Ultrawideband Microwave Sensing and Imaging Using Time-Reversal Techniques: A Review
"> Figure 1
<p>Time reversal experiment using a limited aspect array. (left) Forward Propagation of the short input pulse, (right) Backward Propagation of the time-reversed signals.</p> "> Figure 2
<p>Effective aperture increase in media with multipaths. (a) Homogeneous medium with no multipaths (<math display="inline"> <mrow> <msub> <mi>a</mi> <mi>e</mi> </msub> <mo>=</mo> <mi>a</mi> </mrow> </math>), (b) multipaths created by the waveguide-like structure composed of two perfect electric conductor (PEC) walls (<math display="inline"> <mrow> <msub> <mi>a</mi> <mi>e</mi> </msub> <mo>></mo> <mi>a</mi> </mrow> </math>), (c) multipaths created by discrete scatterers (<math display="inline"> <mrow> <msub> <mi>a</mi> <mi>e</mi> </msub> <mo>></mo> <mi>a</mi> </mrow> </math>).</p> "> Figure 3
<p>Spatial distribution of the time-reversed <math display="inline"> <msub> <mi>E</mi> <mi>z</mi> </msub> </math> field component of the electric field at the time of refocusing for increasing <span class="html-italic">δ</span> and fixed <math display="inline"> <msub> <mi>l</mi> <mi>s</mi> </msub> </math> of <math display="inline"> <mrow> <msub> <mi>l</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>8</mn> <msub> <mo>Δ</mo> <mi>s</mi> </msub> </mrow> </math>. Plots are given in linear scale.</p> "> Figure 4
<p>Cross-range resolution for varying (a) 1st and (b) 2nd order medium statistics.</p> "> Figure 5
<p>(a) Comparison of incoherent and coherent time-domain signals. Note that although (b) the magnitudes of the frequency domain representation of both signals are same, (c) the phases are not. Incoherency comes from the oscillations in the phase arising from the SVD or EVD algorithm.</p> "> Figure 6
<p>The first eigenvalue distribution (most and only significant one in this case) of the space-space MDM with respect to the frequency (left) and singular values of the individual (center) and full (right) space-frequency MDMs.</p> "> Figure 7
<p>The first two significant time-domain right singular vectors obtained in homogeneous and random media using both the individual and full SF-MDM.</p> "> Figure 8
<p>Phase distribution of the most significant TD-DORT eigenvector obtained at the central frequency (left) and those of the left singular vectors of the individual (middle) and full (right) SF-MDMs.</p> "> Figure 9
<p>Images (in linear scale) obtained both in homogeneous (top row) and random (bottom row) media by TD-DORT (1st column), SF-imaging using individual (2nd column), and full SF-MDMs (3rd column).</p> "> Figure 10
<p>Illustration of well-resolved and non-well-resolved cases for a scenario having <math display="inline"> <mrow> <msub> <mi>M</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>2</mn> </mrow> </math> scatterers and probed with <math display="inline"> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </math> antennas. While the SS is formed by the plane (<span class="html-italic">P</span>) formed by the first two eigenvectors (<math display="inline"> <msub> <mi mathvariant="bold">v</mi> <mn>1</mn> </msub> </math> and <math display="inline"> <msub> <mi mathvariant="bold">v</mi> <mn>2</mn> </msub> </math>), NS is formed by the eigenvector (<math display="inline"> <msub> <mi mathvariant="bold">v</mi> <mn>3</mn> </msub> </math>) orthogonal to <span class="html-italic">P</span>.</p> "> Figure 11
<p>Images (in dB scale) obtained both in homogeneous (HM) and random media (RM) by CF-MUSIC and UWB-MUSIC.</p> "> Figure 12
<p>Magnitude of the exponential term <math display="inline"> <mrow> <mi>e</mi> <mi>x</mi> <mi>p</mi> <mo>(</mo> <mo>−</mo> <mi>j</mi> <mi>ω</mi> <msqrt> <mrow> <mi>μ</mi> <mi>ϵ</mi> <mo>(</mo> <mi>ω</mi> <mo>)</mo> </mrow> </msqrt> <mover accent="true"> <mi>r</mi> <mo stretchy="false">¯</mo> </mover> <mo>)</mo> </mrow> </math> plotted with respect to frequency and spatial distance for complex <math display="inline"> <mrow> <mi>ϵ</mi> <mo>(</mo> <mi>ω</mi> <mo>)</mo> </mrow> </math> corresponding to the Puerto Rico soil with moisture level of %2.5 [<a href="#B131-remotesensing-01-00466" class="html-bibr">131</a>]. Space- and frequency-dependent attenuation is observed.</p> "> Figure 13
<p>The block diagram of the dispersion compensation method.</p> "> Figure 14
<p>(Left:) One of the original received signal and the employed Hamming windows with overlapping factor of 0.5; (right:) corresponding windowed signals. Note the amplitude difference for each windowed signal.</p> "> Figure 15
<p>Time and Frequency domain representations for some of the windowed signals and their compensated counterparts after space and frequency dependent filtering.</p> "> Figure 16
<p>Signal received by one of the TRA antennas in dispersive medium, corresponding compensated signal and the reference signal that would be received in non-dispersive medium in (left) time and (right) frequency domains.</p> ">
Abstract
:1. Introduction
2. Time-Reversal of Electromagnetic Waves and Superresolution
2.1. Physics-Based Ultrawideband Clutter Models
2.2. Numerical Results
3. Time-Reversal based Detection and Imaging Methods
3.1. Signal Space Methods
3.1.1. Time-Domain DORT
3.1.2. Space-Frequency TR Imaging
3.1.3. Results
3.2. Null Space Methods
3.2.1. TR-MUSIC
4. Frequency Dispersion/Loss Compensation Techniques
5. Conclusions
Acknowledgements
References and Notes
- Varshney, P.K. Distributed Detection and Data Fusion; Springer-Verlag: Berlin, Germany, 1997. [Google Scholar]
- Paulraj, A.J.; Gore, D.A.; Nabar, R.U.; Bolcskei, H. An overview of MIMO communications–a key to gigabit wireless. Proc. IEEE 2004, 92, 198–218. [Google Scholar] [CrossRef]
- Foschini, G.J.; Gans, M.J. On limits of wireless communication in a fading environment when using multiple antennas. Wirel. Personal Commun. 1998, 6, 311–335. [Google Scholar] [CrossRef]
- Fink, M.; Cassereau, D.; Derode, A.; Prada, C.; Roux, P.; Tanter, M.; Thomas, J.; Wu, F. Time-reversed acoustics. Rep. Prog. Phys. 2000, 63, 1933–1995. [Google Scholar] [CrossRef]
- Fink, M. Method and device for localization and focusing of acoustic waves in tissues. US Patent 5,092,336, 1992. [Google Scholar]
- Fink, M. Method and apparatus for acoustic examination using time reversal. US Patent 5,428,999, 1995. [Google Scholar]
- Fink, M.; Lewiner, J. Method and device for detecting and locating a reflecting sound source. US Patent 6,161,434, 2000. [Google Scholar]
- Berryman, J.G.; Borcea, L.; Papanicolaou, G.; Tsogka, C. Statistically stable ultrasonic imaging in random media. J. Acoust. Soc. Am. 2002, 112, 1509–1522. [Google Scholar] [CrossRef] [PubMed]
- Papanicolaou, G.; Ryzhik, L.; Solna, K. Statistical stability in time reversal. SIAM J. Appl. Math. 2004, 64, 1133–55. [Google Scholar] [CrossRef]
- Fouque, J.-P.; Garnier, J.; Papanicolaou, G.; Solna, K. Wave Propagation and Time Reversal in Randomly Layered Media; Springer: Berlin, Germany, 2007. [Google Scholar]
- Fink, M. Time reversal mirrors. J. Phys. D.: Appl. Phys. 1993, 26, 1333–1350. [Google Scholar] [CrossRef]
- Clouet, J.F.; Fouque, J.P. A time reversal method for an acoustical pulse propagating in randomly layered media. Wave Motion 1997, 25, 361–368. [Google Scholar] [CrossRef]
- Dowling, D.R.; Jackson, D.R. Narrowband performance of phase conjugate arrays in dynamic random media. J. Acoust. Soc. Am. 1992, 91, 3257–3277. [Google Scholar] [CrossRef]
- Asch, M.; Kohler, W.; Papanicolaou, G.; Postel, M.; White, B. Frequency content of randomly scattered signals. SIAM Review 1991, 33, 519–62. [Google Scholar] [CrossRef]
- Kohler, W.; Papanicolaou, G.; White, B. Localization and mode conversion for elastic waves in randomly layered media. Wave Motion 1996, 23, 1–22 and 181–201. [Google Scholar] [CrossRef]
- Borcea, L.; Papanicolaou, G.; Tsogka, C.; Berryman, J. Imaging and time reversal in random media. Inverse Prob. 2002, 18, 1247–1279. [Google Scholar] [CrossRef]
- Tsogka, C.; Papanicolaou, G. Time reversal through a solid-liquid interface and super-resolution. Inverse Prob. 2002, 18, 1639–1657. [Google Scholar] [CrossRef]
- Blomgren, P.; Papanicolaou, G.; Tsogka, C.; Berryman, J. Super resolution in time-reversal acoustics. J. Acoust. Soc. Am. 2002, 111, 230–48. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.; Jaruwatanadilok, S.; Kuga, Y.; Ishimaru, A. Numerical study of the time-reversal effects on super-resolution in random scattering media and comparison with an analytical mode. Waves in Random and Complex Media 2008, 18, 627–639. [Google Scholar] [CrossRef]
- Montaldo, G.; Roux, P.; Derode, A.; Negreira, C.; Fink, M. Ultrasonic shock wave generator using 1-bit time-reversal in a dispersive medium : application to lithotripsy. Appl. Phys. Lett. 2002, 80, 897–899. [Google Scholar] [CrossRef]
- Thomas, J.L.; Wu, F.; Fink, M. Time reversal focusing applied to lithotripsy. Ultrason. Imag. 1996, 18, 106–121. [Google Scholar] [CrossRef]
- Tanter, M.; Thomas, J.L.; Fink, M. Focusing and steering through absorbing and aberrating layers: Application to ultrasonic propagation through the skull. J. Acoust. Soc. Am. 1998, 103, 2403–2410. [Google Scholar] [CrossRef] [PubMed]
- Floch, C.L.; Tanter, M.; Fink, M. Self defocusing in ultrasonic hyperthermia: Experiment and simulation. Appl. Phys. Lett. 1999, 74, 3062–3064. [Google Scholar] [CrossRef]
- Persson, M.; Trefna, H. Method and system relating to hyperthermia. World Intellectual Property Organization - International Patent Application Publication Application number: PCT/SE2007/000502, Publication No: WO/2007/136335, 2007. [Google Scholar]
- Pepper, D.M.; Dunning, G.J.; Sumida, D.S. Time-reversed photoacoustic system and uses thereof. US Patent 6,973,830, 2005. [Google Scholar]
- Cerwin, S.A.; Chang, D.B. Identifying and treating bodily tissues using electromagnetically induced, time-reversed, acoustic signals. United States Patent Application Publication Application number: 11/450,097, US 2007/0038060 A1, 2007. [Google Scholar]
- Ihn, J.-B.; Dunne, J.P. Virtual time reversal acoustics for structural health monitoring. United States Patent Application Publication Application number: 11/861,056, US 2009/0083004 A1, 2007. [Google Scholar]
- Larmat, C.; Tromp, T.; Liu, Q.; Montagner, J.-P. Time reversal location of glacial earthquakes. J. Geophys. Res. B 2008, 113, B09314. [Google Scholar] [CrossRef]
- Micolau, G.; Saillard, M.; Borderies, P. DORT method as applied to ultrawideband signals for detection of buried objects. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1813–1820. [Google Scholar] [CrossRef]
- Edelmann, G.F.; Song, H.C.; Kim, S.; Akal, T.; Hodgkiss, W.S.; Kuperman, W.A. Underwater acoustic communications using time reversal. IEEE J.Oceanic Eng. 2005, 30, 852–864. [Google Scholar] [CrossRef]
- Higley, W.J.; Roux, P.; Kuperman, W.A.; Hodgkiss, W.S.; Song, H.C.; Akal, T.; Stevenson, M. Synthetic aperture time-reversal communications in shallow water: Experimental demonstration at sea. J. Acoust. Soc. Am. 2005, 118, 2365–2372. [Google Scholar] [CrossRef]
- Kim, S.; Kuperman, W.A.; Hodgkiss, W.S.; Song, H.C.; Edelman, G.F.; Akal, T. Echo-to-reverberation enhancement using a time reversal mirror. J. Acoust. Soc. Am. 2004, 115, 1525–1531. [Google Scholar] [CrossRef]
- Song, H.C.; Hodgkiss, W.S.; Kuperman, W.A.; Roux, P.; Akal, T.; Stevenson, M. Experimental demonstration of adaptive reverberation nulling using time reversal. J. Acoust. Soc. Am. 2005, 118, 1382–1387. [Google Scholar] [CrossRef]
- Milsap, J.P. Phased array sound system. US Patent 7,130,430, 2006. [Google Scholar]
- Leutenegger, T.; Dual, J. Non-destructive testing of tubes using a time reverse numerical simulation (TRNS) method. Ultrasonics 2004, 41, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Kerbrat, E.; Prada, C.; Cassereau, D. Ultrasonic nondestructive testing of scattering media using the decomposition of the time-reversal operator. IEEE T. Ultrason. Ferroelectr. 2002, 49, 1103–1112. [Google Scholar] [CrossRef]
- Leutenegger, T.; Dual, J. Detection of defects in cylindrical structures using a time reverse method and a finite-difference approach. Ultrasonics 2002, 40, 721–725. [Google Scholar] [CrossRef]
- Chakroun, N.; Fink, M.; Wu, F. Time reversal processing in ultrasonic nondestructive testing. IEEE T. Ultrason. Ferroelectr. 1995, 42, 1087–1098. [Google Scholar] [CrossRef]
- Sohn, H.; Kim, S. Methods, apparatuses, and systems for damage detection. World Intellectual Property Organization - International Patent Application Publication Application number: PCT/US2007/015090, Publication No: WO/2008/005311, 2008. [Google Scholar]
- Lev-Ari, H.; Devaney, A.J. The Time Reversal Techniques Re-interpreted: Subspace-based Signal Processing for Multistatic Target Location. In Proceedings of IEEE Sensor Array and Multichannel Signal Processing Workshop, Cambridge, MA, USA; 2000; pp. 509–513. [Google Scholar]
- Hou, S.; Solna, K.; Zhao, H. Imaging of location and geometry for extended targets using the response matrix. J. Comp. Phys. 2004, 199, 317–338. [Google Scholar] [CrossRef]
- Borcea, L.; Papanicolaou, G.; Tsogka, C. Theory and applications of time reversal and interferometric imaging. Inverse Prob. 2003, 19, 1–26. [Google Scholar] [CrossRef]
- Borcea, L.; Papanicolaou, G.; Tsogka, C. Interferometric array imaging in clutter. Inverse Prob. 2005, 21, 1419–1460. [Google Scholar] [CrossRef]
- Slob, E. Interferometry by deconvolution of multicomponent multioffset gpr data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 828–838. [Google Scholar] [CrossRef]
- Derveaux, G.; Papanicolaou, G.; Tsogka, C. Time reversal imaging for sensor networks with optimal compensation in time. J. Acoust. Soc. Am. 2007, 121, 2071–2085. [Google Scholar] [CrossRef] [PubMed]
- Prada, C.; Fink, M. Eigenmodes of the time reversal operator: A solution to selective focusing in multiple-target media. Wave Motion 1994, 20, 151–163. [Google Scholar] [CrossRef]
- Prada, C.; Mannevile, S.; Spoliansky, D.; Fink, M. Decomposition of the time reversal operator: Detection and selective focusing on two scatterers. J. Acoust. Soc. Am. 1996, 99, 2067–2076. [Google Scholar] [CrossRef]
- Prada, C.; Thomas, J.L. Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix. J. Acoust. Soc. Am. 2003, 114, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Micolau, G.; Saillard, M. DORT method as applied to electromagnetic sensing of buried objects. Radio Sci. 2003, 38, 4–1–12. [Google Scholar] [CrossRef]
- Montaldo, G.; Tanter, M.; Fink, M. Real time inverse filter focusing through iterative time reversal. J. Acoust. Soc. Am. 2004, 115, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Montaldo, G.; Tanter, M.; Fink, M. Revisiting iterative time reversal processing: Application to detection of multiple targets. J. Acoust. Soc. Am. 2004, 115, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Devaney, A.J. Super-resolution processing of multistatic data using time reversal and MUSIC. Unpublished paper, preprint available on the author’s web site. Avalable Online: http://www.ece.neu.edu/faculty/devaney/ (accessed on August 20, 2009).
- Gruber, F.K.; Marengo, E.A.; Devaney, A.J. Time-reversal imaging with multiple signal classification considering multiple scattering between the targets. J. Acoust. Soc. Am. 2004, 115, 3042–3047. [Google Scholar] [CrossRef]
- Marengo, E.A.; Gruber, F.K. Subspace-based localization and inverse scattering of multiply scattering point targets. EURASIP J. Adv. Signal Proc. 2007. [Google Scholar] [CrossRef]
- Lehman, S.K.; Devaney, A.J. Transmission mode time-reversal superresolution imaging. J. Acoust. Soc. Am. 2003, 113, 2742–2753. [Google Scholar] [CrossRef] [PubMed]
- Devaney, A.J.; Marengo, E.A.; Gruber, F.K. Time-reversal-based imaging and inverse scattering of multiply scattering point targets. J. Acoust. Soc. Am. 2005, 118, 3129–3138. [Google Scholar] [CrossRef]
- Devaney, A.J. Time reversal imaging of obscured targets from multistatic data. IEEE Trans. Antennas Propagat. 2005, 53, 1600–1610. [Google Scholar] [CrossRef]
- Pepper, D.M. Nonlinear optical phase conjugation. Optical Engineer. 1982, 21, 156. [Google Scholar]
- Byren, R.W.; Rockwell, D.A. Self-aligning phase conjugate laser. US Patent 4,812,639, 1989. [Google Scholar]
- Byren, R.W.; Filgas, D. Phase conjugate relay mirror apparatus for high energy laser system and method. US Patent 6,961,171, 2005. [Google Scholar]
- Skolnik, M.I.; King, D.D. Self-Phasing array antennas. IEEE Trans. Antennas Propagat. 1964, 12, 142–149. [Google Scholar] [CrossRef]
- Sichelstiel, B.A.; Waters, W.M.; Wild, T.A. Self-Focusing array research model. IEEE Trans. Antennas Propagat. 1964, 12, 150–154. [Google Scholar] [CrossRef]
- Fusco, V.F.; Karode, S.L. Self-Focusing antenna array techniques for mobile communications applications. Elect. & Comm. Eng. J. 1999, 11, 279–286. [Google Scholar]
- Chang, Y.; Fetterman, H.R.; Newberg, I.L.; Panaretos, S.K. Microwave phase conjugation using antenna arrays. IEEE Trans. Microwave Theory Tech. 1998, 46, 1910–1919. [Google Scholar] [CrossRef]
- Miyamoto, R.Y.; Itoh, T. Retrodirective arrays for wireless communications. IEEE Microwave Magazine 2002, 3, 71–79. [Google Scholar] [CrossRef]
- Henty, B.E.; Stancil, D.D. Multipath-enabled super-resolution for rf and microwave communication using phase-conjugate arrays. Phys. Rev. Lett. 2004, 93, 243904/1–4. [Google Scholar] [CrossRef] [PubMed]
- Lerosey, G.; de Rosny, J.; Tourin, A.; Derode, A.; Montaldo, G.; Fink, M. Time reversal of electromagnetic waves. Phys. Rev. Lett. 2004, 92, 193904. [Google Scholar] [CrossRef] [PubMed]
- Lerosey, G.; de Rosny, J.; Tourin, A.; Derode, A.; Fink, M. Time reversal of wideband microwaves. Applied Phys. Lett. 2006, 88. [Google Scholar] [CrossRef]
- Cepni, A.G. Experimental Investigation of Time-Reversal Techniques using Electromagnetic Waves. Ph D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, USA, 2005. [Google Scholar]
- Nguyen, H.T.; Andersen, J.B.; Pedersen, G.F.; Kyritsi, P.; Eggers, P.C.F. Time reversal in wireless communications: A measurement-based investigation. IEEE Trans. Wireless Comm. 2006, 5, 2242–2252. [Google Scholar] [CrossRef]
- Moura, J.M.F.; Jin, Y. Detection by time reversal: Single antenna. IEEE Trans. Signal Process. 2007, 55, 187–201. [Google Scholar] [CrossRef]
- Moura, J.M.F.; Jin, Y.W. Time reversal imaging by adaptive interference canceling. IEEE Trans. Signal Process. 2008, 56, 233–247. [Google Scholar] [CrossRef]
- Jin, Y.; Moura, J.M.F. Time-reversal detection using antenna arrays. IEEE Trans. Signal Process. 2009, 57, 1396–1414. [Google Scholar]
- Li, X.; Bond, E.J.; Veen, B.D.V.; Hagness, S.C. An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection. IEEE Antennas Propagat. Mag. 2005, 47, 19–34. [Google Scholar]
- Kosmas, P.; Rappaport, C.M. Time reversal with the FDTD method for microwave breast cancer detection. IEEE Trans. Microwave Theory Tech. 2005, 53, 2317–2323. [Google Scholar] [CrossRef]
- Kosmas, P. FDTD modeling for forward and linear inverse electromagnetic problems in lossy, dispersive media. Ph. D. Dissertation, Northeastern University, Boston, MA, USA, 2005. [Google Scholar]
- Kosmas, P.; Rappaport, C.M. FDTD-based time reversal for microwave breast cancer detection - localization in three dimensions. IEEE Trans. Microwave Theory Tech. 2006, 54, 1921–1927. [Google Scholar] [CrossRef]
- Kosmas, P.; Rappaport, C.M. A matched-filter FDTD-based time reversal approach for microwave breast cancer detection. IEEE Trans. Antennas Propagat. 2006, 54, 1257–1264. [Google Scholar] [CrossRef]
- Chen, Y.F.; Gunawan, E.; Low, K.S.; Wang, S.C.; Kim, Y.; Soh, C.B. Pulse design for time reversal method as applied to ultrawideband microwave breast cancer detection: A two-dimensional analysis. IEEE Trans. Antennas Propagat. 2007, 55, 194–204. [Google Scholar] [CrossRef]
- Chen, Y.F.; Gunawan, E.; Low, K.S.; Wang, S.C.; Soh, C.B.; Putti, T.C. Time-reversal ultrawideband breast imaging: Pulse design criteria considering multiple tumors with unknown tissue properties. IEEE Trans. Antennas Propagat. 2008, 56, 3073–3077. [Google Scholar] [CrossRef]
- Jin, Y.; Moura, J.M.F.; Jiang, Y.; Wahl, M.; Zhu, H.; He, Q. Breast cancer detection by time reversal imaging. In Proceedings of 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), Paris, France, May 14-17, 2008; pp. 816–819.
- Liu, D.H.; Kang, G.; Li, L.; Chen, Y.; Vasudevan, S.; Joines, W.; Liu, Q.H.; Krolik, J.; Carin, L. Electromagnetic time-reversal imaging of a target in a cluttered environment. IEEE Trans. Antennas Propagat. 2005, 53, 3058–3066. [Google Scholar]
- Liu, D.H.; Vasudevan, S.; Krolik, J.; Bal, G.; Carin, L. Electromagnetic time-reversal source localization in changing media: Experiment and analysis. IEEE Trans. Antennas Propagat. 2007, 55, 344–354. [Google Scholar] [CrossRef]
- Liu, D.H.; Krolik, J.; Carin, L. Electromagnetic target detection in uncertain media: Time-reversal and minimum-variance algorithms. IEEE Trans. Geosci. Remote Sens. 2007, 45, 934–944. [Google Scholar] [CrossRef]
- Tortel, H.; Micolau, G.; Saillard, M. Decomposition of the time reversal operator for electromagnetic scattering. J. Electromagn. Waves Appl. 1999, 13, 687–719. [Google Scholar] [CrossRef]
- Chambers, D.H.; Berryman, J.G. Analysis of the time-reversal operator for a small spherical scatterer in an electromagnetic field. IEEE Trans. Antennas Propagat. 2004, 52, 1729–1738. [Google Scholar] [CrossRef]
- Berryman, J.G. Method for distinguishing multiple targets using time-reversal acoustics. US Patent 6,755,083, 2004. [Google Scholar]
- Sarabandi, K.; Koh, I.; Casciato, M.D. Demonstration of time reversal methods in a multi-path environment. Proceedings of the IEEE Antennas and Propagation Society International Symposium 2004, 4, 4436–4439. [Google Scholar]
- Ziade, Y.; Roussel, H.; Lesturgie, M.; Tabbara, W. A coherent model of forest propagation–application to detection and localization of targets using the DORT method. IEEE Trans. Antennas Propagat. 2008, 56, 1048–1057. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, J.; Stancil, D.D.; Chabalko, M.J. Polarization sensitive time-reversal SAR imaging in an environment filled with trees. Proc. of the IEEE Antennas Propagat. Symp. 2007, 1, 4000–4003. [Google Scholar]
- Jiang, Y.; Zhu, J.; Stancil, D.D. Synthetic aperture radar ghost image cancellation using broadband time reversal averaging techniques. IEEE/MTT-S Int. Microwave Symposium 2007, 1479–1482. [Google Scholar] [CrossRef]
- Jin, Y.; Moura, J.M.F. Application of time reversal to synthetic aperture imaging. United States Patent Application Publication Application number: 12/217,839, US 2009/0033549 A1, 2008. [Google Scholar]
- Jin, Y.; Moura, J.M.F. Imaging by time reversal beamforming. United States Patent Application Publication Application number: 12/217,838, US 2009/0076389 A1, 2009. [Google Scholar]
- Zheng, W.; Zhao, Z.; Nie, Z.P. Application of TRM in the UWB through wall radar. Prog. Electromagnetics Res. - PIER 2008, 87, 279–296. [Google Scholar] [CrossRef]
- Kyritsi, P.; Papanicolaou, G.; Eggers, P.; Oprea, A. MISO time reversal and delay-spread compression for FWA channels at 5 GHz. IEEE Antennas Wirel. Prop. Lett. 2004, 3, 96–99. [Google Scholar] [CrossRef]
- Lerosey, G.; de Rosny, J.; Tourin, A.; Derode, A.; Montaldo, G.; Fink, M. Time reversal of electromagnetic waves and telecommunication. Radio Sci. 2005, 40. [Google Scholar] [CrossRef]
- Montaldo, G.; Lerosey, G.; Derode, A.; Tourin, A.; de Rosny, J.; Fink, M. Telecommunication in a disordered environment with iterative time reversal. Waves in Random Media 2004, 14, 287–302. [Google Scholar] [CrossRef]
- Xiao, S.Q.; Chen, J.; Wang, B.Z.; Liu, X.F. A numerical study on time-reversal electromagnetic wave for indoor ultra-wideband signal transmission. Prog. Electromagnetics Res. - PIER 2007, 77, 329–342. [Google Scholar] [CrossRef]
- Blomgren, P.; Kyritsi, P.; Kim, A.D.; Papanicolaou, G. Spatial focusing and intersymbol interference in multiple-input-single-output time reversal communication systems. IEEE J. Oceanic Eng. 2008, 33, 341–355. [Google Scholar] [CrossRef]
- Lindskog, E.D.; Paulraj, A.J. Time-reversal block transmit diversity system for channels with intersymbol interference and method. US Patent 7,362,815, 2008. [Google Scholar]
- Candy, J.V.; Chambers, D.H.; Guidry, B.L.; Poggio, A.J.; Robbins, C.L. Multi-channel time-reversal receivers for multi and 1-bit implementations. US Patent 7,463,690, 2008. [Google Scholar]
- Pajusco, P.; Pagani, P. On the use of uniform circular arrays for characterizing UWB time reversal. IEEE Trans. Antennas Propagat. 2009, 57, 102–109. [Google Scholar] [CrossRef]
- Coppinger, F.; Bhushan, A.S.; Jalali, B. Time reversal of broadband microwave signals. Electron. Lett. 1999, 35, 1230–1232. [Google Scholar] [CrossRef]
- Yanik, M.F.; Suh, W.; Wang, Z.; Fan, S. Stopping and time reversing light in a waveguide with an all-optical system. US Patent 7,116,864, 2006. [Google Scholar]
- Yavuz, M.E.; Teixeira, F.L. A numerical study of time reversed UWB electromagnetic waves in continuous random media. IEEE Antennas Wirel.Prop. Lett. 2005, 4, 43–46. [Google Scholar] [CrossRef]
- Yavuz, M.E.; Teixeira, F.L. Full time-domain DORT for ultrawideband fields in dispersive, random inhomogeneous media. IEEE Trans. Antennas Propagat. 2006, 54, 2305–2315. [Google Scholar] [CrossRef]
- Yavuz, M.E.; Teixeira, F.L. Space-frequency ultrawideband time-reversal imaging. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1115–1124. [Google Scholar] [CrossRef]
- Yavuz, M.E.; Teixeira, F.L. On the sensitivity of time-reversal imaging techniques to model perturbations. IEEE Trans. Antennas Propagat. 2008, 56, 834–843. [Google Scholar] [CrossRef]
- Yavuz, M.E.; Teixeira, F.L. Frequency dispersion compensation in time reversal techniques for UWB electromagnetic waves. IEEE Geosci. Remote Sensing Lett. 2005, 2, 233–237. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Fung, A.K.; Fung, H.S. Scattering from a vegetation layer. IEEE Trans. Geosci. Electron. 1979, 17, 1–6. [Google Scholar] [CrossRef]
- Tsang, L.; Kong, J.A. Thermal microwave emission from a three-layer random medium with three dimensional variations. IEEE Trans. Geosci. Remote Sens. 1980, 18, 212–216. [Google Scholar] [CrossRef]
- Wang, J.R.; Shiue, J.C.; Chuang, S.L.; Shin, R.T.; Dobrowski, M. Thermal microwave emission from vegetated fields: A comparison between theory and experiment. IEEE Trans. Geosci. Remote Sens. 1984, 22, 143–149. [Google Scholar] [CrossRef]
- Moss, C.D.; Teixeira, F.L.; Yang, Y.E.; Kong, J.A. Finite-difference time-domain simulation of scattering from objects in continuous random media. IEEE Trans. Geosci. Remote Sens. 2002, 40, 178–186. [Google Scholar] [CrossRef]
- Berenger, J.P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Teixeira, F.L.; Chew, W.C. A general approach to extended berenger’s absorbing boundary condition to anisotropic and dispersive media. IEEE Trans. Antennas Propagat. 1998, 46, 1386–1387. [Google Scholar] [CrossRef]
- Harris, F.J. On the use of windows for harmonic analysis with the discrete fourier transform. Proc. IEEE 1978, 66, 51–83. [Google Scholar] [CrossRef]
- Prada, C.; Wu, F.; Fink, M. The iterative time reversal mirror: A solution to self-focusing in the pulse echo mode. J. Acoust. Soc. Am. 1991, 90, 1119–1129. [Google Scholar] [CrossRef]
- Yavuz, M.E. Time reversal based signal processing techniques for ultrawideband electromagnetic sensing in random media. Ph. D. Dissertation, The Ohio State University, Columbus, OH, USA, 2008. [Google Scholar]
- Yavuz, M.E.; Teixeira, F.L. Time Reversal Based Signal Processing Techniques: Algorithms and Applications on Ultrawideband Electromagnetic Remote Sensing; VDM Verlag: Saarbrucken, Germany, 2009. [Google Scholar]
- Scholz, B. Towards virtual electrical breast biopsy: Space-frequency MUSIC for trans-admittance data. IEEE Trans. Med. Imag. 2002, 21, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.S.; Li, J.; Wu, R.B. Time-delay- and time-reversal-based robust capon beamformers for ultrasound imaging. IEEE Tran. Medical Imag. 2005, 24, 1308–1322. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.Q.; Wan, W.S. Novel DORT method in non-well-resolved scatterer case. IEEE Signal Proc. Lett. 2008, 15, 705–708. [Google Scholar] [CrossRef]
- Zhao, H. Analysis of the response matrix for an extended target. SIAM J. Appl. Math. 2004, 64, 725–745. [Google Scholar] [CrossRef]
- Yavuz, M.E.; Teixeira, F.L. Effects of array restriction on time-reversal methods. Proc. of the 2007 IEEE Antennas Prop. Symp. 2007. [Google Scholar] [CrossRef]
- Marengo, E.A.; Gruber, F.K.; Simonetti, F. Time-reversal MUSIC imaging of extended targets. IEEE Trans. Image Processing 2007, 16, 1967–1984. [Google Scholar] [CrossRef]
- Baussard, A.; Boutin, T. Time-reversal RAP-MUSIC imaging. Waves in Random and Complex Media 2008, 18, 151–160. [Google Scholar] [CrossRef]
- Folégot, T.; Prada, C.; Fink, M. Resolution enhancement and separation of reverbaration from target echo with the time reversal operator decomposition. J. Acoust. Soc. Am. 2003, 113, 3155–3160. [Google Scholar] [CrossRef] [PubMed]
- Saillard, M.; Vincent, P.; Micolau, G. Reconstruction of buried objects surrounded by small inhomogeneities. Inverse Prob. 2000, 16, 1195–1208. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Teixeira, F.L.; Chew, W.C.; Straka, M.; Oristaglio, M.L.; Wang, T. Finite-difference time-domain simulation of ground penetrating radar on dispersive, inhomogeneous and conductive soils. IEEE Trans. Geosci. Remote Sensing 1998, 36, 1928–1937. [Google Scholar] [CrossRef]
- Oppenheim, A.; Schafer, R.W. Discrete-Time Signal Processing; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yavuz, M.E.; Teixeira, F.L. Ultrawideband Microwave Sensing and Imaging Using Time-Reversal Techniques: A Review. Remote Sens. 2009, 1, 466-495. https://doi.org/10.3390/rs1030466
Yavuz ME, Teixeira FL. Ultrawideband Microwave Sensing and Imaging Using Time-Reversal Techniques: A Review. Remote Sensing. 2009; 1(3):466-495. https://doi.org/10.3390/rs1030466
Chicago/Turabian StyleYavuz, Mehmet Emre, and Fernando L. Teixeira. 2009. "Ultrawideband Microwave Sensing and Imaging Using Time-Reversal Techniques: A Review" Remote Sensing 1, no. 3: 466-495. https://doi.org/10.3390/rs1030466
APA StyleYavuz, M. E., & Teixeira, F. L. (2009). Ultrawideband Microwave Sensing and Imaging Using Time-Reversal Techniques: A Review. Remote Sensing, 1(3), 466-495. https://doi.org/10.3390/rs1030466