Precise Orbit Determination for GNSS Maneuvering Satellite with the Constraint of a Predicted Clock
"> Figure 1
<p>Root mean square (RMS) of the prediction errors of different satellite clock types under different time latencies.</p> "> Figure 2
<p>Processing scheme of the clock-constrained reverse precise point positioning (RPPP) precise orbit determination (POD) strategy for maneuvering satellites. GPS—global positioning system; BDS—Beidou navigation satellite system; ZTD—zenith tropospheric delays; ISB—inter-system bias.</p> "> Figure 3
<p>Distribution of stations used in the POD experiment (red: GPS + BDS stations, blue: GPS-only stations).</p> "> Figure 4
<p>RMS of GPS and BDS orbit differences in the radial, cross-track and along-track directions of the clock-constrained and traditional RPPP POD solutions with respect to the dynamic POD solution.</p> "> Figure 5
<p>Orbit differences between the RPPP and dynamic POD solutions for GPS and BDS satellites ((<b>a</b>): Orbit differences for GPS satellites; (<b>b</b>): Orbit differences for BDS satellites; <b>left</b>: RPPP without clock-constraint, <b>right</b>: RPPP with clock-constraint).</p> "> Figure 6
<p>Computation and comparison strategy for the maneuvering satellites.</p> "> Figure 7
<p>Orbit differences between the RPPP solutions and the forward and backward integration orbits for G22, G12, C02 and C04 around maneuvers. The vertical dashed lines indicate the detected start and end time of maneuver events.</p> "> Figure 8
<p>Orbit differences between the forward and backward RPPP solutions for G22, G12, C02 and C04 around maneuvers.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Clock Prediction Model
2.2. Constraining of Predicted Clock
2.3. Clock-Constrained Precise Orbit Determination
3. Experiment Analysis
3.1. Data Collection and Processing Configuration
3.2. Algorithm Validation with Normal Data
3.3. Test on the Real Maneuver Cases
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kelecy, T.; Hall, D.; Hamada, K.; Stocker, M. Satellite Maneuver Detection Using Two-Line Element (TLE) Data. In Proceedings of the Advanced MAUI Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 12–15 September 2007; pp. 166–181. [Google Scholar]
- Song, W.; Wang, R.; Wang, J. A simple and valid analysis method for orbit anomaly detection. Adv. Space Res. 2012, 49, 386–391. [Google Scholar] [CrossRef]
- Hugentobler, U.; Ploner, M.; Schildnecht, T.; Beutler, G. Determina- tion of resonant geopotential terms using optical observations of geostationary satellites. Adv. Space Res. 1999, 23, 767–770. [Google Scholar] [CrossRef]
- Dach, R.; Brockmann, E.; Schaer, S.; Beutler, G.; Meindl, M.; Prange, L.; Bock, H.; Jäggi, A.; Ostini, L. GNSS processing at CODE: Status report. J. Geod. 2009, 83, 353–366. [Google Scholar] [CrossRef]
- Prange, L.; Orliac, E.; Dach, R.; Arnold, D.; Beutler, G.; Schaer, S.; Jäggi, A. CODE’s five-system orbit and clock solution—The challenges of multi-GNSS data analysis. J. Geod. 2016, 1–16. [Google Scholar] [CrossRef]
- Xie, J.; Wang, J.; Mi, H. Analysis of Beidou Navigation Satellites In-Orbit State. In Proceedings of the China Satellite Navigation Conference (CSNC); Sun, J., Liu, J., Yang, Y., Fan, S., Eds.; Springer: Berlin, Germany, 2012; pp. 111–122. [Google Scholar] [CrossRef]
- Huang, G.; Qin, Z.; Wang, L.; Yan, X.; Wang, X. An optimized method to detect BDS satellites’ orbit maneuvering and anomalies in real-time. Sensors 2018, 18, 726. [Google Scholar] [CrossRef]
- Hugentobler, U.; Meindl, M.; Beutler, G.; Bock, H.; Dach, R.; Jäggi, A.; Brockmann, E. CODE IGS Analysis Center Technical Report 2003/2004; IGS 2004 Technical Reports; Gowey, K., Neilan, R., Moore, A., Eds.; IGS Central Bureau, Jet Propulsion Laboratory: Pasadena, CA, USA, 2006. (in press) [Google Scholar]
- Qiao, J.; Chen, W. Beidou satellite maneuver thrust force estimation for precise orbit determination. GPS Solut. 2018, 22, 42. [Google Scholar] [CrossRef]
- Yan, X.; Huang, G.; Zhang, R.; Zhang, Q. A method based on broadcast ephemeris to detect BDS satellite orbital maneuver. J. Navig. Position 2015, 3, 35–38. [Google Scholar]
- Ye, F.; Yuan, Y.; Tan, B.; Ou, J. A robust method to detect BeiDou navigation satellite system orbit maneuvering/anomalies and its applications to precise orbit determination. Sensors 2017, 17, 1129. [Google Scholar] [CrossRef]
- Huang, G.; Qin, Z.; Zhang, Q.; Wang, L.; Yan, X.; Fan, L.; Wang, X. A real-time robust method to detect BeiDou GEO/IGSO orbital maneuvers. Sensors 2017, 17, 2761. [Google Scholar] [CrossRef]
- Jäggi, A.; Montenbruck, O.; Moon, Y.; Wermuth, M.; König, R.; Michalak, G.; Bock, H.; Bodenmann, D. Inter-agency comparison of TanDEM-X baseline solutions. Adv. Space Res. 2012, 50, 260–271. [Google Scholar] [CrossRef]
- Ju, B.; Gu, D.; Herring, T.A.; Allende-Alba, G.; Montenbruck, O.; Wang, Z. Precise orbit and baseline determination for maneu- vering low earth orbiters. GPS Solut. 2017, 21, 53–64. [Google Scholar] [CrossRef]
- Beutler, G.; Jäggi, A.; Hugentobler, U.; Mervart, L. Efficient satellite orbit modelling using pseudo-stochastic parameters. J. Geod. 2006, 80, 353–372. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Mao, Y.; Ren, K.; Jia, X. Comparing the applicability of two kinds of thrust model for maneuver orbit. Geomat. Inf. Sci. Wuhan Univ. 2013, 38, 1196–1200. [Google Scholar]
- Cao, F.; Yang, X.; Li, Z.; Sun, B.; Kong, Y.; Chen, L.; Feng, C. Orbit determination and prediction of GEO satellite of BeiDou during repositioning maneuver. Adv. Space Res. 2014, 54, 1828. [Google Scholar] [CrossRef]
- Zhou, P.; Du, L.; Li, X.; Gao, Y. Near real-time BDS GEO satellite orbit determination and maneuver analysis with reversed point positioning. Adv. Space Res. 2018, 63, 1781–1791. [Google Scholar] [CrossRef]
- Guo, R.; Zhou, J.; Hu, X.; Liu, L.; Tang, B.; Li, X.; Sun, S. Precise orbit determination and rapid orbit recovery supported by time synchronization. Adv. Space Res. 2015, 55, 2889. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, Q.; Xu, G. Real-time clock offset prediction with an improved model. GPS Solut. 2014, 18, 95–104. [Google Scholar] [CrossRef]
- Heo, Y.; Cho, J.; Heo, M. Improving prediction accuracy of GPS satellite clocks with periodic variation behaviour. Meas. Sci. Technol. 2010, 21, 073001. [Google Scholar] [CrossRef]
- Shmaliy, Y.; Marienko, A.; Savchuk, A. GPS-Based Optimal Kalman Estimation of Time Error, Frequency Offset, and Aging. In Proceedings of the 31st Annual Precise Time and Time Interval Meeting, Dana Point, CA, USA, 7–9 December 1999; pp. 431–440. [Google Scholar]
- Senior, K.; Ray, J.; Beard, R. Characterization of periodic variations in the GPS satellite clocks. GPS Solut. 2008, 12, 211–225. [Google Scholar] [CrossRef]
- Nie, Z.; Gao, Y.; Wang, Z.; Ji, S.; Yang, H. An approach to GPS clock prediction for real-time PPP during outages of RTS stream. GPS Solut. 2018, 22, 14. [Google Scholar] [CrossRef]
- Uhlemann, M.; Gendt, G.; Ramatschi, M.; Deng, Z. GFZ Global Multi-GNSS Network and Data Processing Results; Springer: Cham, Switzerland, 2015; pp. 673–679. [Google Scholar]
- Huang, G.; Zhang, Q. Real-time estimation of satellite clock offset using adaptively robust Kalman filter with classified adaptive factors. GPS Solut. 2012, 16, 531–539. [Google Scholar] [CrossRef]
- Dow, J.M.; Neilan, R.E.; Rizos, C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Schmid, R. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671. [Google Scholar] [CrossRef]
- Liu, J.; Ge, M. PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ. J. Nat. Sci. 2003, 8, 603–609. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, Q.; Geng, J.; Lou, Y.; Ge, M.; Liu, J. Recent Development of PANDA Software in GNSS Data Processing. Proc. Spie. 2008, 7285, 231–249. [Google Scholar] [CrossRef]
- Springer, T.; Beutler, G.; Rothacher, M. Improving the orbit estimates of GPS satellites. J. Geod. 1999, 73, 147–157. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS Conventions 2010; Iers Technical Note 36; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, German, 2010; Volume 36, pp. 1–95. ISBN 3-89888-989-6. [Google Scholar]
- Wu, J.T.; Wu, S.C.; Hajj, G.A.; Bertiger, W.I.; Lichten, S.M. Effects of antenna orientation on GPS carrier phase. Manuscr. Geod. 1993, 18, 91–98. [Google Scholar]
- Geng, T.; Zhang, P.; Wang, W.; Xie, X. Comparison of Ultra-Rapid Orbit Prediction Strategies for GPS, GLONASS, Galileo and BeiDou. Sensors 2018, 18, 477. [Google Scholar] [CrossRef]
Item | Applied Models |
---|---|
Geopotential | EGM 2008 model (12 × 12) |
M-body gravity | Sun, Moon and planets |
Tidal forces | Solid Earth, pole, ocean tide IERS conventions 2010 [32] |
Solar Radiation Pressure | Reduced CODE 5-parameter with no initial value |
Relativistic effects | IERS conventions 2010 |
Basic observables | Un-differenced ionosphere-free combinations of code and phase observations on GPS L1/L2, BDS B1/B2 |
Processing interval | 30 s |
Cutoff elevation | 7° |
Weighting | |
Satellite antenna PCO and PCV | igs08.atx |
Receiver antenna PCO and PCV | GPS: igs08.atx BDS: using the same as GPS |
Phase wind-up | Corrected [33] |
Tropospheric delay | Saastamoinen model (1972) + random-walk process |
Satellite clock | Estimated as white noise |
Receiver clock | Estimated as white noise |
Earth rotation parameters (ERP) | Estimated with tight constraint |
Inter-system biases | Estimated as constant parameters |
Ambiguity | Fixed for GPS/BDS (IGSO, MEO) separately |
Satellite PRN | Orbit Type | HDOP | RDOP | Number of Stations |
---|---|---|---|---|
C01 | GEO | 3.53 | 71.07 | 41 |
C02 | 3.96 | 70.84 | 28 | |
C03 | 3.81 | 66.28 | 39 | |
C04 | 4.28 | 64.56 | 34 | |
C05 | 3.84 | 69.66 | 34 | |
C06 | IGSO | 3.05 | 54.78 | 39 |
C07 | 3.38 | 52.72 | 41 | |
C08 | 3.31 | 50.68 | 39 | |
C09 | 3.51 | 73.90 | 35 | |
C10 | 3.18 | 45.69 | 41 | |
C13 | 3.79 | 66.60 | 33 | |
C11 | MEO | 3.19 | 28.40 | 29 |
C12 | 3.46 | 36.68 | 16 | |
C14 | 2.42 | 27.10 | 39 | |
G01 | 2.29 | 25.29 | 38 | |
G02 | 2.37 | 21.28 | 37 |
PRN | DOY | Unhealthy Epochs in BRDC | Detected Maneuver Time | ||
---|---|---|---|---|---|
Start and End Time | Duration | Start and End Time | Duration | ||
G22 | 125 | 09:59:44–14:00:00 | 2 h 0 min 16 s | 10:11:00–10:12:30 | 1.5 min |
G12 | 139 | 01:59:44–07:57:36 | 5h 57min 52 s | 01:50:00–0cd 1:51:00 | 1 min |
C02 | 136 | 09:00:00–16:00:00 | 7 h | 09:24:00–09:49:30 | 25.5 min |
C03 | 139 | 07:00:00–15:00:00 | 8 h | 08:10:30–08:49:00 | 38.5 min |
C01 | 142 | 03:00:00–10:00:00 | 7 h | 05:18:00–05:54:00 | 36 min |
C05 | 144 | 23:00:00–05:00:00 (+1d) | 6 h | 00:29:00 (+1d)–00:51:30 | 22.5 min |
C04 | 151 | 01:00:00–09:00:00 | 8 h | 01:44:30–03:31:30 | 107 min |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Lou, Y.; Dai, Z.; Hu, C.; Peng, Y.; Qiao, J.; Shi, C. Precise Orbit Determination for GNSS Maneuvering Satellite with the Constraint of a Predicted Clock. Remote Sens. 2019, 11, 1949. https://doi.org/10.3390/rs11161949
Dai X, Lou Y, Dai Z, Hu C, Peng Y, Qiao J, Shi C. Precise Orbit Determination for GNSS Maneuvering Satellite with the Constraint of a Predicted Clock. Remote Sensing. 2019; 11(16):1949. https://doi.org/10.3390/rs11161949
Chicago/Turabian StyleDai, Xiaolei, Yidong Lou, Zhiqiang Dai, Caibo Hu, Yaquan Peng, Jing Qiao, and Chuang Shi. 2019. "Precise Orbit Determination for GNSS Maneuvering Satellite with the Constraint of a Predicted Clock" Remote Sensing 11, no. 16: 1949. https://doi.org/10.3390/rs11161949