Mapping Human Settlements with Higher Accuracy and Less Volunteer Efforts by Combining Crowdsourcing and Deep Learning
<p>Proposed workflow to combine deep learning and crowdsourcing methods: Combined labels are obtained, by choosing labels either from DeepVGI or MapSwipe based on the confidence of the DeepVGI labels.</p> "> Figure 2
<p>DeepVGI Workflow: The DeepVGI model is trained using building footprint sample from OpenStreetMap and satellite imagery tiles from Bing. For each tile in the testing area the model generates label, probability and confidence score.</p> "> Figure 3
<p>Map representation of the confusion matrix for Guatemala: Each map shows the spatial distribution of correct “building” (TP) and “no building” (TN) classifications for a specific method in the testing area. Incorrect classifications are split into false positives (FP) and false negatives (FN). Each pixel corresponds to a single task/satellite imagery tile.</p> "> Figure 4
<p>Map representation of the confusion matrix for Laos: Each map shows the spatial distribution of correct “building” (TP) and “no building” (TN) classifications for a specific method in the testing area. Incorrect classifications are split into false positives (FP) and false negatives (FN). Each pixel corresponds to a single task/satellite imagery tile.</p> "> Figure 5
<p>Map representation of the confusion matrix for Malawi: Each map shows the spatial distribution of correct “building” (TP) and “no building” (TN) classifications for a specific method in the testing area. Incorrect classifications are split into false positives (FP) and false negatives (FN). Each pixel corresponds to a single task/satellite imagery tile.</p> "> Figure 6
<p>Spatial and Non-Spatial Distribution of the Confidence Score and Conditional Density of Accuracy for Laos, Guatemala and Malawi. The figure provides insights on the kernel density distributions of the confidence scores of “all” (red line), “no building” (light gray) and “building” (dark gray) tiles for the different study regions (red axis). The same plot shows the conditional distribution of accuracy (blue axis) for DeepVGI (solid blue line) and MapSwipe (dashed blue line). The map depicts the spatial distribution of the confidence scores.</p> "> Figure 7
<p>Data quality and effort in respect to crowd proportion and task allocation strategy for a combined MapSwipe-DeepVGI methods. The upper side of the figure represents the performance of the confidence score-based task allocation strategy, whereas on the bottom side the mean and standard deviation of the performance of 250 random allocations between DeepVGI and MapSwipe are shown. Performance is measured by accuracy (<math display="inline"><semantics> <mi>ACC</mi> </semantics></math>), Matthew’s correlation coefficient (<math display="inline"><semantics> <mi>MCC</mi> </semantics></math>), sensitivity (<math display="inline"><semantics> <mi>TPR</mi> </semantics></math>) and specificity (<math display="inline"><semantics> <mi>TNR</mi> </semantics></math>). The x-axis of the plot shows the crowd proportion. A crowd proportion of 0.0 (left) refers to DeepVGI. Consequently, the performance for a crowd proportion of 1.0 (right) refers to the performance of MapSwipe. For a crowd proportion of 0.3, 30% of the results are obtained from MapSwipe (these tiles refer to the DeepVGI tiles with the lowest confidence) and 70% from DeepVGI.</p> ">
Abstract
:1. Introduction
- RQ1: How good are crowdsourcing (MapSwipe) and deep learning (DeepVGI) with respect to generating human settlement maps in comparison to existing EO-based approaches?
- RQ2: Which spatial and non-spatial characteristics of misclassifications are accompanied by applying the DeepVGI approach?
- RQ3: What is the added value of the proposed task allocation strategy with respect to performance and effort?
2. Background: Mapping Human Settlements Using Crowdsourcing or Deep Neural Networks
3. Description of the Study Areas and Data Sets
3.1. Study Areas
3.2. Data Sets
4. Methodology
4.1. Data Preparation
4.2. Overall Performance Evaluation
4.3. Spatial and Non-Spatial Characteristics of Misclassifications
4.4. Performance of Task Allocation Strategy
5. Results
5.1. Overall Performance Evaluation
5.2. Spatial and Non-Spatial Characteristics of Misclassifications
5.3. Combination of Crowdsourcing and Deep Learning
6. Discussion
6.1. Overall Performance Evaluation
6.2. Spatial and Non-Spatial Characteristics of Misclassifications
6.3. Combination of Crowdsourcing and Deep Learning
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs Population Division. World Urbanization Prospects: The 2018 Revision; Technical Report; United Nations Department of Economic and Social Affairs Population Division: New York, NY, USA, 2018. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for sUstainable Development. Technical Report; 2015. Available online: http://xxx.lanl.gov/abs/arXiv:1011.1669v3 (accessed on 31 July 2019).
- United Nations Office for Disaster Risk Reduction. Sendai Framework for Disaster Risk Reduction 2015–2030; Technical Report; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- Pesaresi, M.; Huadong, G.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Halkia, M.; Kauffmann, M.; Kemper, T.; Lu, L.; et al. A global human settlement layer from optical HR/VHR RS data: Concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2102–2131. [Google Scholar] [CrossRef]
- Esch, T.; Marconcini, M.; Felbier, A.; Roth, A.; Heldens, W.; Huber, M.; Schwinger, M.; Taubenbock, H.; Muller, A.; Dech, S. Urban footprint processor-Fully automated processing chain generating settlement masks from global data of the TanDEM-X mission. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1617–1621. [Google Scholar] [CrossRef]
- Tiecke, T.G.; Liu, X.; Zhang, A.; Gros, A.; Li, N.; Yetman, G.; Kilic, T.; Murray, S.; Blankespoor, B.; Prydz, E.B.; et al. Mapping the world Population One Building at a Time. arXiv 2017, arXiv:1712.05839. [Google Scholar]
- Klotz, M.; Kemper, T.; Geiß, C.; Esch, T.; Taubenbóck, H. How good is the map? A multi-scale cross-comparison framework for global settlement layers: Evidence from Central Europe. Remote Sens. Environ. 2016, 178, 191–212. [Google Scholar] [CrossRef] [Green Version]
- Gueguen, L.; Koenig, J.; Reeder, C.; Barksdale, T.; Saints, J.; Stamatiou, K.; Collins, J.; Johnston, C. Mapping Human Settlements and Population at Country Scale from VHR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 524–538. [Google Scholar] [CrossRef]
- Albuquerque, J.; Herfort, B.; Eckle, M. The Tasks of the Crowd: A Typology of Tasks in Geographic Information Crowdsourcing and a Case Study in Humanitarian Mapping. Remote Sens. 2016, 8, 859. [Google Scholar] [CrossRef]
- Hachmann, S.; Jokar Arsanjani, J.; Vaz, E. Spatial data for slum upgrading: Volunteered Geographic Information and the role of citizen science. Habitat Int. 2017. [Google Scholar] [CrossRef]
- Scholz, S.; Knight, P.; Eckle, M.; Marx, S.; Zipf, A. Volunteered Geographic Information for Disaster Risk Reduction—The Missing Maps Approach and Its Potential within the Red Cross and Red Crescent Movement. Remote Sens. 2018, 10, 1239. [Google Scholar] [CrossRef]
- See, L.; Mooney, P.; Foody, G.; Bastin, L.; Comber, A.; Estima, J.; Fritz, S.; Kerle, N.; Jiang, B.; Laakso, M.; et al. Crowdsourcing, Citizen Science or Volunteered Geographic Information? The Current State of Crowdsourced Geographic Information. ISPRS Int. J. Geo-Inf. 2016, 5, 55. [Google Scholar] [CrossRef]
- Hecht, R.; Kunze, C.; Hahmann, S. Measuring Completeness of Building Footprints in OpenStreetMap over Space and Time. ISPRS Int. J. Geo-Inf. 2013, 2, 1066–1091. [Google Scholar] [CrossRef]
- Chen, J.; Zipf, A. DeepVGI: Deep Learning with Volunteered Geographic Information. In Proceedings of the WWW ’17 Companion: Proceedings of the 26th International Conference Companion on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 771–772. [Google Scholar] [CrossRef]
- Herfort, B.; Reinmuth, M.; de Albuquerque, J.P.; Zipf, A. Towards evaluating crowdsourced image classification on mobile devices to generate geographic information about human settlements. In Proceedings of the 20th AGILE, Wageningen, The Netherlands, 9–12 May 2017. [Google Scholar]
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space – The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef]
- Zook, M.; Graham, M.; Shelton, T.; Gorman, S. Volunteered Geographic Information and Crowdsourcing Disaster Relief: A Case Study of the Haitian Earthquake. World Med. Health Policy 2010, 2, 6–32. [Google Scholar] [CrossRef] [Green Version]
- Degrossi, L.C. Potential of Collaborative Mapping for Disaster Relief: A Case Study of OpenStreetMap in the Nepal Earthquake 2015. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016. [Google Scholar] [CrossRef]
- Crooks, A.; Pfoser, D.; Jenkins, A.; Croitoru, A.; Smith, D.; Karagiorgou, S.; Efentakis, A.; Crooks, A.; Pfoser, D.; Jenkins, A.; et al. Crowdsourcing urban form and function. Int. J. Geogr. Inf. Sci. 2015, 29, 720–741. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Li, L. Assuring the quality of volunteered geographic information. Spat. Stat. 2012, 1, 110–120. [Google Scholar] [CrossRef]
- Ballatore, A.; Zipf, A. A Conceptual Quality Framework for Volunteered Geographic Information. In Proceedings of the Spatial Information Theory: 12th International Conference, COSIT 2015, Santa Fe, NM, USA, 12–16 October 2015; Fabrikant, S.I., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 89–107. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Zipf, A.; Fu, Q.; Neis, P. Quality assessment for building footprints data on OpenStreetMap. Int. J. Geogr. Inf. Sci. 2014, 28, 700–719. [Google Scholar] [CrossRef]
- Comber, A.; Mooney, P.; Purves, R.S.; Rocchini, D.; Walz, A. Crowdsourcing: It matters who the crowd are. The impacts of between group variations in recording land cover. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. Combining satellite imagery and machine learning to predict poverty. Science 2016. [Google Scholar] [CrossRef]
- Li, H.; Herfort, B.; Zipf, A. Estimating OpenStreetMap Missing Built-up Areas using Pre-trained Deep Neural Networks. In Proceedings of the 22nd AGILE, At Limassol, Cyprus, 17–20 June 2019. [Google Scholar]
- Kampffmeyer, M.; Salberg, A.B.; Jenssen, R. Semantic Segmentation of Small Objects and Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 680–688. [Google Scholar] [CrossRef]
- Tracewski, L.; Bastin, L.; Fonte, C.C. Repurposing a deep learning network to filter and classify volunteered photographs for land cover and land use characterization. Geo-Spat. Inf. Sci. 2017, 20, 252–268. [Google Scholar] [CrossRef] [Green Version]
- Vakalopoulou, M.; Karantzalos, K.; Komodakis, N.; Paragios, N. Building detection in very high resolution multispectral data with deep learning features. Int. Geosci. Remote Sens. Symp. (IGARSS) 2015, 2015, 1873–1876. [Google Scholar] [CrossRef]
- Yuan, J.; Roy Chowdhury, P.K.; McKee, J.; Yang, H.L.; Weaver, J.; Bhaduri, B. Exploiting deep learning and volunteered geographic information for mapping buildings in Kano, Nigeria. Sci. Data 2018, 5, 180217. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, Y.; Zipf, A.; Fan, H. Deep Learning From Multiple Crowds: A Case Study of Humanitarian Mapping. IEEE Trans. Geosci. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Vargas-Muñoz, J.E.; Lobry, S.; Falcão, A.X.; Tuia, D. Correcting rural building annotations in OpenStreetMap using convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2019, 147, 283–293. [Google Scholar] [CrossRef]
- Maso, J.; Pomakis, K.; Julia, N. OpenGIS Web Map Tile Service Implementation Standard; Open Geospatial Consortium Inc.: Wayland, MA, USA, 2010; pp. 4–6. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Basel, Switzerland, 2016; Volume 9905 LNCS, pp. 21–37. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 31 July 2019).
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 740–755. [Google Scholar] [CrossRef]
- Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; et al. Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE CVPR, Honolulu, HI, USA, 21–26 July 2017; Volume 4. [Google Scholar]
- Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [Google Scholar] [CrossRef]
- Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open Source Scientific Tools for Python. Available online: https://scholar.google.com/scholar?cluster=2086009121748039507&hl=en&oi=scholarr (accessed on 31 July 2019).
- Scott, D.W. Multivariate Density Estimation: Theory, Practice, and Visualization; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior. Available online: https://eml.berkeley.edu/reprints/mcfadden/zarembka.pdf (accessed on 31 July 2019).
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28–30 June 2010. [Google Scholar]
- Salk, C.F.; Sturn, T.; See, L.; Fritz, S. Limitations of Majority Agreement in Crowdsourced Image Interpretation. Trans. GIS 2016. [Google Scholar] [CrossRef]
Guatemala | Laos | Malawi | ||
---|---|---|---|---|
Training | Area | 929.0 km | 1556.3 km | 265.7 km |
Tiles | 42,833 | 72,360 | 12,408 | |
Testing | Area | 745.5 km | 1136.6 km | 410.3 km |
Tiles | 34,181 | 52,796 | 19,272 | |
No Building Tiles | 87% | 87% | 56% |
Guatemala | Laos | Malawi | ||
---|---|---|---|---|
TNR | MapSwipe | 0.99 | 0.99 | 0.99 |
DeepVGI | 0.96 | 0.97 | 0.95 | |
GUF | 0.99 | 0.99 | 0.99 | |
HRSL | 0.89 | - | 0.80 | |
TPR | MapSwipe | 0.74 | 0.79 | 0.82 |
DeepVGI | 0.81 | 0.89 | 0.85 | |
GUF | 0.44 | 0.06 | 0.07 | |
HRSL | 0.96 | - | 0.94 | |
ACC | MapSwipe | 0.96 | 0.97 | 0.91 |
DeepVGI | 0.94 | 0.96 | 0.91 | |
GUF | 0.92 | 0.87 | 0.58 | |
HRSL | 0.90 | - | 0.86 | |
MCC | MapSwipe | 0.80 | 0.85 | 0.83 |
DeepVGI | 0.74 | 0.84 | 0.81 | |
GUF | 0.60 | 0.22 | 0.18 | |
HRSL | 0.69 | - | 0.73 |
Guatemala | Laos | Malawi | ||
---|---|---|---|---|
DeepVGI | Coefficient | 16.262 | 11.164 | 16.291 |
Standard Error | 0.165 | 0.086 | 0.210 | |
Significance | 0.0 *** | 0.0 *** | 0.0 *** | |
McFadden’s Pseudo-r-squared | 0.235 | 0.109 | 0.194 | |
MapSwipe | Coefficient | 15.224 | 10.454 | 11.676 |
Standard Error | 0.149 | 0.078 | 0.149 | |
Significance | 0.0 *** | 0.0 *** | 0.0 *** | |
McFadden’s Pseudo-r-squared | −0.13 | −0.154 | −0.211 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herfort, B.; Li, H.; Fendrich, S.; Lautenbach, S.; Zipf, A. Mapping Human Settlements with Higher Accuracy and Less Volunteer Efforts by Combining Crowdsourcing and Deep Learning. Remote Sens. 2019, 11, 1799. https://doi.org/10.3390/rs11151799
Herfort B, Li H, Fendrich S, Lautenbach S, Zipf A. Mapping Human Settlements with Higher Accuracy and Less Volunteer Efforts by Combining Crowdsourcing and Deep Learning. Remote Sensing. 2019; 11(15):1799. https://doi.org/10.3390/rs11151799
Chicago/Turabian StyleHerfort, Benjamin, Hao Li, Sascha Fendrich, Sven Lautenbach, and Alexander Zipf. 2019. "Mapping Human Settlements with Higher Accuracy and Less Volunteer Efforts by Combining Crowdsourcing and Deep Learning" Remote Sensing 11, no. 15: 1799. https://doi.org/10.3390/rs11151799
APA StyleHerfort, B., Li, H., Fendrich, S., Lautenbach, S., & Zipf, A. (2019). Mapping Human Settlements with Higher Accuracy and Less Volunteer Efforts by Combining Crowdsourcing and Deep Learning. Remote Sensing, 11(15), 1799. https://doi.org/10.3390/rs11151799