgia, Federica, Christian Bignami, Carlo Alberto Brunori, Cristiano Tolomei, and Luca Pizzimenti. 2019. "Ground Deformations Controlled by Hidden Faults: Multi-Frequency and Multitemporal InSAR Techniques for Urban Hazard Monitoring" Remote Sensing 11, no. 19: 2246. https://doi.org/10.3390/rs11192246
APA StyleMurgia, F., Bignami, C., Brunori, C. A., Tolomei, C., & Pizzimenti, L. (2019). Ground Deformations Controlled by Hidden Faults: Multi-Frequency and Multitemporal InSAR Techniques for Urban Hazard Monitoring. Remote Sensing, 11(19), 2246. https://doi.org/10.3390/rs11192246