Rebuilding a Microwave Soil Moisture Product Using Random Forest Adopting AMSR-E/AMSR2 Brightness Temperature and SMAP over the Qinghai–Tibet Plateau, China
<p>The locations of the sites within the Qinghai–Tibet plateau (QTP) in China.</p> "> Figure 2
<p>Flow chart of the random forest soil moisture (RFSM) product process.</p> "> Figure 3
<p>Relative variable importance of random forest based on increased mean square error (MSE). Tb36V is V polarization brightness temperature of 36.5 GHz, Tb18V is V polarization brightness temperature of 18.7 GHz, Tb18H is H polarization brightness temperature of 18.7 GHz, Tb10V is V polarization brightness temperature of 10.7 GHz, Tb10H is H polarization brightness temperature of 10.7 GHz.</p> "> Figure 4
<p>Density scatterplots for RFSM (<span class="html-italic">y</span>-axis) vs. soil moisture active passive (SMAP) soil moisture (SM) (<span class="html-italic">x</span>-axis) over the test period (May 2017 to May 2018).</p> "> Figure 5
<p>Yearly average values of (<b>a</b>) SMAP SM and (<b>b</b>) RFSM and error distribution maps of RFSM vs. SMAP SM over the test period (May 2017 to May 2018): (<b>c</b>) correlation coefficient <sup>®</sup>; (<b>d</b>) mean absolute percentage error (MAPE); (<b>e</b>) root mean square error (RMSE) and (<b>f</b>) bias values.</p> "> Figure 6
<p>Time series of in situ network data, RFSM and Japan Aerospace Exploration Agency (JAXA), land surface parameter model (LPRM), European Space Agency’s Climate Change Initiative (ESA CCI) and Global Land Data Assimilation System (GLDAS) over a time period (2010–2015): Naqu, Maqu, Ngari, upper reach of the Heihe River Basin (uHRB) and Pali.</p> "> Figure 7
<p>Scatter plots of (<b>a</b>) SMAP and (<b>b</b>) RFSM over the uHRB, Maqu, Naqu, Ngari and Pali.</p> "> Figure 8
<p>Errors and relative uncertainties calculated by the three-cornered hat (TCH) method from 2010 to 2015: (<b>a</b>) RFSM relative errors; (<b>b</b>) JAXA relative errors; (<b>c</b>) GLDAS relative errors; (<b>d</b>) ESA CCI relative errors; (<b>e</b>) relative error performance map of the four products, in which the lowest relative errors are shown on the map; (<b>f</b>) relative uncertainty performance map of the four products, in which the lowest relative uncertainties are shown on the map.</p> "> Figure 9
<p>Distribution of the relative errors of RFSM, JAXA, GLDAS and ESA CCI calculated by the TCH method.</p> "> Figure 10
<p>Spatial distribution of precipitation in January and July of 2010 and 2014.</p> "> Figure 11
<p>Spatial distribution of RFSM, GLDAS and ESA CCI SM in 2010: (<b>a</b>) RFSM in Jan; (<b>b</b>) RFSM in Jul; (<b>c</b>) GLDAS in Jan; (<b>d</b>) GLDAS in Jul; (<b>e</b>) ESA CCI in Jan; (<b>f</b>) ESA CCI in Jul.</p> "> Figure 12
<p>Spatial distribution of RFSM, GLDAS and ESA CCI SM in 2014: (<b>a</b>) RFSM in Jan; (<b>b</b>) RFSM in Jul; (<b>c</b>) GLDAS in Jan; (<b>d</b>) GLDAS in Jul; (<b>e</b>) ESA CCI in Jan; (<b>f</b>) ESA CCI in Jul.</p> "> Figure 13
<p>Seasonal trend of SM, precipitation and land surface temperature (LST) from 2002 to 2015 with a significance level of <span class="html-italic">α</span> = 0.05: (<b>a</b>,<b>d</b>,<b>g</b>,<b>j</b>) are seasonal trends of SM in spring, summer, autumn and winter respectively; (<b>b</b>,<b>e</b>,<b>h</b>,<b>k</b>) are seasonal trends of precipitation in spring, summer, autumn and winter respectively; (<b>c</b>,<b>f</b>,<b>i</b>,<b>l</b>) are seasonal trends of LST in spring, summer, autumn and winter respectively.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. In Situ Network Data
2.3. Data Sets for Random Forest
2.3.1. Brightness Temperature and Soil Moisture of AMSR-E/AMSR2
2.3.2. The SMAP Soil Moisture Product
2.3.3. Other Auxiliary Data Used as Spatial Predictors
2.4. ESA CCI Soil Moisture Product
2.5. GLDAS Soil Moisture Product
3. Methodology
3.1. Processing Strategy for Random Forest SM Generation
3.2. Validation and Trend Analysis Procedure
4. Results and Discussion
4.1. Variable Importance in Random Forest Model
4.2. Comparison of RFSM and SMAP
4.3. Evaluation of RFSM
4.3.1. Comparison Against In Situ Data
4.3.2. Spatial Distribution of RFSM
4.4. Trend Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Entin, J.K.; Robock, A.; Vinnikov, K.Y.; Hollinger, S.E.; Liu, S.; Namkhai, A. Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res. Atmos. 2000, 105, 11865–11877. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone J. 2017, 16. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A. A Downscaling Method for Improving the Spatial Resolution of AMSR-E Derived Soil Moisture Product Based on MSG-SEVIRI Data. Remote Sens. Basel 2013, 5, 6790–6811. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, K.; Qin, J.; Chen, Y.; Tang, W.; Montzka, C.; Wu, H.; Lin, C.; Han, M. Spatiotemporal analysis of soil moisture observations within a Tibetan mesoscale area and its implication to regional soil moisture measurements. J. Hydrol. 2013, 482, 92–104. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; De Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; Van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Beaudoing, H.; Rodell, M. GLDAS Noah Land Surface Model L4 3 Hourly 0.25 × 0.25 Degree V2.1; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2016. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Kolassa, J.; Gentine, P.; Prigent, C.; Aires, F.; Alemohammad, S.H. Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 2: Product evaluation. Remote Sens. Environ. 2017, 195, 202–217. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116, 1248–1256. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.O.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Lorenz, C.; Montzka, C.; Jagdhuber, T.; Laux, P.; Kunstmann, H. Long-term and high-resolution global time series of brightness temperature from Copula-based fusion of SMAP Enhanced and SMOS data. Remote Sens. Basel 2018, 10, 1842. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, K.S.; Bi, H.; Chen, Q. A Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product Over United States and Europe Using Ground-Based Measurements. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4929–4940. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, S.; Ma, J.; Li, J.; Li, X.; Wang, H.; Chen, S.; Zang, W. Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data. Remote Sens. Basel 2017, 9, 292. [Google Scholar] [CrossRef]
- Ray, R.L.; Fares, A.; He, Y.; Temimi, M. Evaluation and Inter-Comparison of Satellite Soil Moisture Products Using In Situ Observations over Texas, U.S. Water 2017, 9, 372. [Google Scholar] [CrossRef]
- Cui, H.; Jiang, L.; Du, J.; Zhao, S.; Wang, G.; Lu, Z.; Wang, J. Evaluation and analysis of AMSR-2, SMOS, and SMAP soil moisture products in the Genhe area of China. J. Geophys. Res. Atmos. 2017, 122, 8650–8666. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L. Validation of SMAP Surface Soil Moisture Products with Core Validation Sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Qin, J.; Qian, C.; Hui, L.; Zhu, L.; Han, M.; Tang, W. Evaluation of SMAP, SMOS and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 5780–5792. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Bian, H.; Bao, Q.; Duan, A.; Jin, F.F. Thermal Controls on the Asian Summer Monsoon. Sci. Rep. UK 2012, 2, 404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, N. Reconstruction of GF-1 Soil Moisture Observation Based on Satellite and In Situ Sensor Collaboration Under Full Cloud Contamination. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5185–5202. [Google Scholar] [CrossRef]
- Alyaari, A.; Bitar, A.A.; Dolman, A.; Ducharne, A.; Mialon, A.; Wigneron, J.P.; Rodriguezfernandez, N.; Richaume, P.; Jeu, R.D.; Schalie, R.V.D. Testing regression equations to derive long-term global soil moisture datasets from passive microwave observations. Remote Sens. Environ. 2016, 180, 453–464. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, N.J.; Aires, F.; Richaume, P.; Kerr, Y.H.; Prigent, C.; Kolassa, J.; Cabot, F.; Jiménez, C.; Mahmoodi, A.; Drusch, M. Soil Moisture Retrieval Using Neural Networks: Application to SMOS. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5991–6007. [Google Scholar] [CrossRef]
- Cui, Y.; Long, D.; Hong, Y.; Zeng, C.; Zhou, J.; Han, Z.; Liu, R.; Wan, W. Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau. J. Hydrol. 2016, 543, 242–254. [Google Scholar] [CrossRef]
- Yao, P.; Shi, J.; Zhao, T.; Lu, H.; Alyaari, A. Rebuilding Long Time Series Global Soil Moisture Products Using the Neural Network Adopting the Microwave Vegetation Index. Remote Sens. Basel 2017, 9, 35. [Google Scholar] [CrossRef]
- Lu, Z.; Chai, L.; Liu, S.; Cui, H.; Zhang, Y.; Jiang, L.; Jin, R.; Xu, Z. Estimating Time Series Soil Moisture by Applying Recurrent Nonlinear Autoregressive Neural Networks to Passive Microwave Data over the Heihe River Basin, China. Remote Sens. Basel 2017, 9, 574. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Heung, B.; Bulmer, C.E.; Schmidt, M.G. Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma 2014, 214-215, 141–154. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and Random Forest Classifier-A Case of Yuyao, China. Water 2015, 7, 1437–1455. [Google Scholar] [CrossRef]
- Liu, X.D.; Chen, B.D. Climatic warming in the Tibetan plateau during recent decades. Int. J. Climatol. 2015, 20, 1729–1742. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Gao, Y.; Zhu, D.; Yang, G.; Tian, J. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob. Chang. Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.J.; Wang, X.P.; Zhang, X.X. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecol. Eng. 2016, 92, 251–259. [Google Scholar] [CrossRef]
- Yang, K. A Multi-Scale Soil Moisture and Freeze-Thaw Monitoring Network on the Tibetan Plateau and Its Applications. Bull. Am. Meteorol. Soc. 2013, 94, 1907–1916. [Google Scholar] [CrossRef]
- Su, Z.; Wen, J.; Dente, L.; Velde, R.V.D.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci. 2011, 15, 2303–2316. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, J.H.; Heuvelink, G.B.M.; Jin, R.; Li, X.; Wang, J.F. Sampling design optimization of a wireless sensor network for monitoring ecohydrological processes in the Babao River basin, China. Int. J. Geogr. Inf. Sci. 2015, 29, 92–110. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Ma, M.; Che, T.; Li, X.; Xiao, Q.; Zhao, K.; Xin, X. A Prototype Network for Remote Sensing Validation in China. Remote Sens. Basel 2015, 7, 5187–5202. [Google Scholar] [CrossRef]
- Jin, R.; Li, X.; Yan, B.; Li, X.; Luo, W.; Ma, M.; Guo, J.; Kang, J.; Zhu, Z.; Zhao, S. A Nested Ecohydrological Wireless Sensor Network for Capturing the Surface Heterogeneity in the Midstream Areas of the Heihe River Basin, China. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2015–2019. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe Integrated Observatory Network: A basin-scale land surface processes observatory in China. Vadose Zone J. 2018, 17, 180072. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Z.; Wang, W.; Bai, J.; Jia, Z.; Zhu, M.; Wang, J. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 2011, 15, 1291–1306. [Google Scholar] [CrossRef]
- Njoku, E.G.; Chan, S.K. Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens. Environ. 2006, 100, 190–199. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Njoku, E.G.; Shi, J.J.C.; Johnson, J.T.; Colliander, A. Tests of the SMAP Combined Radar and Radiometer Algorithm Using Airborne Field Campaign Observations and Simulated Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2018–2028. [Google Scholar] [CrossRef]
- Burgin, M.S.; Colliander, A.; Njoku, E.G.; Chan, S.K.; Cabot, F.; Kerr, Y.H.; Bindlish, R.; Jackson, T.J.; Entekhabi, D.; Yueh, S.H. A Comparative Study of the SMAP Passive Soil Moisture Product with Existing Satellite-Based Soil Moisture Products. IEEE Trans. Geosci. Remote Sens 2017, 55, 2959–2971. [Google Scholar] [CrossRef]
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.J.; Bindlish, R. SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 5; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2018. [Google Scholar]
- Wu, J.; Gao, X.J. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Xu, Y.; Gao, X.; Shen, Y.; Xu, C.; Shi, Y.; Giorgi, A. A Daily Temperature Dataset over China and Its Application in Validating a RCM Simulation. Adv. Atmos. Sci. 2009, 26, 763–772. [Google Scholar] [CrossRef]
- An, R.; Zhang, L.; Wang, Z.; Quaye-Ballard, J.A.; You, J.; Shen, X.; Gao, W.; Huang, L.J.; Zhao, Y.; Ke, Z. Validation of the ESA CCI soil moisture product in China. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 28–36. [Google Scholar] [CrossRef]
- Owe, M.; Jeu, R.D.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. Earth Surf. 2008, 113. [Google Scholar] [CrossRef]
- Bi, H.; Ma, J.; Zheng, W.; Zeng, J. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 2658–2678. [Google Scholar] [CrossRef]
- Parinussa, R.M.; Holmes, T.R.H.; Wanders, N.; Dorigo, W.A.; De Jeu, R.A.M. A Preliminary Study toward Consistent Soil Moisture from AMSR2. J. Hydrometeorol. 2013, 16, 932–947. [Google Scholar] [CrossRef]
- Chander, G.; Hewison, T.J.; Fox, N.; Wu, X.; Xiong, X.; Blackwell, W.J. Overview of Intercalibration of Satellite Instruments. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1056–1080. [Google Scholar] [CrossRef]
- Du, J.; Kimball, J.S.; Shi, J.; Jones, L.A.; Wu, S.; Sun, R.; Yang, H. Inter-Calibration of Satellite Passive Microwave Land Observations from AMSR-E and AMSR2 Using Overlapping FY3B-MWRI Sensor Measurements. Remote Sens. Basel 2014, 6, 8594–8616. [Google Scholar] [CrossRef]
- Abbondanza, C.; Altamimi, Z.; Chin, T.M.; Gross, R.S.; Heflin, M.B.; Parker, J.W.; Wu, X. Three-Corner Hat for the assessment of the uncertainty of non-linear residuals of space-geodetic time series in the context of terrestrial reference frame analysis. J. Geod. 2014, 89, 313–329. [Google Scholar] [CrossRef]
- Chin, T.M.; Gross, R.S.; Dickey, J.O. Multi-reference evaluation of uncertainty in earth orientation parameter measurements. J. Geod. 2005, 79, 24–32. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Montecino, H.D.C.; Yakubu, C.I.; Heck, B. Uncertainties of the Gravity Recovery and Climate Experiment time-variable gravity-field solutions based on three-cornered hat method. J. Appl. Remote Sens. 2016, 10, 15015. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2009, 105, 142–154. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Quang, B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981―2007―An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Rhee, J. AMSR2 soil moisture downscaling using multisensor products through machine learning approach. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015; pp. 1984–1987. [Google Scholar]
- Temimi, M.; Leconte, R.; Chaouch, N.; Sukumal, P.; Khanbilvardi, R.; Brissette, F. A combination of remote sensing data and topographic attributes for the spatial and temporal monitoring of soil wetness. J. Hydrol. 2010, 388, 28–40. [Google Scholar] [CrossRef]
- Wigneron, J.P.; Chanzy, A.; Kerr, Y.H.; Lawrence, H.; Shi, J.; Escorihuela, M.J.; Mironov, V.; Mialon, A.; Demontoux, F.; Rosnay, P.D. Evaluating an Improved Parameterization of the Soil Emission in L-MEB. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1177–1189. [Google Scholar] [CrossRef]
- Lawrence, H.; Wigneron, J.P.; Demontoux, F.; Mialon, A.; Kerr, Y. Evaluating the semi-empirical H−Q model, used to calculate the emissivity of a rough bare soil, with a numerical modeling approach. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4075–4084. [Google Scholar] [CrossRef]
- Fernandez-Moran, R.; Wigneron, J.P.; Lopez-Baeza, E.; Al-Yaari, A.; Coll-Pajaron, A.; Mialon, A.; Miernecki, M.; Parrens, M.; Salgado-Hernanz, P.M.; Schwank, M. Roughness and vegetation parameterizations at L-band for soil moisture retrievals over a vineyard field. Remote Sens. Environ. 2015, 170, 269–279. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; Jeu, R.A.M.D.; Wagner, W.; Dijk, A.I.J.M.; Mccabe, M.F.; Evans, J.P. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef]
- Xia, Y.; Sheffield, J.; Ek, M.B.; Dong, J.; Chaney, N.; Wei, H.; Meng, J.; Wood, E.F. Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol. 2014, 512, 107–125. [Google Scholar] [CrossRef]
- Spennemann, P.C.; Rivera, J.A.; Saulo, A.C.; Penalba, O.C. A Comparison of GLDAS Soil Moisture Anomalies against Standardized Precipitation Index and Multisatellite Estimations over South America. J. Hydrometeorol. 2015, 16, 158–171. [Google Scholar] [CrossRef]
- Bagnoud, N.; Pitman, A.J.; Mcavaney, B.J.; Holbrook, N.J. The contribution of the land surface energy balance complexity to differences in means, variances and extremes using the AMIP-II methodology. Clim. Dyn. 2005, 25, 171–188. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D. Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 2004, 31, 187–206. [Google Scholar] [CrossRef]
- Lu, H.; Shi, J.C. Reconstruction and analysis of temporal and spatial variations in surface soil moisture in China using remote sensing. Chin. Sci. Bull. 2012, 57, 2824–2834. [Google Scholar] [CrossRef]
Pairwise Comparisons | bias | |
---|---|---|
H_Pol | V_Pol | |
10 GHz | ||
MWRI-AMSR-E | −1.39 | −2.23 |
MWRI-AMSR2 | −4.04 | −4.43 |
AMSR2-AMSR-E | 2.65 | 2.11 |
18 GHz | ||
MWRI-AMSR-E | 0.84 | 1.07 |
MWRI-AMSR2 | −0.93 | −1.07 |
AMSR2-AMSR-E | 1.77 | 2.14 |
36 GHz | ||
MWRI-AMSR-E | - | −2.84 |
MWRI-AMSR2 | - | −3.94 |
AMSR2-AMSR-E | - | 1.1 |
The Classification Used in RFSM | IGBP Global Vegetation Classification from MCD12Q1 | IGBP Class Number |
---|---|---|
Barren or Sparsely Vegetated | Barren or Sparsely Vegetated | 16 |
Grasslands and Shrublands | Closed Shrubland | 6 |
Open Shrublands | 7 | |
Grasslands | 10 | |
Crop | 12 | |
Forests | Evergreen Needleleaf Forest | 1 |
Evergreen Broadleaf Forest | 2 | |
Deciduous Needleleaf Forest | 3 | |
Deciduous Broadleaf Forest | 4 | |
Mixed Forests | 5 | |
Water and ice/snow cover | Water | 0 |
Snow and Ice | 15 |
In Situ Network | The Whole Year | Unfrozen Seasons | ||||||
---|---|---|---|---|---|---|---|---|
RMSE | R | Bias | N | RMSE | R | Bias | N | |
Naqu network | 0.076 | 0.867 | 0.008 | 152 | 0.076 | 0.861 | 0.011 | 148 |
Maqu network | 0.079 | 0.691 | −0.051 | 134 | 0.063 | 0.710 | −0.032 | 100 |
Ngari network | 0.033 | 0.829 | −0.028 | 132 | 0.033 | 0.829 | −0.028 | 132 |
uHRB network | 0.107 | 0.643 | −0.101 | 92 | 0.110 | 0.536 | −0.104 | 86 |
Pali network | 0.029 | 0.705 | 0.003 | 104 | 0.029 | 0.683 | 0.002 | 100 |
All five network | 0.065 | 0.747 | −0.034 | 614 | 0.062 | 0.724 | −0.030 | 566 |
In Situ Network | Product | The Whole Year | Unfrozen Seasons | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | R | Bias | N | RMSE | R | Bias | N | ||
Naqu network | RFSM | 0.051 | 0.849 | −0.016 | 1273 | 0.050 | 0.840 | −0.021 | 644 |
JAXA | 0.128 | 0.570 | −0.072 | 1252 | 0.152 | 0.483 | −0.077 | 671 | |
LPRM | 0.125 | 0.848 | 0.107 | 843 | 0.133 | 0.831 | 0.116 | 656 | |
ESA CCI | 0.077 | 0.879 | 0.052 | 772 | 0.082 | 0.870 | 0.060 | 632 | |
GLDAS | 0.049 | 0.840 | −0.015 | 1979 | 0.059 | 0.668 | −0.031 | 996 | |
Maqu network | RFSM | 0.085 | 0.787 | −0.050 | 1424 | 0.088 | 0.545 | −0.060 | 771 |
JAXA | 0.241 | 0.406 | −0.217 | 1420 | 0.28 | 0.362 | −0.027 | 770 | |
LPRM | 0.094 | 0.676 | 0.040 | 1353 | 0.093 | 0.318 | 0.017 | 760 | |
ESA CCI | 0.086 | 0.693 | 0.007 | 1358 | 0.100 | 0.320 | −0.006 | 775 | |
GLDAS | 0.122 | 0.760 | −0.091 | 2183 | 0.142 | 0.400 | −0.124 | 1124 | |
Ngari network | RFSM | 0.032 | 0.555 | −0.023 | 1275 | 0.040 | 0.639 | −0.034 | 673 |
JAXA | 0.045 | 0.387 | −0.034 | 1265 | 0.052 | 0.477 | −0.045 | 665 | |
LPRM | 0.118 | 0.554 | 0.106 | 376 | 0.118 | 0.554 | 0.106 | 376 | |
ESA CCI | 0.071 | 0.712 | 0.053 | 341 | 0.071 | 0.712 | 0.053 | 341 | |
GLDAS | 0.097 | 0.658 | 0.082 | 1987 | 0.108 | 0.431 | 0.108 | 1003 | |
uHRB network | RFSM | 0.111 | 0.763 | −0.044 | 736 | 0.127 | 0.619 | −0.118 | 412 |
JAXA | 0.217 | 0.701 | −0.181 | 736 | 0.278 | 0.478 | −0.273 | 412 | |
LPRM | 0.208 | 0.617 | 0.172 | 419 | 0.216 | 0.488 | 0.182 | 376 | |
ESA CCI | 0.179 | 0.702 | 0.147 | 372 | 0.188 | 0.557 | 0.159 | 332 | |
GLDAS | 0.132 | 0.660 | −0.065 | 906 | 0.163 | 0.311 | −0.152 | 506 | |
Pali network | RFSM | 0.042 | 0.808 | −0.021 | 133 | 0.033 | 0.869 | −0.014 | 133 |
JAXA | 0.081 | 0.847 | −0.073 | 131 | 0.081 | 0.847 | −0.073 | 131 | |
LPRM | 0.207 | 0.752 | 0.202 | 92 | 0.207 | 0.752 | 0.202 | 92 | |
ESA CCI | 0.099 | 0.852 | 0.093 | 74 | 0.099 | 0.852 | 0.093 | 74 | |
GLDAS | 0.121 | 0.691 | 0.113 | 194 | 0.121 | 0.691 | 0.113 | 194 | |
All five networks | RFSM | 0.064 | 0.752 | −0.031 | 4841 | 0.068 | 0.702 | −0.049 | 2633 |
JAXA | 0.142 | 0.582 | −0.115 | 4804 | 0.169 | 0.529 | −0.099 | 2649 | |
LPRM | 0.150 | 0.689 | 0.125 | 3083 | 0.154 | 0.588 | 0.124 | 2260 | |
ESA CCI | 0.102 | 0.767 | 0.070 | 2917 | 0.108 | 0.662 | 0.072 | 2154 | |
GLDAS | 0.156 | 0.722 | 0.122 | 7249 | 0.161 | 0.500 | 0.118 | 3823 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Zhu, Z.; Chai, L.; Liu, S.; Montzka, C.; Liu, J.; Yang, X.; Lu, Z.; Jin, R.; Li, X.; et al. Rebuilding a Microwave Soil Moisture Product Using Random Forest Adopting AMSR-E/AMSR2 Brightness Temperature and SMAP over the Qinghai–Tibet Plateau, China. Remote Sens. 2019, 11, 683. https://doi.org/10.3390/rs11060683
Qu Y, Zhu Z, Chai L, Liu S, Montzka C, Liu J, Yang X, Lu Z, Jin R, Li X, et al. Rebuilding a Microwave Soil Moisture Product Using Random Forest Adopting AMSR-E/AMSR2 Brightness Temperature and SMAP over the Qinghai–Tibet Plateau, China. Remote Sensing. 2019; 11(6):683. https://doi.org/10.3390/rs11060683
Chicago/Turabian StyleQu, Yuquan, Zhongli Zhu, Linna Chai, Shaomin Liu, Carsten Montzka, Jin Liu, Xiaofan Yang, Zheng Lu, Rui Jin, Xiang Li, and et al. 2019. "Rebuilding a Microwave Soil Moisture Product Using Random Forest Adopting AMSR-E/AMSR2 Brightness Temperature and SMAP over the Qinghai–Tibet Plateau, China" Remote Sensing 11, no. 6: 683. https://doi.org/10.3390/rs11060683