First-Order Estimates of Coastal Bathymetry in Ilulissat and Naajarsuit Fjords, Greenland, from Remotely Sensed Iceberg Observations
"> Figure 1
<p>Qualitative bathymetry (i.e., relative bathymetry derived from the manual analysis of iceberg motion) overlaid on BedMachine v3 bathymetry [<a href="#B23-remotesensing-11-00935" class="html-bibr">23</a>] for two locations around Greenland. Areas of stranding (red) and drifting (yellow) identified by iceberg movement correspond to bathymetric highs (light blue) and lows (dark blue), respectively. Areas with no outlines were not searched. Land is shown in grey. Glaciers supplying the majority of the icebergs in each fjord are labeled, with the location of each system identified and labeled in the panel on the right.</p> "> Figure 2
<p>Two-dimensional iceberg schematic showing sea level and tidal adjustments, assumed iceberg shape, and bathymetry. Values shown are based on a transect across a stranded iceberg from 10 June 2014. A sea level (blue dotted line) adjustment was applied to each DEM to vertically coregister it such that open water pixels were 0 m. A tidal adjustment (blue dashed line) applied to each iceberg draft estimate vertically coregistered all of the water depth estimates to 0 m msl. Iceberg freeboard was extracted from the DEMs and used to infer iceberg draft (purple line) on a pixel-by-pixel basis. Iceberg walls were assumed to be vertical. Median iceberg draft (and thus water depth) and associated uncertainties are shown by the purple dashed line and shading, respectively. The gradual nature of the measured bathymetry (solid brown line), including the median value (dashed brown line) and associated median absolute deviation (MAD) uncertainties (dotted brown line), are also shown.</p> "> Figure 3
<p>Depth–width ratios in Ilulissat and Naajarsuit Fjords. Green squares/diamonds show the results from this study, while brown circles show results from Enderlin2016. Best fit lines are used to determine the depth–width ratio, with RMSE values as shown and statistically significant <span class="html-italic">p</span> values (<0.05) for all fits. (<b>a</b>) Results in Ilulissat Isfjord. (<b>b</b>) Results from the Upernavik region, where the icebergs comprising the two datasets were derived from different parent glaciers.</p> "> Figure 4
<p>Maximum iceberg freeboards in DEMs. A panchromatic image (left panel, imagery© 2015 DigitalGlobe, Inc.) and DEM (right panel) of an iceberg stranded in Ilulissat Isfjord (image pair acquired 16 March 2015) show maximum iceberg freeboards tend to occur over and along the boundaries of highly reflective and no data regions. The iceberg is outlined (red) in both panels. In the panel showing the DEM, black indicates no data portions of the DEM while orange indicates high values filtered out by the three MAD filter. The freeboard elevations have been limited to a portion of their full range to highlight the maximum values.</p> "> Figure 5
<p>Measured and freeboard-inferred water depths for stranded icebergs in Ilulissat and Naajarsuit Fjords. Depths are in meters relative to 0 msl of the local geoid. Inferred depths are derived using the freeboard method, as described in the text. The light green (dark green) points compare the maximum (median) inferred and measured values. The intercept (int) and RMSE value for the best fit lines (forced slope of one) are shown in the corresponding color. Squares (diamonds) correspond to icebergs stranded in Ilulissat Isfjord-II (Naajarsuit Fjord-NJ). The black dotted line shows a 1-1 relationship.</p> "> Figure 6
<p>Comparisons of measured and inferred water depths for stranded icebergs using both remote sensing methods. Depths are in meters relative to 0 msl of the local geoid. Inferred depths are derived using the freeboard (squares/diamonds) and depth–width ratio (circles) methods. (<b>a</b>) Results from Ilulissat Isfjord. (<b>b</b>) Results from Naajarsuit Fjord. The black dotted line shows a 1-1 relationship. Black, green, and blue solid lines show best fit lines (forced slope of one) to the data (the methods combined (all symbols), the freeboard method (squares/diamonds), and the depth–width ratio method (circles), respectively) with shaded 95% confidence intervals. The RMSEs and intercepts of the best fit lines are shown in <a href="#remotesensing-11-00935-t002" class="html-table">Table 2</a> in corresponding colors. The number of stranded icebergs used for each method is shown in parentheses in the legend.</p> "> Figure 7
<p>Bathymetric contours showing the utility of remote sensing inferred water depths in unmeasured areas. The top and bottom rows show the results from Ilulissat Isfjord and Naajarsuit Fjord, respectively. The left panels (<b>a,c</b>) illustrate contour lines (white, 50 m) using only multibeam observations. The right panels (<b>b,d</b>) show the improvements made by including our water depth estimates in portions of fjords where no observations exist. The black outline shows the extent of the measured datasets, where interior outlines within the outermost extent indicate holes in coverage (showing individual gridpoints would obscure the contours). Black circles indicate the location of remotely sensed data points added in the panels on the right.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Qualitative Bathymetry and Study Sites
2.2. Quantifying Bathymetry in Regions of Iceberg Stranding
2.2.1. Water Depths Derived from Freeboards
2.2.2. Water Depths from Depth–Width Ratios
2.2.3. Error Analysis
3. Results and Evaluation of Methods
3.1. Qualitative Bathymetry
3.2. Quantitative Bathymetry
3.2.1. Freeboard Method
3.2.2. Depth–Width Ratio Method
3.2.3. Combining Quantitative Methods
3.3. Evaluation
4. Applications: Deriving Bathymetry in Unmapped Regions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rignot, E.; Fenty, I.; Menemenlis, D.; Xu, Y. Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Ann. Glaciol. 2012, 53, 257–266. [Google Scholar] [CrossRef]
- Straneo, F.; Heimbach, P. North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature 2013, 504, 36–43. [Google Scholar] [CrossRef]
- Van den Broeke, M.; Bamber, J.; Ettema, J.; Rignot, E.; Schrama, E.; van de Berg, W.J.; van Meijgaard, E.; Velicogna, I.; Wouters, B. Partitioning recent Greenland mass loss. Science 2009, 326, 984–986. [Google Scholar] [CrossRef] [PubMed]
- Vieli, A.; Nick, F.M. Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: Issues and implications. Surv. Geophys. 2011, 32, 437–458. [Google Scholar] [CrossRef]
- Enderlin, E.M.; Howat, I.M.; Jeong, S.; Noh, M.J.; van Angelen, J.H.; van den Broeke, M.R. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 2014. [Google Scholar] [CrossRef]
- Holland, D.M.; Thomas, R.H.; de Young, B.; Ribergaard, M.H.; Lyberth, B. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci. 2008, 1, 659–664. [Google Scholar] [CrossRef]
- Straneo, F.; Hamilton, G.S.; Sutherland, D.A.; Stearns, L.A.; Davidson, F.; Hammill, M.O.; Stenson, G.B.; Rosing-Asvid, A. Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat. Geosci. 2010, 3, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Koppes, M.; Velicogna, I. Rapid submarine melting of the calving faces of West Greenland glaciers. Nat. Geosci. 2010, 3, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Johnson, H.L.; Münchow, A.; Falkner, K.K.; Melling, H. Ocean circulation and properties in Petermann Fjord, Greenland. J. Geophys. Res. 2011, 116, C01003. [Google Scholar] [CrossRef]
- Benn, D.I.; Warren, C.R.; Mottram, R.H. Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev. 2007, 82, 143–179. [Google Scholar] [CrossRef]
- Joughin, I.; Howat, I.M.; Fahnestock, M.; Smith, B.; Krabill, W.; Alley, R.B.; Stern, H.; Truffer, M. Continued evolution of Jakobshavn Isbrae following its rapid speedup. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Moon, T.; Joughin, I. Changes in ice front position on Greenland’s outlet glaciers from 1992 to 2007. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Nick, F.M.; Vieli, A.; Howat, I.M.; Joughin, I. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci. 2009, 2, 110–114. [Google Scholar] [CrossRef]
- McFadden, E.M.; Howat, I.M.; Joughin, I.; Smith, B.E.; Ahn, Y. Changes in the dynamics of marine terminating outlet glaciers in west Greenland (2000–2009). J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Podrasky, D.; Truffer, M.; Lüthi, M.; Fahnestock, M. Quantifying velocity response to ocean tides and calving near the terminus of Jakobshavn Isbrae, Greenland. J. Glaciol. 2014, 60, 609–621. [Google Scholar] [CrossRef]
- Morlighem, M.; Williams, C.N.; Rignot, E.; An, L.; Arndt, J.E.; Bamber, J.L.; Catania, G.; Chauché, N.; Dowdeswell, J.A.; Dorschel, B.; et al. BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 2017, 44, 11051–11061. [Google Scholar] [CrossRef]
- Mortensen, J.; Lennert, K.; Bendtsen, J.; Rysgaard, S. Heat sources for glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the Greenland Ice Sheet. J. Geophys. Res. 2011, 116, 1–13. [Google Scholar] [CrossRef]
- Schumann, K.; Völker, D.; Weinrebe, W.R. Acoustic mapping of the Ilulissat Ice Fjord mouth, West Greenland. Quat. Sci. Rev. 2012, 40, 78–88. [Google Scholar] [CrossRef]
- Fenty, I.; Willis, J.; Khazendar, A.; Dinardo, S.; Forsberg, R.; Fukumori, I.; Holland, D.; Jakobsson, M.; Moller, D.; Morison, J.; et al. Oceans Melting Greenland: Early results from NASA’s ocean-ice mission in Greenland. Oceanography 2016, 29, 72–83. [Google Scholar] [CrossRef]
- Rignot, E.; Fenty, I.; Xu, Y.; Cai, C.; Velicogna, I.; Cofaigh, C.O.; Dowdeswell, J.A.; Weinrebe, W.; Catania, G.; Duncan, D. Bathymetry data reveal glaciers vulnerable to ice-ocean interaction in Uummannaq and Vaigat glacial fjords, west Greenland. Geophys. Res. Lett. 2016, 2667–2674. [Google Scholar] [CrossRef]
- Jakobsson, M.; Mayer, L.; Coakley, B.; Dowdeswell, J.A.; Forbes, S.; Fridman, B.; Hodnesdal, H.; Noormets, R.; Pedersen, R.; Rebesco, M.; et al. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Schaffer, J.; Timmerman, R.; Arndt, J.E.; Kristensen, S.S.; Mayer, C.; Morlighem, M.; Steinhage, D. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst. Sci. Data 2016, 8, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Morlighem, M. IceBridge BedMachine Greenland. Version 3, Bathymetry, 2017. Available online: https://nsidc.org/data/IDBMG4/versions/3 (accessed on 18 April 2019).
- Williams, C.N.; Cornford, S.L.; Jordan, T.M.; Dowdeswell, J.A.; Siegert, M.J.; Clark, C.D.; Swift, D.A.; Sole, A.; Fenty, I.; Bamber, J.L. Generating synthetic fjord bathymetry for coastal Greenland. Cryosphere 2017, 11, 363–380. [Google Scholar] [CrossRef] [Green Version]
- Straneo, F.; Sutherland, D.A.; Holland, D.; Gladish, C.; Hamilton, G.S.; Johnson, H.L.; Rignot, E.; Xu, Y.; Koppes, M. Characteristics of ocean waters reaching Greenland’s glaciers. Ann. Glaciol. 2012, 53, 202–210. [Google Scholar] [CrossRef]
- Sutherland, D.A.; Straneo, F.; Pickart, R.S. Characteristics and dynamics of two major Greenland glacial fjords. J. Geophys. Res.-Ocean. 2014, 119, 3767–3791. [Google Scholar] [CrossRef] [Green Version]
- Millan, R.; Rignot, E.; Mouginot, J.; Wood, M.; Bjørk, A.A.; Morlighem, M. Vulnerability of Southeast Greenland glaciers to warm Atlantic Water from Operation IceBridge and Ocean Melting Greenland data. Geophys. Res. Lett. 2018, 45, 2688–2696. [Google Scholar] [CrossRef]
- Sutherland, D.A.; Roth, G.E.; Hamilton, G.S.; Mernild, S.H.; Stearns, L.A.; Straneo, F. Quantifying flow regimes in a Greenland glacial fjord using iceberg drifters. Geophys. Res. Lett. 2014, 41, 8411–8420. [Google Scholar] [CrossRef] [Green Version]
- FitzMaurice, A.; Straneo, F.; Cenedese, C.; Andres, M. Effect of a sheared flow on iceberg motion and melting. Geophys. Res. Lett. 2016, 43, 1–8. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation Project: Chicago, IL, USA, 2017. [Google Scholar]
- OMG Mission. Bathymetry (Sea Floor Depth) Data from the Ship-Based Bathymetry Survey. Ver. 0.1, 2016. Available online: https://doi.org/10.5067/OMGEV-BTYSS (accessed on 29 September 2017).
- Hotzel, S.I.; Miller, J.D. Icebergs: Their physical dimensions and the presentation and application of measured data. Ann. Glaciol. 1983, 4, 116–123. [Google Scholar] [CrossRef]
- McKenna, R. Refinement of Iceberg Shape Characterization for Risk to Grand Banks Installations; National Research Council of Canada PERD/CHC Technical Report; NRC: Oslo, Norway, 2005. [Google Scholar]
- Dowdeswell, J.A.; Whittington, R.J.; Hodgkins, R. The sizes, frequencies, and freeboards of East Greenland icebergs observed using ship radar and sextant. J. Geophys. Res. 1992, 97, 3515–3528. [Google Scholar] [CrossRef]
- Bassis, J.N.; Jacobs, S. Diverse calving patterns linked to glacier geometry. Nat. Geosci. 2013, 6, 833–836. [Google Scholar] [CrossRef]
- Enderlin, E.M.; Hamilton, G.S.; Straneo, F.; Sutherland, D.A. Iceberg meltwater fluxes dominate the freshwater budget in Greenland’s iceberg-congested glacial fjords. Geophys. Res. Lett. 2016, 43, 287–294. [Google Scholar] [CrossRef]
- Shean, D.E.; Alexandrov, O.; Moratto, Z.M.; Smith, B.E.; Joughin, I.R.; Porter, C.; Morin, P. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. 2016, 116, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Enderlin, E.M.; Hamilton, G.S. Estimates of iceberg submarine melting from high-resolution digital elevation models: Application to Sermilik Fjord, East Greenland. J. Glaciol. 2014, 60, 1084–1092. [Google Scholar] [CrossRef]
- Padman, L.; Erofeeva, S. A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.T. Icebergs and iceberg rafted detritus (IRD) in the North Atlantic: Facts and assumptions. Oceanography 2000, 13, 100–108. [Google Scholar] [CrossRef]
- Smith, S.D.; Donaldson, N.R. Dynamic Modelling of Iceberg Drift Using Current Profiles; Canadian Technical Report of Hydrography and Ocean Sciences; Canadian Research Council: Ottawa, Canada, 1987; pp. 1–133. Available online: http://publications.gc.ca/site/eng/9.805178/publication.html (accessed on 16 April 2019).
- Dowdeswell, J.A.; Villinger, H.; Whittington, R.J.; Marienfeld, P. Iceberg scouring in Scoresby Sund and on the East Greenland continental shelf. Mar. Geol. 1993, 111, 37–53. [Google Scholar] [CrossRef]
- Cuffey, K.; Paterson, W. The Physics of Glaciers, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Gladish, C.V.; Holland, D.M.; Rosing-Asvid, A.; Behrens, J.W.; Boje, J. Oceanic boundary conditions for Jakobshavn Glacier. Part I: Variability and renewal of Ilulissat Icefjord waters, 2001–14*. J. Phys. Oceanogr. 2015, 45, 3–32. [Google Scholar] [CrossRef]
- OMG Mission. Conductivity, Temperature and Depth (CTD) Data from the Ocean Survey. Ver. 0.1, 2016. Available online: https://doi.org/10.5067/OMGEV-AXCTD (accessed on 23 May 2018).
- Hill, J.C.; Gayes, P.T.; Driscoll, N.W.; Johnstone, E.A.; Sedberry, G.R. Iceberg scours along the southern U.S. Atlantic margin. Geology 2008, 36, 447–450. [Google Scholar] [CrossRef]
- López-Martínez, J.; Muñoz, A.; Dowdeswell, J.A.; Linés, C.; Acosta, J. Relict sea-floor ploughmarks record deep-keeled Antarctic icebergs to 45∘S on the Argentine margin. Mar. Geol. 2011, 288, 43–48. [Google Scholar] [CrossRef]
- Dowdeswell, J.A.; Ottesen, D. Buried iceberg ploughmarks in the early Quaternary sediments of the central North Sea: A two-million year record of glacial influence from 3D seismic data. Mar. Geol. 2013, 344, 1–9. [Google Scholar] [CrossRef]
- Brown, C.S.; Newton, A.M.W.; Huuse, M.; Buckley, F. Iceberg scours, pits, and pockmarks in the North Falkland Basin. Mar. Geol. 2017, 386, 140–152. [Google Scholar] [CrossRef]
- Woodworth-lynas, C.M.T.; Josenhans, H.W.; Barrie, J.V.; Lewis, C.F.M.; Parrott, D.R. The physical processes of seabed disturbance during iceberg grounding and scouring. Cont. Shelf. Res. 1991, 11, 939–961. [Google Scholar] [CrossRef]
- Savage, S. Aspects of Iceberg Deterioration and Drift. In Geomorphological Fluid Mechanics; Balmforth, N.J., Provenzale, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Chapter 12; pp. 279–318. [Google Scholar] [CrossRef]
- Scambos, T.; Ross, R.; Bauer, R.; Yermolin, Y.; Skvarca, P.; Long, D.; Bohlander, J.; Haran, T. Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift. J. Glaciol. 2008, 54, 579–591. [Google Scholar] [CrossRef]
- Moon, T.; Sutherland, D.A.; Carroll, D.; Felikson, D.; Kehrl, L.; Straneo, F. Subsurface iceberg melt key to Greenland fjord freshwater budget. Nat. Geosci. 2017. [Google Scholar] [CrossRef]
- Wagner, T.J.W.; Stern, A.A.; Dell, R.W.; Eisenman, I. On the representation of capsizing in iceberg models. Ocean Model. 2017, 117, 88–96. [Google Scholar] [CrossRef] [Green Version]
- El-Tahan, M.; El-Tahan, H. Estimation of iceberg draft. In Proceedings of the OCEANS 82, Washington, DC, USA, 20–22 September 1982; pp. 689–695. [Google Scholar]
- Sulak, D.J.; Sutherland, D.A.; Enderlin, E.M.; Stearns, L.A.; Hamilton, G.S. Iceberg properties and distributions in three Greenlandic fjords using satellite imagery. Ann. Glaciol. 2017, 58, 92–106. [Google Scholar] [CrossRef] [Green Version]
- Schumann, K. Gridded Results of Swath Bathymetric Mapping of Disko Bay, Western Greenland, 2007–2008. 2011. Available online: https://doi.org/10.1594/PANGAEA.770250 (accessed on 29 November 2016).
Location | Depth–Width Ratio | Source |
---|---|---|
Ilulissat Isfjord | 0.45 | this study |
0.40 | Enderlin et al. [36] | |
Upernavik region | 0.82 | this study |
0.37 | Enderlin et al. [36] | |
Grand Banks | 0.81 | Hotzel and Miller [32] |
Sermilik Fjord | 0.68/1.41 * | Sulak et al. [56] |
Rink Isbræ | 0.66/1.41 * | Sulak et al. [56] |
Linear Fit Parameters | Method | Fit Statistics | II | NJ |
---|---|---|---|---|
slope = 1 fitted intercept | freeboard | RMSE | 93 | 66 |
intercept | 7 | 16 | ||
depth–width | RMSE | 51 | 73 | |
intercept | −72 | 5 | ||
both | RMSE | 82 | 71 | |
intercept | −37 | 9 | ||
slope = 1 intercept = 0 | freeboard | RMSE | 93 | 68 |
depth–width | RMSE | 88 | 73 | |
both | RMSE | 90 | 71 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheick, J.; Enderlin, E.M.; Miller, E.E.; Hamilton, G. First-Order Estimates of Coastal Bathymetry in Ilulissat and Naajarsuit Fjords, Greenland, from Remotely Sensed Iceberg Observations. Remote Sens. 2019, 11, 935. https://doi.org/10.3390/rs11080935
Scheick J, Enderlin EM, Miller EE, Hamilton G. First-Order Estimates of Coastal Bathymetry in Ilulissat and Naajarsuit Fjords, Greenland, from Remotely Sensed Iceberg Observations. Remote Sensing. 2019; 11(8):935. https://doi.org/10.3390/rs11080935
Chicago/Turabian StyleScheick, Jessica, Ellyn M. Enderlin, Emily E. Miller, and Gordon Hamilton. 2019. "First-Order Estimates of Coastal Bathymetry in Ilulissat and Naajarsuit Fjords, Greenland, from Remotely Sensed Iceberg Observations" Remote Sensing 11, no. 8: 935. https://doi.org/10.3390/rs11080935
APA StyleScheick, J., Enderlin, E. M., Miller, E. E., & Hamilton, G. (2019). First-Order Estimates of Coastal Bathymetry in Ilulissat and Naajarsuit Fjords, Greenland, from Remotely Sensed Iceberg Observations. Remote Sensing, 11(8), 935. https://doi.org/10.3390/rs11080935