Superpixel based Feature Specific Sparse Representation for Spectral-Spatial Classification of Hyperspectral Images
"> Figure 1
<p>The flowchart of the proposed SPFS-SRC framework.</p> "> Figure 2
<p>The superpixel generation process of the PaviaU dataset. (<b>a</b>) the ground truth, (<b>b</b>) the first three components of the HSI data, (<b>c</b>) the produced superpixel map.</p> "> Figure 3
<p>The superpixel generation process of the Indian Pine dataset. (<b>a</b>) the ground truth, (<b>b</b>) the first three components of the HSI data, (<b>c</b>) the produced superpixel map.</p> "> Figure 4
<p>The effect of <math display="inline"><semantics> <mi>β</mi> </semantics></math> and <math display="inline"><semantics> <mi>η</mi> </semantics></math> on OA(%). (<b>a</b>) <math display="inline"><semantics> <mi>β</mi> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mi>η</mi> </semantics></math>.</p> "> Figure 5
<p>The effect of <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>2</mn> </msub> </semantics></math> on OA(%). (<b>a</b>) <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>1</mn> </msub> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>2</mn> </msub> </semantics></math>.</p> "> Figure 6
<p>The classification map of the PaviaU dataset. (<b>a</b>) the Ground Truth (GT), (<b>b</b>) SVM, (<b>c</b>) CK-SVM, (<b>d</b>) JSRC, (<b>e</b>) KSRC, (<b>f</b>) MASR, (<b>g</b>) MFASR, (<b>h</b>) SPSRC, (<b>i</b>) SPFS-SRC.</p> "> Figure 7
<p>The classification map of the Indian Pine dataset. (<b>a</b>) the Ground Truth (GT), (<b>b</b>) SVM, (<b>c</b>) CK-SVM, (<b>d</b>) JSRC, (<b>e</b>) KSRC, (<b>f</b>) MASR, (<b>g</b>) MFASR, (<b>h</b>) SPSRC, (<b>i</b>) SPFS-SRC.</p> ">
Abstract
:1. Introduction
2. The Proposed Method
2.1. SRC-Based HSI Classification
2.2. The Proposed SPFS-SRC Method
2.2.1. Superpixel Generation
2.2.2. Superpixel-Based SRC
- (1)
- Weight updatingThe weight for each feature can be estimated using the Hedging algorithm as follows [40]:
- (2)
- Metric UpdatingAccording to the LEGO algorithm [38], if the training sample pair for the kth feature is punished based on the judgement, the Mahalanobis metric is updated by:
Algorithm 1 Online metric learning. |
|
Algorithm 2 SPFS-SRC. |
|
3. Experimental Results
3.1. Datasets
3.2. Parameter Settings
3.3. Comparison Experiments
4. Discussion and Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zabalza, J.; Ren, J.; Zheng, J.; Han, J.; Zhao, H.; Li, S.; Marshall, S. Novel two-dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging. IEEE Trans. Geosci. Remote Sens. 2015, 8, 4418–4433. [Google Scholar] [CrossRef]
- Zabalza, J.; Qing, C.; Yuen, P.; Sun, G.; Zhao, H.; Ren, J. Fast implementation of two-dimensional singular spectrum analysis for effective data classification in hyperspectral imaging. J. Franklin. 2018, 4, 1733–1751. [Google Scholar] [CrossRef]
- Wang, C.; Ren, J.; Wang, H.; Zhang, Y.; Wen, J. Spectral-spatial classification of hyperspectral data using spectral-domain local binary patterns. Multimed. Tools Appl. 2018, 22, 29889–29903. [Google Scholar] [CrossRef]
- Zhao, C.; Li, X.; Ren, J.; Marshall, S. Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery. Int. J. Remote Sens. 2013, 24, 8669–8684. [Google Scholar] [CrossRef]
- Ma, D.; Yuan, Y.; Wang, Q. Hyperspectral Anomaly Detection via Discriminative Feature Learning with Multiple-Dictionary Sparse Representation. Remote Sens. 2018, 5, 745. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, A.; Ren, J.; Ma, J.; Wang, P.; Zhang, Y.; Jia, X. Gravitation-based edge detection in hyperspectral images. Remote Sens. 2017, 6, 592. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Q.; Li, X. Discriminant Analysis with Graph Learning for Hyperspectral Image Classification. Remote Sens. 2018, 6, 836. [Google Scholar] [CrossRef]
- Zabalza, J.; Ren, J.; Wang, Z.; Marshall, S.; Wang, J. Singular spectrum analysis for effective feature extraction in hyperspectral Imaging. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1886–1890. [Google Scholar] [CrossRef]
- Cao, F.; Yang, Z.; Ren, J.; Ling, W.; Zhao, H.; Sun, M.; Benediktsson, J.A. Sparse representation-based augmented multinomial logistic extreme learning machine with weighted composite features for spectral-spatial classification of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2018, 99, 1–17. [Google Scholar] [CrossRef]
- Cao, F.; Yang, Z.; Ren, J.; Ling, W.; Zhao, H.; Sun, M. Extreme sparse multinomial logistic regression: A fast and robust framework for hyperspectral image classification. Remote Sens. 2017, 9, 1255. [Google Scholar] [CrossRef]
- Qiao, T.; Yang, Z.; Ren, J.; Yuen, P.; Zhao, H.; Sun, G.; Marshall, S.; Benedktsson, J.A. Joint bilateral filtering and spectral similarity-based sparse representation: A generic framework for effective feature extraction and data classification in hyperspectral imaging. Pattern Recogn. 2018, 77, 316–328. [Google Scholar] [CrossRef]
- Qiao, T.; Ren, J.; Wang, Z.; Zabalza, J.; Sun, M.; Zhao, H.; Li, S.; Benediktsson, J.A.; Dai, Q.; Marshall, S. Effective denoising and classification of hyperspectral images using curvelet transform and singular spectrum analysis. IEEE Trans. Geosci. Remote Sens. 2017, 1, 119–133. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 3, 492–501. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 10, 6232–6251. [Google Scholar] [CrossRef]
- Li, J.; Marpu, P.P.; Plaza, A.; Bioucas-Dias, J.; Benediktsson, J.A. Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 9, 4816–4829. [Google Scholar] [CrossRef]
- Xia, J.; Ghamisi, P.; Yokoya, N.; Iwasaki, A. Random forest ensembles and extended multiextinction profiles for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 1, 202–216. [Google Scholar] [CrossRef]
- Zhong, Y.; Lin, Y.; Zhang, L. A support vector conditional random classifier with a Mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2014, 4, 1314–1330. [Google Scholar] [CrossRef]
- Qing, C.; Ruan, J.; Xu, X.; Ren, J.; Zabalza, J. Spatial-spectral classification of hyperspectral images: A deep learning framework with Markov Random fields based modelling. IET Image Process. 2019, 13, 235–245. [Google Scholar] [CrossRef]
- Prasad, S.; Mann Bruce, L. Limitations of principle component analysis for hyperspectral target recognition. IEEE Geosci. Remote Sens. Lett. 2008, 4, 625–629. [Google Scholar] [CrossRef]
- Zabalza, J.; Ren, J.; Yang, M.; Zhang, Y.; Wang, J.; Marshall, S.; Han, J. Novel Folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing. ISPRS J. Photogramm. Remote Sens. 2014, 93, 112–122. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 3, 480–491. [Google Scholar] [CrossRef]
- Ghamisi, P.; Souza, R.; Benediktsson, J.A.; Zhu, X.X.; Rittner, L.; Lotufo, R.A. Extinction profiles for the classification of remote sensing data. IEEE Trans. Geosci. Remote Sens. 2016, 10, 5631–5645. [Google Scholar] [CrossRef]
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. Pattern. Anal. 2009, 2, 210–227. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Nasrabadi, M.M.; Tran, T.D. Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 2011, 10, 3973–3985. [Google Scholar] [CrossRef]
- Chen, Y.; Nasrabadi, M.M.; Tran, T.D. Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 2013, 1, 217–231. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Huang, Y.; Zhang, L. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 6, 2056–2065. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Kang, X.; Benediktsson, J.A. Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans. Geosci. Remote Sens. 2014, 12, 7738–7749. [Google Scholar] [CrossRef]
- Zhan, T.; Sun, L.; Xu, Y.; Yang, G.; Zhang, Y.; Wu, Z. Hyperspectral image classification via superpixel kernel learning-based low rank representation. Remote Sens. 2018, 10, 1639. [Google Scholar] [CrossRef]
- Fu, W.; Li, S.; Fang, L.; Kang, X.; Benediktsson, J.A. Hyperspectral image classification via shape-adaptive joint sparse representation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 2, 556–567. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Duan, W.; Ren, J.; Benediktsson, J.A. Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels. IEEE Trans. Geosci. Remote Sens. 2015, 12, 6663–6674. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Kang, X.; Benediktsson, J.A. Spectral-spatial classification of hyperspectral images with a superpixel-based discriminative sparse model. IEEE Trans. Geosci. Remote Sens. 2015, 8, 4186–4201. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Zhang, L.; Huang, X.; Zhang, L. Joint collaborative representation with multitask learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2015, 9, 5923–5936. [Google Scholar]
- Zhang, Y.; Prasad, S. Multisource geospatial data fusion via local joint sparse representation. IEEE Trans. Geosci. Remote Sens. 2016, 6, 3265–3276. [Google Scholar] [CrossRef]
- Fang, L.; Wang, C.; Li, S.; Beneditsson, J.A. Hyperspectral image classification via multiple-feature-based adaptive sparse representation. IEEE Trans. Instrum. Meas. 2017, 7, 1646–1657. [Google Scholar] [CrossRef]
- Gan, L.; Xia, J.; Du, P.; Chanussot, J. Multiple feature kernel sparse representation classifier for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2018, 9, 5343–5356. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J. Superpixel segmentation using linear spectral clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), Boston, MA, USA, 8–10 June 2015; pp. 1356–1363. [Google Scholar]
- Pati, Y.C.; Rezaiifar, R.; Krishnaprasad, P.S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Proceedings of the 27th Asilomar Conference on Signals, Systems and Computer, Pacific Grove, CA, USA, 1–3 November 1993; pp. 40–44. [Google Scholar]
- Jain, P.; Kulis, B.; Dhillon, I.S.; Grauman, K. Online metric learning and fast similarity search. In Proceedings of the Advances in Neural Information Processing Systems 21 (NIPS 2008), Vancouver, BC, Canada, 8–10 December 2008; pp. 761–768. [Google Scholar]
- Lan, X.; Zhang, S.; Yuen, P.C.; Chellappa, R. Learning common and feature-specific patterns: A novel multiple-sparse-representation-based tracker. IEEE Trans. Image. Process. 2018, 4, 2022–2037. [Google Scholar] [CrossRef] [PubMed]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 1, 119–137. [Google Scholar] [CrossRef]
- Tschannerl, J.; Ren, J.; Yuen, P.; Sun, G.; Zhao, H.; Yang, Z.; Wang, Z.; Marshall, S. MIMR-DGSA: Unsupervised hyperspectral band selection based on information theory and a modified discrete gravitational search algorithm. Inform Fusion. 2019, in press. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Q.; Li, X. An efficient clustering method for hyperspectral optimal band selection via shared nearest neighbor. Remote Sens. 2019, 11, 350. [Google Scholar] [CrossRef]
- Chen, W.; Yang, Z.; Cao, F.; Yan, Y.; Wang, M.; Qing, C.; Cheng, Y. Dimensionality reduction based on determinantal point process and singular spectrum analysis for hyperspectral images. IET Image Process. 2019, 13, 299–306. [Google Scholar] [CrossRef]
PaviaU Dataset | |||||||
---|---|---|---|---|---|---|---|
Class | Sample | Class | Class | ||||
Label | Name | Train | Test | Label | Name | Train | Test |
1 | Asphalt | 20 | 6611 | 6 | Bare Soil | 20 | 5009 |
2 | Meadows | 20 | 18,629 | 7 | Bitumen | 20 | 1310 |
3 | Gravel | 20 | 2079 | 8 | Self-blocking bricks | 20 | 3662 |
4 | Trees | 20 | 3044 | 9 | Shadows | 20 | 927 |
5 | Painted metal sheets | 20 | 1325 | Total | 180 | 42,596 |
Indian Pine Dataset | |||||||
---|---|---|---|---|---|---|---|
Class | Sample | Class | Class | ||||
Label | Name | Train | Test | Label | Name | Train | Test |
1 | Alfalfa | 2 | 44 | 9 | Oats | 2 | 18 |
2 | Corn-notill | 14 | 1414 | 10 | Soybeans-notill | 10 | 962 |
3 | Corn-min | 9 | 821 | 11 | Soybeans-min | 25 | 2430 |
4 | Corn | 3 | 234 | 12 | Soybeans-clean | 7 | 586 |
5 | Grass/pasture | 5 | 478 | 13 | Wheat | 3 | 202 |
6 | Grass/trees | 8 | 722 | 14 | Woods | 13 | 1252 |
7 | Grass/pasture-mowed | 2 | 26 | 15 | Bldg-gass-tree drives | 4 | 382 |
8 | Hay-windowed | 5 | 473 | 16 | Stone-steel towers | 2 | 91 |
Total | 114 | 10,135 |
Methods | SVM | CK-SVM | JSRC | JKSRC | MASR | MFASR | SPSRC | SPFS-SRC |
---|---|---|---|---|---|---|---|---|
OA (%) | 78.04 ± 0.04 | 89.05 ± 0.03 | 64.12 ± 0.04 | 73.81 ± 0.04 | 78.97 ± 0.03 | 84.16 ± 0.02 | 88.98 ± 0.03 | 91.51 ± 0.01 |
AA (%) | 81.64 ± 0.01 | 94.03 ± 0.01 | 53.40 ± 0.05 | 66.53 ± 0.04 | 73.00 ± 0.03 | 95.65 ± 0.01 | 85.80 ± 0.03 | 88.92 ± 0.02 |
Kappa | 0.68 ± 0.04 | 0.86 ± 0.04 | 0.61 ± 0.04 | 0.75 ± 0.02 | 0.82 ± 0.01 | 0.86 ± 0.02 | 0.91 ± 0.01 | 0.92 ± 0.01 |
Time (s) | 6.12 ± 0.01 | 11.12 ± 0.03 | 61.99 ± 0.01 | 57.80 ± 0.01 | 331.87 ± 12.57 | 266.05 ± 10.87 | 5.77 ± 0.02 | 12.1 ± 0.01 |
Methods | SVM | CK-SVM | JSRC | JKSRC | MASR | MFASR | SPSRC | SPFS-SRC |
---|---|---|---|---|---|---|---|---|
OA (%) | 54.90 ± 0.02 | 62.35 ± 0.02 | 65.20 ± 0.02 | 70.37 ± 0.04 | 80.21 ± 0.02 | 81.79 ± 0.04 | 82.38 ± 0.03 | 83.71 ± 0.01 |
AA (%) | 55.71 ± 0.02 | 58.47 ± 0.07 | 60.15 ± 0.03 | 65.98 ± 0.05 | 77.27 ± 0.02 | 82.71 ± 0.02 | 79.82 ± 0.03 | 81.36 ± 0.01 |
Kappa | 0.48 ± 0.02 | 0.57 ± 0.03 | 0.66 ± 0.02 | 0.68 ± 0.03 | 0.81 ± 0.02 | 0.79 ± 0.02 | 0.81 ± 0.03 | 0.80 ± 0.04 |
Time (s) | 1.60 ± 0.02 | 6.42 ± 0.02 | 7.65 ± 0.12 | 16.43 ± 0.75 | 137.57 ± 2.56 | 13.45 ± 0.52 | 0.32 ± 0.02 | 1.22 ± 0.02 |
Predicted | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Ground Truth | 1 | 6278.8 | 0 | 2.3 | 78 | 0 | 0 | 0 | 152 | 7.1 |
2 | 0.7 | 16721.4 | 0 | 133.8 | 0 | 332.1 | 0 | 4.7 | 0 | |
3 | 81.2 | 159.9 | 1945.5 | 13.9 | 0 | 0 | 0 | 183.6 | 52.6 | |
4 | 13.8 | 262.7 | 5.4 | 2772.1 | 0 | 0 | 0 | 52.9 | 0 | |
5 | 0 | 0 | 0 | 0 | 1282.6 | 0 | 0 | 0 | 63.9 | |
6 | 0.3 | 1381.5 | 0 | 6.6 | 0 | 4676.9 | 15.5 | 0 | 0 | |
7 | 94.6 | 0 | 0 | 2 | 0 | 0 | 1281.9 | 0.8 | 49.1 | |
8 | 141.6 | 13.5 | 110.8 | 34.6 | 0 | 0 | 0 | 3268 | 9.1 | |
9 | 0 | 90 | 6 | 3 | 42.4 | 0 | 12.6 | 0 | 745.2 |
Predicted | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
Ground Truth | 1 | 41.1 | 1 | 0 | 0.4 | 39.7 | 0 | 0 | 38.5 | 0 | 0.8 | 0 | 0 | 0.2 | 0 | 0.4 | 0 |
2 | 1.5 | 1070.7 | 37.3 | 21.6 | 1.5 | 1.4 | 0 | 0 | 0 | 58.4 | 122 | 79.9 | 0 | 0 | 2.3 | 4.4 | |
3 | 0 | 20.6 | 637.2 | 7.8 | 3.9 | 0 | 0 | 0 | 0 | 27.2 | 27.6 | 27.7 | 0 | 0 | 0.8 | 8.7 | |
4 | 0 | 0.3 | 14.2 | 167.9 | 0 | 0.7 | 0 | 0 | 0 | 0 | 4.3 | 17.6 | 0 | 0 | 0.1 | 0 | |
5 | 0 | 0.1 | 0 | 0 | 380.6 | 0 | 0 | 0 | 0 | 0.6 | 0 | 0 | 0.8 | 1.9 | 0 | 0 | |
6 | 0 | 1.2 | 0 | 0 | 0 | 627.6 | 0 | 0 | 11.8 | 0 | 7.2 | 0 | 0 | 3.1 | 7.7 | 0 | |
7 | 0 | 0 | 0 | 0 | 18 | 0 | 26 | 2.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 431.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
9 | 0 | 0 | 0 | 0 | 0 | 44.5 | 0 | 0 | 5.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
10 | 1 | 76.2 | 62.2 | 1.8 | 6.2 | 0 | 0 | 0 | 0 | 801.6 | 84.6 | 33.4 | 0 | 0 | 6.2 | 0.6 | |
11 | 0.4 | 209.4 | 56.5 | 1.1 | 3.4 | 14.6 | 0 | 0 | 0 | 40.8 | 2169.2 | 55.6 | 0 | 0 | 1.3 | 3.2 | |
12 | 0 | 31.7 | 13.6 | 33.4 | 7.7 | 0 | 0 | 0 | 0 | 30.2 | 15.1 | 351.3 | 0 | 0 | 2.4 | 8.4 | |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 201 | 0 | 0.4 | 0 | |
14 | 0 | 2.8 | 0 | 0 | 15.4 | 29 | 0 | 0 | 0.6 | 2.1 | 0 | 0 | 0 | 1234.6 | 88.6 | 0 | |
15 | 0 | 0 | 0 | 0 | 0 | 4.2 | 0 | 0 | 0 | 0.3 | 0 | 0 | 0 | 12.4 | 271.8 | 0 | |
16 | 0 | 0 | 0 | 0 | 1.6 | 0 | 0 | 0 | 0 | 0 | 0 | 20.5 | 0 | 0 | 0 | 65.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Ren, J.; Zhao, H.; Yan, Y.; Zabalza, J.; Marshall, S. Superpixel based Feature Specific Sparse Representation for Spectral-Spatial Classification of Hyperspectral Images. Remote Sens. 2019, 11, 536. https://doi.org/10.3390/rs11050536
Sun H, Ren J, Zhao H, Yan Y, Zabalza J, Marshall S. Superpixel based Feature Specific Sparse Representation for Spectral-Spatial Classification of Hyperspectral Images. Remote Sensing. 2019; 11(5):536. https://doi.org/10.3390/rs11050536
Chicago/Turabian StyleSun, He, Jinchang Ren, Huimin Zhao, Yijun Yan, Jaime Zabalza, and Stephen Marshall. 2019. "Superpixel based Feature Specific Sparse Representation for Spectral-Spatial Classification of Hyperspectral Images" Remote Sensing 11, no. 5: 536. https://doi.org/10.3390/rs11050536
APA StyleSun, H., Ren, J., Zhao, H., Yan, Y., Zabalza, J., & Marshall, S. (2019). Superpixel based Feature Specific Sparse Representation for Spectral-Spatial Classification of Hyperspectral Images. Remote Sensing, 11(5), 536. https://doi.org/10.3390/rs11050536