Assessing the Uncertainties of Four Precipitation Products for Swat Modeling in Mekong River Basin
"> Figure 1
<p>Locations of the Mekong River Basin (MRB) and the meteorological and hydrological stations, the sub-figure at the bottom left is the climate region classification of MRB from World Maps of Koppen-Geiger Climate Classification (Notation: A, C, D, E mean equatorial, warm temperature, snow, and polar climates, respectively; m and w mean monsoonal and desert precipitation regimes; a, b, c, and T mean hot summer, warm summer, cool summer, and polar tundra temperature features).</p> "> Figure 2
<p>Scatterplots of precipitation comparison for Mekong River basin at daily scale between satellite/reanalysis precipitation products and gauge. The black line is diagonal line, and the best-fit line, which used the least squares method, is blue.</p> "> Figure 3
<p>The intensity distribution of daily precipitation in different ranges (0~0.1, 0.1~1, 1~5, 5~10, 10~20, and >20 mm/day), and their relative contribution to the total precipitation amounts during the period 1998 to 2007 (Notation: the intensity of 0~0.1 contributed less rainfall (<1%), so it is not shown in the right corner of <a href="#remotesensing-11-00304-f003" class="html-fig">Figure 3</a>).</p> "> Figure 4
<p>The intensity distribution of daily precipitation in different ranges (0~0.1, 0.1~1, 1~5, 5~10, 10~20, and >20 mm/day), and their relative contribution to the total precipitation amounts during the period 1998 to 2007 in six climatic zones (Line 1: ET, Line 2: Dwc, Line 3: Cwb, Line 4: Cwa, Line 5: Aw, and Line 6: Am).</p> "> Figure 5
<p>Box plots of observed and simulated streamflow data during the calibration (left panel, 2000 to 2003) and validation (right panel, 2004 to 2007) periods (Notation: The upper and lower bounds are determined by the 75th percentile and 25th percentile; the black dots represent the average of observed or simulated streamflow; the outliers represent large streamflow values observed or simulated; and the horizontal lines inside the box represent the median of the variable).</p> "> Figure 6
<p>Parameter distributions of six more sensitive hydrological parameters for the four precipitation products: red points represent the best-suited parameter.</p> "> Figure 7
<p>Comparison of SWAT-simulated streamflow with fixed parameters and observed streamflow in MRB in the calibration and validation periods (January 2000 to December 2007) at daily scale. (a: Gauge, b: AgMERRA, c: MSWEP, d: PERSIANN-CDR, and e: TMPA).</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Geographical Data
2.3. Precipitation Products
2.3.1. In Situ Gauge Data
2.3.2. AgMERRA Dataset
2.3.3. MSWEP Dataset
2.3.4. PERSIANN-CDR Dataset
2.3.5. TMPA Dataset
3. Methodology
3.1. Statistical Methods
3.2. SWAT Model
3.2.1. Model Description
3.2.2. Model Setup
3.2.3. Model Calibration and Uncertainty Analysis
4. Results
4.1. Evaluation of the Performance of Four Precipitation Products
4.1.1. Evaluation in the Whole Mrb
4.1.2. Evaluation in Different Climatic Zones
4.2. Model Calibration and Validation
4.3. Parameters and Prediction Uncertainties
4.4. Simulation with Fixed Parameters Set Using Different Precipitation Products
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
- The daily precipitation of MSWEP and TMPA have nearly the same good performance with the highest CC and POD and lowest RMSE over the whole MRB, and the AgMERRA performs better than PERSIANN-CDR in this rank. However, all metrics of four precipitations in six different climate regions were worse than those for the whole MRB. Specifically, the TMPA and PERSIANN-CDR products have a large downward trend, especially in the ET and Dwc regions, while the AgMERRA and MSWEP have relatively good performance in six different climate regions. The AgMERRA has a good performance for each climate zone, while MSWEP and PERSIANN-CDR have obvious overestimation in ET and Dwc areas (for heavy rain with daily precipitation greater than 20 mm/day). In the Am, Aw, Cwa, and Cwb regions, MSWEP has the best performance, and other products perform differently in different intensities.
- The MSWEP precipitation estimates have achieved the best simulation results by considering the model’s simulation effects for low-flow and high-flow processes (Figure 5), followed by the PERSIANN-CDR, TMPA, and AgMERRA. Considering the uncertainty of the model’s multiple simulations, MSWEP and PERSIANN-CDR precipitation products have obtained good simulation results with higher P and lower R values, the TMPA simulation result was better than AgMERRA in this rank.
- By analyzing the uncertainty of the calibrated parameters with different precipitation inputs, the parameter ranges determined by the gauge precipitation data were used as a benchmark to analyze the parameter ranges and optimal parameter values for different precipitation inputs. We found that MSWEP products have a better performance while the other three precipitation products had larger uncertainties.
- We also evaluated the impact of different precipitation input on model performance with a fixed parameter set. We have found that PERSIANN-CDR and TMPA products were less sensitive to changes in parameters, and these two products have higher NSE and R2 values but poorer simulation for low-streamflow processes, while MSWEP product has a relatively smaller NSE value, but better for low-streamflow simulations. This conclusion is only a test we have done in the specific study area of the Mekong River Basin, and it needs to be verified in other watersheds.
Author Contributions
Funding
Conflicts of Interest
References
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.X.; Zhang, J.Y.; Wang, G.Q.; Fu, G.B.; He, R.M.; Yan, X.L.; Jin, J.L.; Liu, Y.L.; Zhang, A.J. Attribution for decreasing streamflow of the Haihe River basin, northern China: Climate variability or human activities? J. Hydrol. 2012, 460, 117–129. [Google Scholar] [CrossRef]
- Wang, G.Q.; Zhang, J.Y.; Yang, Q.L. Attribution of Runoff Change for the Xinshui River Catchment on the Loess Plateau of China in a Changing Environment. Water 2016, 8, 267. [Google Scholar] [CrossRef]
- Bergström, S. The HBV Model—Its Structure and Applications; Swedish Meteorological and Hydrological Institute: Norrköping, Sweden, 1992. [Google Scholar]
- Wang, G.Q.; Zhang, J.Y.; Jin, J.L.; Pagano, T.C. Assessing water resources in China using PRECIS projections and VIC model. Hydrol. Earth Syst. Sci. 2012, 16, 231–240. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. Jawra J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Grusson, Y.; Sun, X.; Gascoin, S.; Sauvage, S.; Raghavan, S.; Anctil, F.; Pérez, J.M.S. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. J. Hydrol. 2015, 531, 574–588. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil & Water Assessment Tool: Input/Output Documentation; Version 2012; Texas Water Resources Institute: College Station, TX, USA, 2012; pp. 1–650. [Google Scholar]
- Ouyang, F.; Zhu, Y.; Fu, G.; Lü, H.; Zhang, A.; Yu, Z.; Chen, X. Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang catchment. Stoch. Environ. Res. Risk Assess. 2015, 29, 1781–1795. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Xia, J.; Gippel, C.J.; Wang, R.; Zeng, S. Implications of Modelled Climate and Land Cover Changes on Runoff in the Middle Route of the South to North Water Transfer Project in China. Water Resour. Manag. 2015, 29, 1–17. [Google Scholar] [CrossRef]
- Xu, F.; Dong, G.; Wang, Q.; Liu, L.; Yu, W.; Men, C.; Liu, R. Impacts of DEM uncertainties on critical source areas identification for non-point source pollution control based on SWAT model. J. Hydrol. 2016, 540, 355–367. [Google Scholar] [CrossRef]
- MRC. Stage 2 Development of MRC Toolbox: Final Report (WP016); Information and Knowledge Management Programme; Mekong River Commission (MRC): Phnom Penh, Cambodia, 2010. [Google Scholar]
- Faridzad, M.; Yang, T.; Hsu, K.; Sorooshian, S.; Xiao, C. Rainfall Frequency Analysis for Ungauged Regions using Remotely Sensed Precipitation Information. J. Hydrol. 2018, 563, 123–142. [Google Scholar] [CrossRef]
- Poméon, T.; Jackisch, D.; Diekkrüger, B. Evaluating the Performance of Remotely Sensed and Reanalysed Precipitation Data over West Africa using HBV light. J. Hydrol. 2017, 547, 222–235. [Google Scholar] [CrossRef]
- Zhu, Q.; Xuan, W.; Liu, L.; Xu, Y.P. Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrol. Process. 2016, 30, 3061–3083. [Google Scholar] [CrossRef]
- Wagener, T.; Montanari, A. Convergence of approaches toward reducing uncertainty in predictions in ungauged basins. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Serrat-Capdevila, A.; Valdes, J.B.; Stakhiv, E.Z. Water Management Applications for Satellite Precipitation Products: Synthesis and Recommendations. Jawra J. Am. Water Resour. Assoc. 2014, 50, 509–525. [Google Scholar] [CrossRef]
- Alazzy, A.A.; Lü, H.; Chen, R.; Ali, A.B.; Zhu, Y.; Su, J. Evaluation of satellite precipitation products and their potential influence on hydrological modeling over the Ganzi river basin of the Tibetan plateau. Adv. Meteorol. 2017, 2017, 1687–1709. [Google Scholar] [CrossRef]
- Maggioni, V.; Meyers, P.C.; Robinson, M.D. A Review of Merged High Resolution Satellite Precipitation Product Accuracy During the Tropical Rainfall Measuring Mission (TRMM)—Era. J. Hydrometeorol. 2016, 17, 1101–1117. [Google Scholar] [CrossRef]
- Levizzani, V.; Kidd, C.; Aonashi, K.; Bennartz, R.; Ferraro, R.; Huffman, G.J.; Roca, R.; Turk, F.J.; Wang, N.Y. The activities of the International Precipitation Working Group. Q. J. R. Meteorol. Soc. 2017, 144, 3–15. [Google Scholar] [CrossRef]
- Chen, C.J.; Senarath, S.U.S.; Dima-West, I.M.; Marcella, M.P. Evaluation and restructuring of gridded precipitation data over the Greater Mekong Subregion. Int. J. Climatol. 2016, 37, 180–196. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Lu, H. Evaluation and hydrological applications of TRMM rainfall products over the Mekong River basin with a distributied model. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015; pp. 2511–2514. [Google Scholar]
- Chaudhary, S.; Dhanya, C.T.; Vinnarasi, R. Dry and wet spell variability during monsoon in gauge-based gridded daily precipitation datasets over India. J. Hydrol. 2017, 546, 204–218. [Google Scholar] [CrossRef]
- Liu, X.; Yang, T.; Hsu, K.; Liu, C.; Sorooshian, S. Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2017, 21, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Maggioni, V.; Massari, C. On the performance of satellite precipitation products in riverine flood modeling: A review. J. Hydrol. 2018, 558, 214–224. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Beck, H.E.; Van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; De Roo, A. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2016, 21, 1–38. [Google Scholar] [CrossRef]
- Tang, G.; Long, D.; Hong, Y.; Gao, J.; Wan, W. Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars. Remote Sens. Environ. 2018, 208, 82–96. [Google Scholar] [CrossRef]
- Yong, B.; Chen, B.; Tian, Y.; Yu, Z.; Hong, Y. Error-Component Analysis of TRMM-Based Multi-Satellite Precipitation Estimates over Mainland China. Remote Sens. 2016, 8, 440. [Google Scholar] [CrossRef]
- Chen, C.; Jayasekera, D.; Senarath, S. Assessing Uncertainty in Precipitation and Hydrological Modeling in the Mekong. In Proceedings of the World Environmental and Water Resources Congress, Austin, TX, USA, 17–21 May 2015; pp. 2510–2519. [Google Scholar]
- Lauri, H.; Räsänen, T.A.; Kummu, M. Using Reanalysis and Remotely Sensed Temperature and Precipitation Data for Hydrological Modeling in Monsoon Climate: Mekong River Case Study. J. Hydrometeorol. 2014, 15, 1532–1545. [Google Scholar] [CrossRef]
- Delgado, J.M.; Apel, H.; Merz, B. Flood trends and variability in the Mekong river. Hydrol. Earth Syst. Sci. 2010, 14, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Long, D.; Zhao, J.; Lu, H.; Hong, Y. Observed changes in flow regimes in the Mekong River basin. J. Hydrol. 2017, 551, 217–232. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Nachtergaele, F.; Velthuizen, H.V.; Verelst, L.; Batjes, N.; Dijkshoorn, K.; Engelen, V.V.; Fischer, G.; Jones, A.; Montanarella, L.; Petri, M. The Harmonized World Soil Database; DVD; Food and Agriculture Organization: Rome, Italy, 2009; pp. 34–37. [Google Scholar]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2014, 96, 197–210. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation datasets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Wei, W.; Hui, L.; Yang, D.; Khem, S.; Yang, J.; Gao, B.; Peng, X.; Pang, Z. Modelling Hydrologic Processes in the Mekong River Basin Using a Distributed Model Driven by Satellite Precipitation and Rain Gauge Observations. PLoS ONE 2016, 11, e0152229. [Google Scholar] [CrossRef]
- Delgado, J.M.; Merz, B.; Apel, H. A climate-flood link for the lower Mekong River. Hydrol. Earth Syst. Sci. 2012, 16, 1533–1541. [Google Scholar] [CrossRef] [Green Version]
- Ruane, A.C.; Goldberg, R.; Chryssanthacopoulos, J. Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agric. For. Meteorol. 2015, 200, 233–248. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D.; De Lannoy, G.J.M.; Forman, B.A.; Liu, Q.; Mahanama, S.P.P.; Touré, A. Assessment and Enhancement of MERRA Land Surface Hydrology Estimates. J. Clim. 2011, 24, 6322–6338. [Google Scholar] [CrossRef] [Green Version]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.K.; Dehghani, M. Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol. 2017, 37, 4896–4914. [Google Scholar] [CrossRef]
- Worqlul, A.W.; Maathuis, B.; Adem, A.A.; Demissie, S.S.; Langan, S.; Steenhuis, T.S. Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia. Hydrol. Earth Syst. Sci. 2014, 18, 4871–4881. [Google Scholar] [CrossRef] [Green Version]
- Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy). Sci. Total Environ. 2016, 573, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Yong, B.; Chen, B.; Gourley, J.J.; Ren, L.; Hong, Y.; Chen, X.; Wang, W.; Chen, S.; Gong, L. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? J. Hydrol. 2014, 508, 77–87. [Google Scholar] [CrossRef]
- Krzysztofowicz, R. Integrator of uncertainties for probabilistic river stage forecasting: Precipitation-dependent model. J. Hydrol. 2001, 249, 69–85. [Google Scholar] [CrossRef]
- Ajami, N.K.; Duan, Q.; Sorooshian, S. An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Gebremichael, M.; Bitew, M.M.; Hirpa, F.A.; Tesfay, G.N. Accuracy of satellite rainfall estimates in the Blue Nile Basin: Lowland plain versus highland mountain. Water Resour. Res. 2015, 50, 8775–8790. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.; Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. Asabe 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Gan, R.; Luo, Y.; Zuo, Q.T.; Sun, L. Effects of projected climate change on the glacier and runoff generation in the Naryn River Basin, Central Asia. J. Hydrol. 2015, 523, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Chen, B. Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecol. Eng. 2015, 76, 110–121. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Genuchten, M.T.V.; Schulin, R.; Schläppi, E. A sequential uncertainty domain inverse procedure for estimating subsurface flow and transport parameters. Water Resour. Res. 1997, 33, 1879–1892. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Blazkova, S.; Beven, K. A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Biondi, D.; De Luca, D.L. Rainfall-runoff model parameter conditioning on regional hydrological signatures: Application to ungauged basins in southern Italy. Hydrol. Res. 2017, 48, 714–725. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; Genuchten, M.T.V. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519, 423–437. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground Validation of GPM IMERG and TRMM 3B42V7 Rainfall Products over Southern Tibetan Plateau Based on a High-Density Rain-Gauge Network. J. Geophys. Res. Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Tang, G.; Behrangi, A.; Long, D.; Li, C.; Hong, Y. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. J. Hydrol. 2018, 559, 294–306. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, S.; Ren, L.; Yong, B.; Zhang, L.; Wang, M.; Lu, Y.; He, Y. Hydrologic Evaluation of Six High Resolution Satellite Precipitation Products in Capturing Extreme Precipitation and Streamflow over a Medium-Sized Basin in China. Water 2018, 10, 25. [Google Scholar] [CrossRef]
Dataset | Coverage | Period | Spatial Resolution | Temporal Resolution | Data Source |
---|---|---|---|---|---|
AgMERRA | Global | 1980–2010 | 0.25° | Daily | https://data.giss.nasa.gov/impacts/agmipcf/agmerra/ |
MSWEP | 60°S-N | 1979–present | 0.1° | 3-Hourly/Daily | http://www.gloh2o.org/ |
PERSIANN-CDR | 60°S-N | 1983–present | 0.25° | Daily | http://chrsdata.eng.uci.edu/ |
TMPA | 50°S-N | 1998–present | 0.25° | Daily | https://trmm.gsfc.nasa.gov/ |
Gauge observations | MRB | 1998–2007 | Point | Daily | China Meteorological Administration; MRC |
Statistic Metric | Equation | Perfect Value |
---|---|---|
Correlation coefficient (CC) | 1 | |
Root mean square error (RMSE) | 0 | |
Mean error (ME) | 0 | |
Probability of detection (POD) | 1 | |
False alarm ratio (FAR) | 0 | |
Critical success index (CSI) | 1 | |
Nash-Sutcliffe coefficient efficiency (NSE) | 1 | |
Percent bias measures (PBIAS) | 0 |
Parameters | Description | Calibration Range | Best Value |
---|---|---|---|
V_ALPHA_BNK | Base flow factor for bank storage | 0~1 | 0.26/0.65/0.35/0.68/0.83 |
R_CN2 | SCS runoff curve number | −0.2~0.2 | −0.01/−0.42/0.09/−0.04/−0.08 |
V_CH_K2 | Effective hydraulic conductivity in main channel alluvium | 0~500 | 67.8/121/142.3/164.9/236.5 |
V_CH_N2 | Effective hydraulic conductivity in main channel alluvium | 0~0.3 | 0.15/0.14/0.12/0.19/0.27 |
R_SOL_BD | Moist bulk density | −0.5~0.6 | −0.5/0.74/−0.14/−0.42/−0.4 |
V_ESCO | Soil evaporation compensation factor | 0~1 | 0.65/0.27/0.52/0.01/0.22 |
V_GW_REVAP | Groundwater “revap” coefficient | 0.02~0.2 | 0.05/0.09/0.04/0.20/0.19 |
V_GW_DELAY | Groundwater delay (days) | 0~500 | 334/24.1/224.2/63.6/64.5 |
R_HRU_SLP | Average slope steepness | −0.5~0.5 | −0.26/−0.09/0.32/0.18/0.06 |
V_TLAPS | Temperature lapse rate | −10~10 | 3.9/0.32/4.9/3.1/9.1 |
Climatic Zones | Products | CC | RMSE (mm) | ME (mm) | POD | FAR | CSI |
---|---|---|---|---|---|---|---|
ET | AgMERRA | 0.69 | 2.04 * | −0.11 | 0.84 | 0.14 * | 0.74 * |
MSWEP | 0.70 * | 2.97 | 0.71 | 0.82 | 0.16 | 0.70 | |
PERSIANN-CDR | 0.47 | 4.00 | 0.92 | 0.89 * | 0.29 | 0.65 | |
TMPA | 0.49 | 2.78 | 0.06 * | 0.82 | 0.26 | 0.64 | |
Dwc | AgMERRA | 0.59 | 4.56 * | 0.37 * | 0.76 | 0.27 * | 0.59 * |
MSWEP | 0.63 * | 6.84 | 1.72 | 0.79 * | 0.30 | 0.59 * | |
PERSIANN-CDR | 0.30 | 6.43 | 0.77 | 0.69 | 0.38 | 0.48 | |
TMPA | 0.38 | 5.94 | 0.85 | 0.73 | 0.51 | 0.42 | |
Cwb | AgMERRA | 0.68 * | 4.20 * | −0.16 | 0.85 | 0.10 * | 0.78 * |
MSWEP | 0.68 * | 4.42 | −0.12 * | 0.82 | 0.10 * | 0.75 | |
PERSIANN-CDR | 0.43 | 5.89 | −0.12 * | 0.82 | 0.15 | 0.72 | |
TMPA | 0.60 | 4.89 | 0.12 * | 0.93 * | 0.29 | 0.68 | |
Cwa | AgMERRA | 0.77 * | 4.12 * | −0.13 | 0.93 * | 0.10 | 0.84 * |
MSWEP | 0.75 | 4.41 | −0.34 | 0.88 | 0.07 * | 0.82 | |
PERSIANN-CDR | 0.59 | 5.67 | −0.19 | 0.86 | 0.11 | 0.77 | |
TMPA | 0.74 | 4.61 | 0.08 * | 0.89 | 0.08 | 0.82 | |
Aw | AgMERRA | 0.78 | 4.82 | −0.63 | 0.91 | 0.08 | 0.84 |
MSWEP | 0.82 * | 4.27 * | −0.61 | 0.88 | 0.04 * | 0.85 | |
PERSIANN-CDR | 0.77 | 4.59 | −0.19 | 0.93 * | 0.09 | 0.85 | |
TMPA | 0.82 * | 4.31 | −0.08 * | 0.90 | 0.05 | 0.86 * | |
Am | AgMERRA | 0.66 | 5.11 | −0.16 | 0.90 | 0.12 | 0.80 |
MSWEP | 0.73 * | 4.54 * | −0.41 | 0.89 | 0.05 * | 0.85 * | |
PERSIANN-CDR | 0.70 | 5.02 | 0.96 | 0.95 * | 0.13 | 0.83 | |
TMPA | 0.72 | 4.61 | −0.14 * | 0.90 | 0.06 | 0.85 * |
Period | Gauge | AgMERRA | PERSIANN-CDR | ||||||
NSE | R2 | PBIAS (%) | NSE | R2 | PBIAS (%) | NSE | R2 | PBIAS (%) | |
Calibration | 0.92 | 0.92 | −4.0 | 0.91 | 0.93 | 14.1 | 0.92 | 0.92 | 2.0 |
Validation | 0.94 | 0.94 | −2.8 | 0.89 | 0.93 | −7.7 | 0.89 | 0.92 | −10.1 |
Period | MSWEP | TMPA | |||||||
NSE | R2 | PBIAS (%) | NSE | R2 | PBIAS (%) | ||||
Calibration | 0.91 | 0.94 | 11.8 | 0.94 | 0.94 | 4.2 | |||
Validation | 0.90 | 0.94 | −10.8 | 0.92 | 0.94 | −8.1 |
Iteration | AgMERRA | MSWEP | PERSIANN-CDR | TMPA | ||||
---|---|---|---|---|---|---|---|---|
P | R | P | R | P | R | P | R | |
Third iteration | 0.95 | 0.74 | 0.99 | 1.12 | 0.94 | 0.68 | 0.97 | 0.70 |
Products | PCP | TW | SR | BF | ET | PC |
---|---|---|---|---|---|---|
Gauge | 1602.8 | 812.7 | 512.6 | 271.3 | 740.6 | 260.7 |
AgMERRA | 1521.3 | 725.2 | 42.1 | 499.6 | 690.0 | 500.5 |
MSWEP | 1505.0 | 747.7 | 550.9 | 103.5 | 718.4 | 104.0 |
PERSIANN-CDR | 1698.8 | 793.3 | 352.9 | 466.1 | 944.0 | 465.6 |
TMPA | 1631.6 | 773.2 | 398.9 | 485.6 | 893.9 | 485.6 |
Parameter | v_ALPHA_BNK | r_CN2 | v_CH_K2 | v_CH_N2 | r_SOL_BD |
Value | 0.55 | −0.09 | 146.52 | 0.17 | −0.15 |
Parameter | v_ESCO | v_GW_REVAP | v_GW_DELAY | r_HRU_SLP | v_TLAPS |
Value | 0.34 | 0.11 | 142.2 | 0.04 | 4.28 |
Precipitation Product | NSE | R2 | RMSE (m3/s) | PBIAS (%) |
---|---|---|---|---|
Gauge | 0.91 | 0.92 | 4324.6 | 5.1 |
AgMERRA | 0.74 | 0.85 | 7426.6 | 22.5 |
MSWEP | 0.79 | 0.89 | 6741.3 | 21.4 |
PERSIANN-CDR | 0.86 | 0.90 | 5500.7 | −19.2 |
TMPA | 0.89 | 0.93 | 4762.5 | −17.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Zhang, J.; Gao, C.; Ruben, G.B.; Wang, G. Assessing the Uncertainties of Four Precipitation Products for Swat Modeling in Mekong River Basin. Remote Sens. 2019, 11, 304. https://doi.org/10.3390/rs11030304
Tang X, Zhang J, Gao C, Ruben GB, Wang G. Assessing the Uncertainties of Four Precipitation Products for Swat Modeling in Mekong River Basin. Remote Sensing. 2019; 11(3):304. https://doi.org/10.3390/rs11030304
Chicago/Turabian StyleTang, Xiongpeng, Jianyun Zhang, Chao Gao, Gebdang Biangbalbe Ruben, and Guoqing Wang. 2019. "Assessing the Uncertainties of Four Precipitation Products for Swat Modeling in Mekong River Basin" Remote Sensing 11, no. 3: 304. https://doi.org/10.3390/rs11030304
APA StyleTang, X., Zhang, J., Gao, C., Ruben, G. B., & Wang, G. (2019). Assessing the Uncertainties of Four Precipitation Products for Swat Modeling in Mekong River Basin. Remote Sensing, 11(3), 304. https://doi.org/10.3390/rs11030304