Global White-Sky and Black-Sky FAPAR Retrieval Using the Energy Balance Residual Method: Algorithm and Validation
"> Figure 1
<p>The flowchart of the energy balance residual method to generate the white-sky and black-sky FAPAR products using the MODIS datasets.</p> "> Figure 2
<p>The energy budget in the soil–canopy–atmosphere system.</p> "> Figure 3
<p>A physical representation of a non-linear spectral mixture model to simplify the dual-source vegetation–soil lay approach. (<b>a</b>) The vertical digital photo of a wheat canopy; (<b>b</b>) the re-ordered image of (<b>a</b>), in which the leaf and soil pixels are placed side by side in the form of a mosaic. For the soil substrate, its input radiation is attenuated by the leaves of the upper canopy. FVC is the fraction of vegetation cover, <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>A</mi> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>P</mi> <mi>A</mi> <msub> <mi>R</mi> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>s</mi> <mi>m</mi> </mrow> </msub> </mrow> </semantics> </math> are the incident and transmitted photosynthetically active radiation, respectively.</p> "> Figure 4
<p>Variations of the white-sky (<b>a</b>) and black-sky (<b>b</b>) VIS albedo of woody vegetation and herbaceous vegetation with different LAI. The error bar is the standard deviation.</p> "> Figure 5
<p>The global prior soil VIS albedo map obtained using the ECOCLIMAP sand fraction data and the yearly maximum FVC values derived from the MCD15A2H product and gap fraction model.</p> "> Figure 6
<p>Evaluation of the EBR approach using the 81,000 simulations by PROSAIL. (<b>a</b>) “True” values of the leaf extinction coefficient (k), <math display="inline"> <semantics> <mrow> <mi>A</mi> <mi>l</mi> <mi>b</mi> <mi>e</mi> <mi>d</mi> <msub> <mi>o</mi> <mrow> <mi>p</mi> <mi>u</mi> <mi>r</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics> </math>, and <span class="html-italic">G</span>(<span class="html-italic">θ</span>) were available from PROSAIL simulations, (<b>b</b>) the prior parameters were fixed (<span class="html-italic">k</span> = 0.88, <span class="html-italic">G</span>(<span class="html-italic">θ</span>) = 0.5, <math display="inline"> <semantics> <mrow> <mi>A</mi> <mi>l</mi> <mi>b</mi> <mi>e</mi> <mi>d</mi> <msub> <mi>o</mi> <mrow> <mi>p</mi> <mi>u</mi> <mi>r</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics> </math> = 0.025).</p> "> Figure 7
<p>The mean RMSE of the retrieved TOC VIS albedo, soil VIS albedo, FAPAR, and soil-absorbed fraction of PAR using the EBR method for the 81,000 simulations with a Gaussian random noise in the LAI values (0% to 30%). Figures (<b>a</b>–<b>d</b>) correspond to the TOC VIS albedo, soil VIS albedo, FAPAR, and soil-absorbed fraction of PAR, respectively.</p> "> Figure 8
<p>Global maps of the yearly snow-free VIS soil albedo (<b>a</b>) and the number of valid retrievals in 2005 (<b>b</b>).</p> "> Figure 9
<p>The global effective retrieval fraction for VIS soil albedo derived using the NSM model with MODIS products in 2005. If the retrieved soil VIS albedo was smaller than 0.02 or greater than 0.3 for a snow-free pixel with an FVC > 0.3, the pixel was marked as abnormal.</p> "> Figure 10
<p>Validation of the EBR black-sky FAPAR (EBR<sup>BS</sup>), MCD15A2H, and GEOV1 FAPAR products using reference FAPAR estimates from 22 VALERI sites.</p> "> Figure 11
<p>Spatial variation of the monthly mean FAPARs for January (left) and July (right) in 2005: (<b>a</b>–<b>b</b>) EBR method-based black-sky FAPARs; (<b>c</b>–<b>d</b>) EBR method-based white-sky FAPARs; (<b>e</b>–<b>f</b>) MCD15A2H FAPARs; and (<b>g</b>–<b>h</b>) GEOV1 FAPARs.</p> "> Figure 12
<p>Comparison of FAPAR estimates for July 2005: (<b>a</b>–<b>b</b>) EBR black-sky and white-sky FAPARs against MOD15A2H FAPAR; (<b>c</b>–<b>d</b>) EBR black-sky and white-sky FAPARs against GEOV1 FAPAR; and (<b>e</b>) EBR black-sky FAPAR against EBR white-sky FAPAR (Note that the Sun Zenith Angle (SZA) threshold value (T0) was approximately 60).</p> "> Figure 13
<p>Time-series of the mean of the EBR black-sky, EBR white sky, MCD15A2H, and GEOV1 FAPARs of different vegetation types within tile H10V05 (located in North America, covering 30.0°N–40.0°N and 80.0°W–104.4°W) for 2005.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Datasets
2.1.1. MODIS Albedo Product
2.1.2. MODIS LAI and FAPAR Product (MCD15A2H)
2.1.3. MODIS Land Cover Product (MCD12Q1)
2.1.4. MODIS Snow Cover Product (MOD10A2)
2.1.5. Global Clumping Index (CI) Product
2.1.6. Global FAPAR Products for Comparative Analysis
2.2. Field Measurement Data
2.3. Data Simulated Using the PROSAIL Model
2.4. Algorithms for Estimating Global White-Sky and Black-Sky FAPAR
2.4.1. Estimating White-Sky and Black-Sky FAPAR Using the EBR Method
2.4.2. Estimating Snow-Free Soil VIS Albedo Using the Non-Linear Spectral Mixture Model
3. Results
3.1. Validation Using Simulations by PROSAIL
3.2. Global Snow-Free VIS Soil Albedo
3.3. EBR FAPAR Validation Using VALERI Sites
3.4. Spatio-Temporal Variation of the FAPAR Products
3.5. Seasonal Variation of the FAPAR Products
4. Discussion
4.1. Limitations of the Gap Fraction Model and NSM Model
4.2. Directional Effect of the Clumping Index and Its Influence on the Retrieval of FAPAR
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Monteith, J.L. Vegetation and the atmosphere. Volume 1. Principles. J. Appl. Ecol. 1977, 14, 655. [Google Scholar]
- Sellers, P.; Dickinson, R.; Randall, D.; Betts, A.; Hall, F.; Berry, J.; Collatz, G.; Denning, A.; Mooney, H.; Nobre, C. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G. Global products of vegetation leaf area and fraction absorbed par from year one of modis data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Liang, S.; Li, X.; Wang, J. Advanced Remote Sensing: Terrestrial Information Extraction and Applications; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Chen, J.M. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1353–1368. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. Geov1: Lai and fapar essential climate variables and fcover global time series capitalizing over existing products. Part 1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Nouvellon, Y.; Bégué, A.; Moran, M.S.; Seen, D.L.; Rambal, S.; Luquet, D.; Chehbouni, G.; Inoue, Y. Par extinction in shortgrass ecosystems: Effects of clumping, sky conditions and soil albedo. Agric. For. Meteorol. 2000, 105, 21–41. [Google Scholar] [CrossRef]
- Gu, L.; Baldocchi, D.; Verma, S.B.; Black, T.; Vesala, T.; Falge, E.M.; Dowty, P.R. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef]
- Widlowski, J.L. On the bias of instantaneous fapar estimates in open-canopy forests. Agric. For. Meteorol. 2010, 150, 1501–1522. [Google Scholar] [CrossRef]
- Liu, L.; Guan, L.; Liu, X. Directly estimating diurnal changes in gpp for c3 and c4 crops using far-red sun-induced chlorophyll fluorescence. Agric. For. Meteorol. 2017, 232, 1–9. [Google Scholar] [CrossRef]
- Goward, S.N.; Huemmrich, K.F. Vegetation canopy par absorptance and the normalized difference vegetation index: An assessment using the sail model. Remote Sens. Environ. 1992, 39, 119–140. [Google Scholar] [CrossRef]
- Li, L.; Du, Y.; Tang, Y.; Xin, X.; Zhang, H.; Wen, J.; Liu, Q. A new algorithm of the fpar product in the heihe river basin considering the contributions of direct and diffuse solar radiation separately. Remote Sens. 2015, 7, 6414–6432. [Google Scholar] [CrossRef]
- Li, W.; Fang, H. Estimation of direct, diffuse, and total fpars from landsat surface reflectance data and ground-based estimates over six fluxnet sites. J. Geophys. Res. Biogeosci. 2015, 120, 96–112. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Martonchik, J.V.; Diner, D.J.; Myneni, R.B.; Verstraete, M.; Pinty, B.; Gobron, N. Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected misr data. J. Geophys. Res. Atmos. 1998, 103, 32239–32256. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Martonchik, J.V.; Myneni, R.B.; Diner, D.J.; Running, S.W. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from modis and misr data. J. Geophys. Res. Atmos. 1998, 103, 32257–32275. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Verstraete, M.; Govaerts, Y. The meris global vegetation index (mgvi): Description and preliminary application. Int. J. Remote Sens. 1999, 20, 1917–1927. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Mélin, F.; Taberner, M.; Verstraete, M.M.; Robustelli, M.; Widlowski, J.-L. Evaluation of the meris/envisat fapar product. Adv. Space Res. 2007, 39, 105–115. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Aussedat, O.; Chen, J.M.; Cohen, W.B.; Fensholt, R.; Gond, V.; Huemmrich, K.F.; Lavergne, T.; Mélin, F. Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: Methodology and results using joint research center products derived from seawifs against ground-based estimations. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Plummer, S.; Arino, O.; Simon, M.; Steffen, W. Establishing a earth observation product service for the terrestrial carbon community: The globcarbon initiative. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 97–111. [Google Scholar] [CrossRef]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O. Lai, fapar and fcover cyclopes global products derived from vegetation: Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Sun, R.; Wang, J.; Jiang, B. Estimating the fraction of absorbed photosynthetically active radiation from the modis data based glass leaf area index product. Remote Sens. Environ. 2015, 171, 105–117. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Zhang, Y.; El-Saleous, N.; Knyazikhin, Y.; Vermote, E.; Myneni, R.B. Investigation of product accuracy as a function of input and model uncertainties: Case study with seawifs and modis lai/fpar algorithm. Remote Sens. Environ. 2001, 78, 299–313. [Google Scholar] [CrossRef]
- Camacho, F.; Cernicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. Geov1: Lai, fapar essential climate variables and fcover global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sens. Environ. 2013, 137, 310–329. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Aussedat, O.; Taberner, M.; Faber, O.; Mélin, F.; Lavergne, T.; Robustelli, M.; Snoeij, P. Uncertainty estimates for the fapar operational products derived from meris—Impact of top-of-atmosphere radiance uncertainties and validation with field data. Remote Sens. Environ. 2008, 112, 1871–1883. [Google Scholar] [CrossRef]
- Fritsch, S.; Machwitz, M.; Ehammer, A.; Conrad, C.; Dech, S. Validation of the collection 5 modis fpar product in a heterogeneous agricultural landscape in arid uzbekistan using multitemporal rapideye imagery. Int. J. Remote Sens. 2012, 33, 6818–6837. [Google Scholar] [CrossRef]
- Pickett-Heaps, C.A.; Canadell, J.G.; Briggs, P.R.; Gobron, N.; Haverd, V.; Paget, M.J.; Pinty, B.; Raupach, M.R. Evaluation of six satellite-derived fraction of absorbed photosynthetic active radiation (fapar) products across the australian continent. Remote Sens. Environ. 2014, 140, 241–256. [Google Scholar] [CrossRef]
- Tao, X.; Liang, S.; Wang, D. Assessment of five global satellite products of fraction of absorbed photosynthetically active radiation: Intercomparison and direct validation against ground-based data. Remote Sens. Environ. 2015, 163, 270–285. [Google Scholar] [CrossRef]
- Daughtry, C.; Gallo, K.; Goward, S.; Prince, S.; Kustas, W. Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies. Remote Sens. Environ. 1992, 39, 141–152. [Google Scholar] [CrossRef]
- Myneni, R.; Williams, D. On the relationship between fapar and ndvi. Remote Sens. Environ. 1994, 49, 200–211. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Peng, Y.; Huemmrich, K.F. Relationship between fraction of radiation absorbed by photosynthesizing maize and soybean canopies and ndvi from remotely sensed data taken at close range and from modis 250 m resolution data. Remote Sens. Environ. 2014, 147, 108–120. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, B.; Liu, L. Comparing spatiotemporal patterns in eurasian fpar derived from two ndvi-based methods. Int. J. Digit. Earth 2012, 5, 283–298. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Jiao, Q.; Peng, D. Retrieval of FPAR based on energy conservation principle using remote sensing. Remote Sens. Technol. Appl. 2014, 29, 976–983. [Google Scholar]
- Pinty, B.; Clerici, M.; Andredakis, I.; Kaminski, T.; Taberner, M.; Verstraete, M.; Gobron, N.; Plummer, S.; Widlowski, J.L. Exploiting the modis albedos with the two-stream inversion package (jrc-tip): 2. Fractions of transmitted and absorbed fluxes in the vegetation and soil layers. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P. First operational brdf, albedo nadir reflectance products from modis. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Sun, Q.; Shuai, Y.; Román, M.O. Capturing rapid land surface dynamics with collection v006 modis brdf/nbar/albedo (mcd43) products. Remote Sens. Environ. 2018, 207, 50–64. [Google Scholar] [CrossRef]
- Wanner, W.; Li, X.; Strahler, A.H. On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res. Atmos. 1995, 100, 21077–21089. [Google Scholar] [CrossRef]
- Myneni, R.; Knyazikhin, Y.; Park, T. Mcd15a2h Modis/Terra+ Aqua Leaf Area Index/FPAR 8-Day l4 Global 500 m Sin Grid v006 [data set]; NASA EOSDIS Land Processes DAAC, 2015. Available online: http://doi.org/10.5067/MODIS/MCD15A2H.006 (accessed on 28 February 2019).
- Jiao, Z.; Dong, Y.; Schaaf, C.B.; Chen, J.M.; Román, M.; Wang, Z.; Zhang, H.; Ding, A.; Erb, A.; Hill, M.J. An algorithm for the retrieval of the clumping index (CI) from the MODIS BRDF product using an adjusted version of the kernel-driven BRDF model. Remote Sens. Environ. 2018, 209, 594–611. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. Mcd12q1 Modis/Terra+ Aqua Land Cover Type Yearly l3 Global 500 m Sin Grid v006 [data set]; NASA EOSDIS Land Processes DAAC, 2015. Available online: https://modis.gsfc.nasa.gov/data/dataprod/mod12.php (accessed on 28 February 2019).
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Modis/Terra Snow Cover 8-Day l3 Global 500 m Grid, Version 6; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016.
- Salomonson, V.V.; Appel, I. Estimating fractional snow cover from modis using the normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Chen, J.; Menges, C.; Leblanc, S. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 2005, 97, 447–457. [Google Scholar] [CrossRef]
- Gallo, K.P.; Daughtry, C.S.T. Techniques for measuring intercepted and absorbed photosynthetically active radiation in corn canopies1. Agron. J. 1986, 78, 752–756. [Google Scholar] [CrossRef]
- Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.; Fernandes, R.A.; Leblanc, S.G. Validation of global moderate-resolution lai products: A framework proposed within the ceos land product validation subgroup. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1804–1817. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Allard, D.; Garrigues, S.; Leroy, M.; Jeanjean, H.; Fernandes, R.; Myneni, R.; Privette, J.; Morisette, J. Valeri: A network of sites and a methodology for the validation of medium spatial resolution land satellite products. Remote Sens. Environ. 2005, 76, 36–39. [Google Scholar]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. Prospect + sail models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. Prospect: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The sail model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef]
- Feret, J.-B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.; Ustin, S.L.; Le Maire, G.; Jacquemoud, S. Prospect-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Liu, L.; Song, B.; Su, Z.; Liu, X. A novel principal component analysis method for the reconstruction of leaf reflectance spectra and retrieval of leaf biochemical contents. Remote Sens. 2017, 9, 1113. [Google Scholar] [CrossRef]
- Bacour, C.; Jacquemoud, S.; Tourbier, Y.; Dechambre, M.; Frangi, J.P. Design and analysis of numerical experiments to compare four canopy reflectance models. Remote Sens. Environ. 2002, 79, 72–83. [Google Scholar] [CrossRef]
- Liu, L.Y.; Wang, J.H.; Huang, W.J.; Zhao, C.J.; Zhang, B.; Tong, Q.X. Estimating winter wheat plant water content using red edge parameters. Int. J. Remote Sens. 2004, 25, 3331–3342. [Google Scholar] [CrossRef]
- Van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosci. Discuss. 2009, 6, 3109–3129. [Google Scholar] [CrossRef]
- Irons, J.R.; Ranson, K.J.; Daughtry, C.S.T. Estimating big bluestem albedo from directional reflectance measurements. Remote Sens. Environ. 1988, 25, 185–199. [Google Scholar] [CrossRef]
- Carrer, D.; Meurey, C.; Ceamanos, X.; Roujean, J.-L.; Calvet, J.-C.; Liu, S. Dynamic mapping of snow-free vegetation and bare soil albedos at global 1 km scale from 10-year analysis of modis satellite products. Remote Sens. Environ. 2014, 140, 420–432. [Google Scholar] [CrossRef]
- Jenkins, J.P.; Richardson, A.D.; Braswell, B.H.; Ollinger, S.V.; Hollinger, D.Y.; Smith, M.L. Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agric. For. Meteorol. 2007, 143, 64–79. [Google Scholar] [CrossRef]
- Liu, L.; Peng, D.; Hu, Y.; Jiao, Q. A novel in situ fpar measurement method for low canopy vegetation based on a digital camera and reference panel. Remote Sens. 2013, 5, 274–281. [Google Scholar] [CrossRef]
- Nilson, T. A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 1971, 8, 25–38. [Google Scholar] [CrossRef]
- Nilson, T. Inversion of gap frequency data in forest stands. Agric. For. Meteorol. 1999, 98–99, 437–448. [Google Scholar] [CrossRef]
- Hosgood, B.; Jacquemoud, S.; Andreoli, G.; Verdebout, J.; Pedrini, G.; Schmuck, G. Leaf Optical Properties Experiment 93 (Lopex93); Report EUR 16095; European Union: Brussels, Belgium, 1995. [Google Scholar]
- Lhomme, J.P.; Chehbouni, A. Comments on dual-source vegetation–atmosphere transfer models. Agric. For. Meteorol. 1999, 94, 269–273. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Glassy, J.; Privette, J.L.; Tian, Y.; Lotsch, A.; Zhang, Y.; Wang, Y.; Morisette, J.T.; Votava, P.; Myneni, R.B.; Nemani, R.R.; Running, S.W. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15) Algorithm Theoretical Basis Document, 1999. Available online: http://eospso.gsfc.nasa.gov/atbd/modistables.html (accessed on 28 February 2019).
- Chen, J.M.; Govind, A.; Sonnentag, O.; Zhang, Y.; Barr, A.; Amiro, B. Leaf area index measurements at fluxnet-canada forest sites. Agric. For. Meteorol. 2006, 140, 257–268. [Google Scholar] [CrossRef]
- Pisek, J.; Lang, M.; Nilson, T.; Korhonen, L.; Karu, H. Comparison of methods for measuring gap size distribution and canopy nonrandomness at järvselja rami (radiation transfer model intercomparison) test sites. Agric. For. Meteorol. 2011, 151, 365–377. [Google Scholar] [CrossRef]
- Kuusk, A.; Nilson, T. A directional multispectral forest reflectance model. Remote Sens. Environ. 2000, 72, 244–252. [Google Scholar] [CrossRef]
- Fang, H.; Li, W.; Wei, S.; Jiang, C. Seasonal variation of leaf area index (LAI) over paddy rice fields in ne china: Intercomparison of destructive sampling, lai-2200, digital hemispherical photography (dhp), and accupar methods. Agric. For. Meteorol. 2014, 198, 126–141. [Google Scholar] [CrossRef]
- Fang, H.; Liu, W.; Li, W.; Wei, S. Estimation of the directional and whole apparent clumping index (aci) from indirect optical measurements. ISPRS J. Photogramm. Remote Sens. 2018, 144, 1–13. [Google Scholar] [CrossRef]
FAPAR Product | Initiative | Sensor | Spatial and Temporal Resolution | Definition | Method |
---|---|---|---|---|---|
MCD15A2H | NASA | MODIS/Terra and Aqua | 500 m, 8 days | Instantaneous black-sky FAPAR | Inversion of 3D-RTM (LUT) [3] |
GEOV1 | ESA | Vegetation/SPOT | 1 km, 10 days | Instantaneous black-sky FAPAR | Neural network to relate the fused products to the surface reflectance [6] |
Site | Country | Latitude | Longitude | Biome | Year | DOY | FAPAR |
---|---|---|---|---|---|---|---|
Alpilles2 | France | 43.81 | 4.715 | Broadleaf crops | 2002 | 204 | 0.399 |
Barrax | Spain | 39.057 | −2.104 | Broadleaf forest | 2003 | 194 | 0.256 |
Cameron | Australia | −32.598 | 116.254 | Broadleaf forest | 2004 | 63 | 0.479 |
Concepcion | Chile | −37.467 | −73.470 | Broadleaf forest | 2003 | 9 | 0.771 |
Counami | French Guyana | 5.347 | −53.238 | Broadleaf forest | 2001 | 269 | 0.95 |
2002 | 286 | 0.887 | |||||
Demmin | Germany | 53.892 | 13.207 | Broadleaf crops | 2004 | 164 | 0.741 |
Donga | Benin | 9.77 | 1.778 | Shrubs | 2005 | 172 | 0.472 |
Fundulea | Romania | 44.406 | 26.583 | Grasses and cereal crops | 2001 | 128 | 0.519 |
2002 | 160 | 0.464 | |||||
2003 | 151 | 0.374 | |||||
Gilching | Germany | 48.082 | 11.32 | Grasses and cereal crops | 2002 | 199 | 0.786 |
Gnangara | Australia | −31.534 | 115.882 | Broadleaf forest | 2004 | 61 | 0.263 |
Haouz | Morocco | 31.659 | −7.600 | Shrubs | 2003 | 71 | 0.489 |
Laprida | Argentina | −36.990 | −60.553 | Savannahs | 2001 | 311 | 0.837 |
2002 | 292 | 0.62 | |||||
Larose | Canada | 45.38 | −75.217 | Needleleaf forests | 2003 | 219 | 0.906 |
Larzac | France | 43.938 | 3.123 | Savannahs | 2002 | 183 | 0.349 |
Nezer | France | 44.568 | −1.038 | Needleleaf forests | 2002 | 107 | 0.494 |
Plan-de-Dieu | France | 44.199 | 4.948 | Broadleaf forest | 2004 | 189 | 0.223 |
Puechabon | France | 43.725 | 3.652 | Broadleaf forest | 2001 | 164 | 0.601 |
Sonian | Belgium | 50.768 | 4.411 | Needleleaf forests | 2004 | 174 | 0.916 |
Sud-Ouest | France | 43.506 | 1.238 | Grasses and cereal crops | 2002 | 189 | 0.404 |
Turco | Bolivia | −18.239 | −68.193 | Shrubs | 2002 | 240 | 0.025 |
2003 | 105 | 0.046 | |||||
Wankama | Niger | 13.645 | 2.635 | Grasses and cereal crops | 2005 | 174 | 0.073 |
Zhangbei | China | 41.279 | 114.688 | Grasses and cereal crops | 2002 | 221 | 0.422 |
Parameter | Definition | Units | Range or Values |
---|---|---|---|
Leaf optical | |||
Cab | Chlorophyll AB content | μg/cm2 | 20, 30, 40, 60, 80 |
Cw | Leaf water-equivalent thickness | cm | 0.009 |
Cdm | Dry matter content | g/cm2 | 0.002, 0.004, 0.008, 0.012, 0.02 |
N | Leaf internal scatter parameter | — | 1.33, 1.45, 1.68, 1.92, 2.38, co-varied with Cdm |
Canopy | |||
LAI | Leaf area index | m2/m2 | 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7 |
(LIDF a, LIDF b) | LIDF parameter a, which controls the average leaf slope, LIDF parameter b, which controls the distribution’s bimodality | — | spherical (−0.35, −0.15), planophile (1, 0), erectophile (−1, 0), plagiophile (0, −1), extremophile (0, 1), uniform (0, 0) |
hc | Hot spot parameter | — | 0.05 |
Soil | |||
Albedo | Hemisphere reflectance, assumed as isotropic | — | 0.02, 0.1, 0.2, 0.3 |
Imaging Geometry | |||
SZA | Sun zenith angle | degrees | 15, 30, 45, 60, 75 |
Ratio of diffuse light | — | 0.3, 0.5, 0.7 |
Parameter | Definition | Units | Range or Values |
---|---|---|---|
Leaf optical | |||
k | Leaf extinction coefficient, varies with leaf chlorophyll content (Cab) | - | 0.88 |
Canopy | |||
LAI | Leaf area index | m2/m2 | 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7 |
LAI noise | Gaussian random noise | - | 0%, 5%, 10%, 15%, 20%, 25%, 30% of the “true” LAI |
G(θ) | The projection of unit foliage area on the plane perpendicular to the sun incident direction θ | - | 0.5 |
CI | clumping index | - | 1 |
VIS albedo of “pure” vegetation | - | 0.025 | |
Soil | |||
Hemisphere reflectance, assumed as isotropic | - | Limited to 0.02–0.3 | |
Remote sensing data | |||
TOC VIS white-sky and black-sky albedo | - | 81,000 simulations by PROSAIL shown in Table 3 | |
Imaging Geometry, same as Table 3 | |||
SZA | Sun zenith angle | degrees | 10, 30, 45, 60, 75 |
Ratio of diffuse light | - | 0.3, 0.5, 0.7 |
Type | NLE | BLE | NLD | BLD | Shru | Sav | GCC | BLC | MF | CNM |
---|---|---|---|---|---|---|---|---|---|---|
Albedo | 0.069 | 0.120 | 0.085 | 0.120 | 0.109 | 0.111 | 0.144 | 0.134 | 0.109 | 0.120 |
MCD15A2H | GEOV1 | |||
---|---|---|---|---|
R2 | 0.917 | 0.909 | 0.901 | 0.868 |
RMSE | 0.088 | 0.012 | 0.096 | 0.105 |
Bias | −2.8% | 9.5% | 7.6% | 6.1% |
MCD15A2H | GEOV1 | |||
---|---|---|---|---|
R2 | 0.807 | 0.765 | 0.781 | 0.797 |
RMSE | 0.106 | 0.114 | 0.110 | 0.111 |
Bias | −7.2% | 7.5% | 6.4% | 10.1% |
MCD15A2H | GEOV1 | |||
---|---|---|---|---|
R2 | 0.966 | 0.964 | 0.947 | 0.904 |
RMSE | 0.072 | 0.093 | 0.085 | 0.100 |
Bias | 0.1% | 10.8% | 8.5% | 3.1% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, X.; Xie, S.; Liu, X.; Song, B.; Chen, S.; Peng, D. Global White-Sky and Black-Sky FAPAR Retrieval Using the Energy Balance Residual Method: Algorithm and Validation. Remote Sens. 2019, 11, 1004. https://doi.org/10.3390/rs11091004
Liu L, Zhang X, Xie S, Liu X, Song B, Chen S, Peng D. Global White-Sky and Black-Sky FAPAR Retrieval Using the Energy Balance Residual Method: Algorithm and Validation. Remote Sensing. 2019; 11(9):1004. https://doi.org/10.3390/rs11091004
Chicago/Turabian StyleLiu, Liangyun, Xiao Zhang, Shuai Xie, Xinjie Liu, Bowen Song, Siyuan Chen, and Dailiang Peng. 2019. "Global White-Sky and Black-Sky FAPAR Retrieval Using the Energy Balance Residual Method: Algorithm and Validation" Remote Sensing 11, no. 9: 1004. https://doi.org/10.3390/rs11091004