Flood Distance Algorithms and Fault Hidden Danger Recognition for Transmission Line Towers Based on SAR Images
<p>Tower center distance search method.</p> "> Figure 2
<p>Tower base grid distance search method.</p> "> Figure 3
<p>The original images.</p> "> Figure 4
<p>Images after Lee filtering.</p> "> Figure 5
<p>The binary images of the water body after threshold segmentation.</p> ">
Abstract
:1. Introduction
2. Flood Recognition Algorithm Based on SAR Imaging
2.1. Image Preprocessing
2.2. Identification Model For Flood Areas
2.3. Flood Failure Evaluation Index
3. Tower Flood Failure Distance Algorithm and Criterion
3.1. Tower Center Distance Search Algorithm
3.2. Tower Base Grid Distance Search Algorithm
3.3. Flood Failure Criterion Based on Distance Algorithm, Flood Ratio and the Elevation
- When , the tower has been flooded and it is judged to be a super hazard;
- When , the degree of hazard is judged to be in the A level;
- When , the degree of hazard is judged to be in the B level;
- When , the degree of hazard is judged to be in the C level.
4. Case Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, D.; Wu, Y.; Chen, F. Application of helicopter patrol technology in UHV AC transmission line. Power Syst. Technol. 2010, 34, 29–32. [Google Scholar]
- Peng, X.; Liu, Z.; Mai, X.; Luo, Z.; Wang, K.; Xie, X. A transmission line inspection system based on remote sensing: System and Its Key Technologies. Remote Sens. Inf. 2015, 30, 51–57. [Google Scholar]
- He, R.; Lu, C.; Yu, X.; Liu, X.; Zhang, X.; Mu, X.; Feng, G.; Wang, Y.; Wu, K. Development of a new type of unmanned transmission line inspection airship. In Proceedings of the International Conference on Measuring Technology & Mechatronics Automation IEEE Computer Society, Changsha, China, 10–11 February 2018; pp. 118–120. [Google Scholar]
- Li, J.; Wang, L.; Shen, X. Unmanned aerial vehicle intelligent patrol-inspection system applied to transmission grid. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration, Beijing, China, 20–22 October 2018; pp. 1–5. [Google Scholar]
- Wang, Z. The Comprehensive Assessment of the Power Loss and the Economic Impact of the Power Outages under the Flooding; Hunan University: Changsha, China, 2012. [Google Scholar]
- Banks, D.R. Telecomm disaster recovery planning for electric utilities. In Proceedings of the 2005 Rural Electric Power Conference, San Antonio, TX, USA, 8–10 May 2005; IEEE: Piscataway, NJ, USA, 2005. [Google Scholar]
- Miao, X.; Chen, X. Natural disasters prevention of power communications system. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Kwasinski, A.; Weaver, W.; Chapman, P.; Krein, P. Telecommunications power plant damage assessment caused by hurricane katrina—Site survey and follow-up results. In Proceedings of the 2006 International Telecommunications Energy Conference, Piscataway, RI, USA, 10 September 2006; IEEE: Piscataway, RI, USA, 2006. [Google Scholar]
- Qiu, L.J. The power grid backbone in the flood--the sideline of flood prevention and protection of the State Grid Zhangzhou Power Supply Company in 2015. Jiangxi Electr. Power. 2015, 39, 16–17. [Google Scholar]
- Liu, X. Seven days and seven nights—Hebei Lishui power supply company to resist the “7·21” catastrophic power grid repair documentary. State Grid. 2012, 9, 52–54. [Google Scholar]
- Guo, Z. Analysis of the impact of flood disasters on the power grid. China’s Strate. Emerg. Ind. 2018, 8, 75. [Google Scholar]
- Wang, Y.; Wang, J. Research on hazard damage characteristics and hazard prevention technology of distribution network flood geological hazards. Power Supply Consum. 2016, 33, 12–18. [Google Scholar]
- Hu, B. Look at the damage of flood to transmission and transformation lines and power supply equipment. Electromech. Int. Mark. 1999, 7, 22–23. [Google Scholar]
- Bruno, C.; Canale, S.; Pirri, F. X-SAR SpotLigh images feature selection and water segmentation. In Proceedings of the 2012 IEEE International Conference on Imaging Systems and Techniques, Manchester, UK, 16–17 July 2012. [Google Scholar]
- Juval, C.; Riihimäki, H.; Pulliainen, J.; Lemmetyinen, J.; Heilimo, J. Implications of boreal forest stand characteristics for X-band SAR flood mapping accuracy. Remote Sens. Environ. 2016, 186, 47–63. [Google Scholar]
- Giustarini, L.; Hostache, R.; Matgen, P.; Bates, P.D.; Mason, D.C.; Schumann, G.J.-P. A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2417–2430. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Z.; Chen, F.; Chen, F.; Zhang, L. Flood hazard mapping and assessment on the Angkor world heritage site, Cambodia. Remote Sens. 2019, 11, 98. [Google Scholar] [CrossRef]
- Chaabani, C.; Chini, M.; Abdelfattah, R.; Hostache, R.; Chokmani, K. Flood mapping in a complex environment using Bistatic TanDEM-X/TerraSAR-X InSAR coherence. Remote Sens. 2018, 10, 1873. [Google Scholar] [CrossRef]
- Martinis, S.; Twele, A.; Strobl, C.; Kersten, J.; Stein, E. A Multi-Scale flood monitoring system based on fully automatic MODIS and TerraSAR-X processing chains. Remote Sens. 2013, 5, 5598–5619. [Google Scholar] [CrossRef]
- Boni, G.; Ferraris, L.; Pulvirenti, L.; Squicciarino, G.; Pierdicca, N.; Candela, L.; Pisani, A.R.; Zoffoli, S.; Onori, R.; Proietti, C.; et al. A prototype system for flood monitoring based on flood forecast combined with COSMO-SkyMed and Sentinel-1 data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2794–2805. [Google Scholar] [CrossRef]
- Guy, S.; Renaud, H.; Christian, P.; Lucien, H.; Patrick, M.; Florian, P.; Laurent, P. High-Resolution 3-D flood information from radar imagery for flood hazard management. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1715–1725. [Google Scholar]
- Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L. Monitoring flood evolution in vegetated areas using COSMO-SkyMed data: The Tuscany 2009 case study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1807–1816. [Google Scholar] [CrossRef]
- Amitrano, D.; Di Martino, G.; Iodice, A.; Riccio, D.; Ruello, G. Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3290–3299. [Google Scholar] [CrossRef]
- Deng, J.; Wang, K.; Deng, Y.; Huang, J. An effective way for automatically extracting water body information from SPOT-5 images. J. Shanghai Jiaotong Univ. Agric. Sci. 2005, 2, 198–201. [Google Scholar]
- Chen, L.; Liu, Z.; Zhang, H. SAR image water extraction based on scattering characteristics. Remote Sens. Technol. Appl. 2014, 29, 963–969. [Google Scholar]
- Zeng, L.; Li, L.; Wan, L. SAR-based fast flood mapping using Sentinel-1 imagery. Geomat. World. 2015, 22, 100–107. [Google Scholar]
- Zhang, H.; Fang, W.; Xun, S.; Yang, Y. Flood identification method based on MODIS and GIS and information extraction of land use of submerged area. J. Catastrophology. 2010, 25, 22–26. [Google Scholar]
- Wang, J.; Liu, T.; Yu, Z.; Hu, T.; Zhang, D.; Xun, D.; Wang, D. A research on town flood information rapid extraction based on COSMO-SkyMed and SPOT-5. Remote Sens. Technol. Appl. 2016, 31, 564–571. [Google Scholar]
- Lang, F. Research on Polarimetric SAR Imagery Filtering and Segmentation; Wuhan University: Wuhan, China, 2014. [Google Scholar]
- Chen, Z. Flooded Area Classification by High-Resolution SAR Images; Wuhan University: Wuhan, China, 2017. [Google Scholar]
- An, C.; Niu, Z.; Li, Z.; Chen, Z. Otsu threshold comparison and SAR water segmentation result analysis. J. Electron. Inf. Technol. 2010, 32, 2215–2219. [Google Scholar] [CrossRef]
- An, C.; Cheng, Z. SAR water segmentation based on Otsu and improved CV model. Signal Process. 2011, 2, 221–225. [Google Scholar]
- Lu, J.; Liu, Y.; Wu, C.; Zhang, H.; Zhou, T. Study on satellite monitoring and alarm calculation algorithm of wild fire near transmission lines. Proc. CSEE 2015, 35, 5511–5519. [Google Scholar]
- Lu, J.; Wu, C.; Yang, L.; Zhang, H.; Liu, Y.; Xu, X.J. Research and application of forest fire monitor and early-warning system for transmission line. Power Syst. Prot. Control 2014, 42, 89–95. [Google Scholar]
- Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. CSEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, S.; Zhou, Y.; Wang, L. Uncertainty analysis of flood disaster assessment using radar imagery. In Proceedings of the 2007 IEEE International Geoscience & Remote Sensing Symposium 2007, Barcelona, Spain, 23–27 July 2007; pp. 4729–4732. [Google Scholar]
- Arunangshu, C.; Debasish, C. Computerized seed and range selection method for flood extent extraction in SAR image using iterative region growing. J. Indian Soc. Remote Sens. 2019, 47, 563–571. [Google Scholar]
- D’Addabbo, A.; Refice, A.; Pasquariello, G.; Lovergine, F.P.; Capolongo, D.; Manfreda, S. A bayesian network for flood detection combining SAR imagery and ancillary data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3612–3625. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Chini, M.; Pierdicca, N.; Boni, G. Use of SAR data for detecting floodwater in urban and agricultural areas: The Role of the Interferometric Coherence. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1532–1544. [Google Scholar] [CrossRef]
- Biswajeet, P.; Mahyat, S.T.; Mustafa, N.J. A new semiautomated detection mapping of flood extent from TerraSAR-X satellite image using rule-based classification and taguchi optimization techniques. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4331–4342. [Google Scholar]
- Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffmann, L.; Savenije, H.H.G. Towards an automated SAR based flood monitoring system: Lessons learned from two case studies. Phys. Chem. Earth Parts A/B/C 2011, 36, 241–252. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L. An algorithm for operational flood mapping from synthetic aperture radar (SAR) data based on the fuzzy logic. Nat. Hazards Earth Syst. Sci. 2011, 11, 529–540. [Google Scholar] [CrossRef]
- Chini, M.; Hostache, R.; Giustarini, L.; Matgen, P. A hierarchical split-based approach for parametric thresholding of SAR images: Flood inundation as a test case. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6975–6988. [Google Scholar] [CrossRef]
- Hu, Z.; Li, X.; Sun, Y.; Gong, Z.; Wang, Y.; Zhu, L. Flood disaster response and decision-making support system based on remote sensing and GIS. In Proceedings of the 2007 IEEE International Geoscience & Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 2435–2438. [Google Scholar]
- Bayraktar, H.; Bayram, B. Fuzzy logic analysis of flood disaster monitoring and assessment of damage in SE Anatolia Turkey. In Proceedings of the 2009 International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 11–13 June 2009; pp. 13–17. [Google Scholar]
- Chen, Y. The comprehensive ranking evaluation of flood disaster based on grey-cloud whitening-weight function. In Proceedings of the 2011 International Conference on Electronic & Mechanical Engineering & Information Technology IEEE, Harbin, China, 12–14 August 2011; pp. 1932–1934. [Google Scholar]
- Zhang, Z.; Li, C. Analysis on decision-making model of plan evaluation based on grey relation projection and combination weight algorithm. J. Syst. Eng. Electron. 2018, 4, 789–796. [Google Scholar]
- Krejčí, J.; Petri, D.; Fedrizzi, M. From measurement to decision with the analytic hierarchy process: Propagation of uncertainty to decision outcome. IEEE Trans. Instrum. Meas. Year. 2017, 66, 3228–3236. [Google Scholar] [CrossRef]
- Kang, H.G.; Seong, P.H. A methodology for evaluating alarm-processing systems using informational entropy-based measure and the analytic hierarchy process. IEEE Trans. Nucl. Sci. 1999, 46, 2269–2280. [Google Scholar] [CrossRef]
- Bauer-Marschallinger, B.; Paulik, C.; Hochstöger, S.; Mistelbauer, T.; Modanesi, S.; Ciabatta, L.; Massari, C.; Brocca, L.; Wagner, W. Soil moisture from fusion of scatterometer and SAR: Closing the Scale Gap with Temporal Filtering. Remote Sens. 2018, 10, 1030. [Google Scholar] [CrossRef]
- Chai, X.; Zhang, T.; Shao, Y.; Gong, H.; Liu, L.; Xie, K. Modeling and mapping soil moisture of plateau pasture using RADARSAT-2 imagery. Remote Sens. 2015, 7, 1279–1299. [Google Scholar] [CrossRef]
Tower Number | Tower Coordinates | Coordinates of the Nearest Flood | The Alarm Distance (m) | Flood Ratio (%) | The Elevation Δh (m) | V Coefficient | Calculation Time of the Tower Center Distance Algorithm(s) | Calculation Time of Tower Base Grid Distance Algorithm(s) | The Affected Level |
---|---|---|---|---|---|---|---|---|---|
a1 | (178,15) | (189,16) | 110.45 | 11.4 | 350 | 0.2088 | 0.0212 | 0.0198 | B |
a2 | (33,20) | (71,3) | 416.29 | 10.5 | 240 | 0.1826 | 0.0288 | 0.0263 | B |
a3 | (203,154) | (204,137) | 170.29 | 12.3 | 270 | 0.1766 | 0.0224 | 0.0211 | B |
a4 | (145,186) | (145,186) | 0 | 45.5 | 0 | 0.0910 | 0.0162 | 0.0150 | S |
a5 | (57,32) | (103,46) | 480.83 | 3.8 | 110 | 0.1107 | 0.0299 | 0.0292 | B |
a6 | (137,32) | (127,29) | 104.40 | 20.1 | 170 | 0.1356 | 0.0188 | 0.0180 | B |
a7 | (106,219) | (119,213) | 143.17 | 14.4 | 130 | 0.1081 | 0.0231 | 0.0220 | B |
a8 | (153,222) | (146,225) | 76.16 | 22.5 | 200 | 0.1526 | 0.0185 | 0.0177 | B |
a9 | (6,53) | (15,49) | 98.49 | 30.1 | 80 | 0.1100 | 0.0171 | 0.0165 | B |
a10 | (58,37) | (52,45) | 100 | 18.7 | 50 | 0.0724 | 0.0191 | 0.0182 | A |
a11 | (62,212) | (97,189) | 418.80 | 4.1 | 160 | 0.1301 | 0.0330 | 0.0310 | B |
a12 | (194,196) | (178,226) | 340 | 8.3 | 130 | 0.1156 | 0.0263 | 0.0242 | B |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Du, R.; Liu, W. Flood Distance Algorithms and Fault Hidden Danger Recognition for Transmission Line Towers Based on SAR Images. Remote Sens. 2019, 11, 1642. https://doi.org/10.3390/rs11141642
Liu L, Du R, Liu W. Flood Distance Algorithms and Fault Hidden Danger Recognition for Transmission Line Towers Based on SAR Images. Remote Sensing. 2019; 11(14):1642. https://doi.org/10.3390/rs11141642
Chicago/Turabian StyleLiu, Lianguang, Rujun Du, and Wenlin Liu. 2019. "Flood Distance Algorithms and Fault Hidden Danger Recognition for Transmission Line Towers Based on SAR Images" Remote Sensing 11, no. 14: 1642. https://doi.org/10.3390/rs11141642
APA StyleLiu, L., Du, R., & Liu, W. (2019). Flood Distance Algorithms and Fault Hidden Danger Recognition for Transmission Line Towers Based on SAR Images. Remote Sensing, 11(14), 1642. https://doi.org/10.3390/rs11141642