Monitoring of Land Use/Land-Cover Changes in the Arid Transboundary Middle Rio Grande Basin Using Remote Sensing
"> Figure 1
<p>The study area showing the region of interest delineated by a hillshade.</p> "> Figure 2
<p>Workflow diagram showing integrated remote sensing—GIS methods used for the study.</p> "> Figure 3
<p>Flowchart of post processing tasks performed in this study.</p> "> Figure 4
<p>Land use land/cover maps in region of interest.</p> "> Figure 5
<p>Land use change around the El Paso-Ciudad Juárez metropolitan area, 1990–2015.</p> "> Figure 6
<p>Land use change around the City of Las Cruces, 1990–2015.</p> "> Figure 7
<p>Visualizing land use and Normalized Difference Vegetative Index (NDVI) change around the City of Las Cruces for the years 1990 and 2010 (Source: Esri Change Matters Viewer).</p> "> Figure 8
<p>(<b>a</b>) Cumulative total number of building permits in for the City of El Paso, 2000–2014; (<b>b</b>) Cumulative total number of building permits in the City of Las Cruces, 2000–2011.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Preliminary Processing
2.2. Atmospheric Correction and Data Resizing
2.3. Noise Reduction
2.4. Supervised Classification
2.5. Post Processing Tasks
2.6. Ground Checking
2.7. Accuracy Assessment
3. Results
3.1. Accuracy Assessment
3.2. Quantification of Regional Land Use Change and Trends
3.3. Land Use Change by Urban Area
3.3.1. El Paso-Ciudad Juárez Metropolitan Area
3.3.2. City of Las Cruces
4. Discussion
4.1. Accuracy, Uncertainty and Errors
4.2. Comparison Classification Results with other Published Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sleeter, B.M.; Sohl, T.L.; Wilson, T.S.; Sleeter, R.R.; Soulard, C.E.; Bouchard, M.A.; Sayler, K.L.; Reker, R.R.; Griffith, G.E. Projected Land-Use and Land-Cover Change in the Western United States. In Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of the Western United States; U.S. Geological Survey: Reston, VA, USA, 2012; p. 27. [Google Scholar]
- Vibhute, A.D.; Nagne, A.D.; Gawali, B.W.; Mehrotra, S.C. Comparative Analysis of Different Supervised Classification Techniques for Spatial Land Use/Land Cover Pattern Mapping Using RS and GIS. Int. J. Sci. Eng. Res. 2013, 4, 1938–1946. [Google Scholar]
- Wondrade, N.; Dick, O.B.; Tveite, H. GIS Based Mapping of Land Cover Changes Utilizing Multi-Temporal Remotely Sensed Image Data in Lake Hawassa Watershed, Ethiopia. Environ. Monit. Assess. 2014, 186, 1765–1780. [Google Scholar] [CrossRef] [PubMed]
- Masoumi, H.E.; Roque, D. Evaluation of Urban Sprawl Speed and Intensity Based on International Urbanization. Example from a Mexican City. J. Settl. Spat. Plan. 2015, 6, 27–35. [Google Scholar]
- United Nations. World Urbanization Prospects: The 2014 Revision, Highlights; (ST/ESA/SER.A/352); United Nations: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Nava, L.; Brown, C.; Demeter, K.; Lasserre, F.; Milanés-Murcia, M.; Mumme, S.; Sandoval-Solis, S. Existing Opportunities to Adapt the Rio Grande Basin Water Resources Allocation Framework. Water 2016, 8, 291. [Google Scholar] [CrossRef]
- Castle, S.L.; Thomas, B.F.; Reager, J.T.; Rodell, M.; Swenson, S.C.; Famiglietti, J.S. Groundwater Depletion during Drought Threatens Future Water Security of the Colorado River Basin. Geophys. Res. Lett. 2014, 41, 5904–5911. [Google Scholar] [CrossRef] [PubMed]
- Ward, F.A.; Booker, J.F.; Michelsen, A.M. Integrated Economic, Hydrologic, and Institutional Analysis of Policy Responses to Mitigate Drought Impacts in Rio Grande Basin. J. Water Resour. Plan. Manag. 2006, 132, 488–502. [Google Scholar] [CrossRef]
- York, A.M.; Shrestha, M.; Boone, C.G.; Zhang, S.; Harrington, J.A.; Prebyl, T.J.; Swann, A.; Agar, M.; Antolin, M.F.; Nolen, B.; et al. Land Fragmentation under Rapid Urbanization: A Cross-Site Analysis of Southwestern Cities. Urban Ecosyst. 2011, 14, 429–455. [Google Scholar] [CrossRef]
- Vélez-Ibáñez, C.G.; Heyman, J. The U.S.-Mexico Transborder Region: Cultural Dynamics and Historical Interactions; University of Arizona Press: Tusang, AZ, USA, 2017. [Google Scholar]
- Peña, S.; Fuentes, C.M. Land Use Changes in Ciudad Juárez, Chihuahua: A Systems Dynamic Model. Director 2007, 8, 65–89. [Google Scholar]
- Chaplin, J.; Brabyn, L. Using Remote Sensing and GIS to Investigate the Impacts of Tourism on Forest Cover in the Annapurna Conservation Area, Nepal. Appl. Geogr. 2013, 43, 159–168. [Google Scholar] [CrossRef]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land Use Change Mapping and Analysis Using Remote Sensing and GIS: A Case Study of Simly Watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef]
- Mahboob, M.A.; Atif, I.; Iqbal, J. Remote Sensing and GIS Applications for Assessment of Urban Sprawl in Karachi, Pakistan. Sci. Technol. Dev. 2015, 34, 179–188. [Google Scholar] [CrossRef]
- Rashed, T.; Jürgens, C. Remote Sensing of Urban and Suburban Areas; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Keranen, K.; Kolvoord, R. Making Spatial Decisions Using GIS and Remote Sensing: A Workbook; Esri Press: Redlands, CA, USA, 2014. [Google Scholar]
- Schaeffer, B.A.; Schaeffer, K.G.; Keith, D.; Lunetta, R.S.; Conmy, R.; Gould, R.W. Barriers to Adopting Satellite Remote Sensing for Water Quality Management. Int. J. Remote Sens. 2013, 34, 7534–7544. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote Sensing of Soil Salinity: Potentials and Constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Akasheh, O.Z.; Neale, C.M.U.; Jayanthi, H. Detailed Mapping of Riparian Vegetation in the Middle Rio Grande River Using High Resolution Multi-Spectral Airborne Remote Sensing. J. Arid Environ. 2008, 72, 1734–1744. [Google Scholar] [CrossRef]
- Xie, H.; Tian, Y.Q.; Granillo, J.A.; Keller, G.R. Suitable Remote Sensing Method and Data for Mapping and Measuring Active Crop Fields. Int. J. Remote Sens. 2007, 28, 395–411. [Google Scholar] [CrossRef]
- Lougheed, V.L.; Rodriguez, R. Creation of a Chihuahuan Desert Bi-National Wetland: A Feasibility Assessment; World Wildlife Fund: Grand, Switzerland, 2008; pp. 1–56. [Google Scholar]
- Yang, C.; Everitt, J.H.; Goolsby, J.A. Mapping Giant Reed (Arundo Donax) Infestations along the Texas–Mexico Portion of the Rio Grande with Aerial Photography. Invasive Plant Sci. Manag. 2011, 4, 402–410. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Fletcher, R.S. Using Airborne Hyperspectral Imagery for Mapping Saltcedar Infestations in West Texas. In Proceedings of the 2005 American Society for Photgrammetry and Remote Sensing (ASPRS) Annual Conference, San Diego, CA, USA, 26–30 April 2010. No. 1990. [Google Scholar]
- Flores, E.S.; Olivas, A.G.; Chávez, J. Land Cover Change and Landscape Dynamics in the Urbanizing Area of a Mexican Border City. In Proceedings of the ASPRS 2008 Annual Conference, Portland, OR, USA, 28 April–2 May 2008; p. 9. [Google Scholar]
- The Multi-Resolution Land Characteristics (MRLC) Consortium. Available online: https://www.mrlc.gov/about.php (accessed on 18 November 2018).
- Homer, C.G.; Dewitz, J.A.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.; Wickham, J.D.; Megown, K. Completion of the 2011 National Land Cover Database for the Conterminous United States-Representing a Decade of Land Cover Change Information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar] [CrossRef]
- Mitchell, A.; Minami, M. The ESRI Guide to GIS Analysis: Geographic Patterns & Relationships; ESRI, Inc.: Redlands, CA, USA, 1999. [Google Scholar]
- U.S. Geological Survey. USGS Global Visualization Viewer (GloVis). Available online: https://www.usgs.gov/software/usgs-global-visualization-viewer-glovis (accessed on 25 September 2017).
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A. Automated Spectral Analysis: A Geologic Example Using AVIRIS Data, North Grapevine Mountains, Nevada. In Proceedings of the Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, San Antonio, TX, USA, 9–12 May 1994; pp. 1407–1418. [Google Scholar]
- Gutierrez, M.; Johnson, E. Temporal Variations of Natural Soil Salinity in an Arid Environment Using Satellite Images. J. S. Am. Earth Sci. 2010, 30, 46–57. [Google Scholar] [CrossRef]
- Rawat, J.S.; Biswas, V.; Kumar, M. Changes in Land Use/Cover Using Geospatial Techniques: A Case Study of Ramnagar Town Area, District Nainital, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2013, 16, 111–117. [Google Scholar] [CrossRef]
- Mallupattu, P.K.; Sreenivasula Reddy, J.R. Analysis of Land Use/Land Cover Changes Using Remote Sensing Data and GIS at an Urban Area, Tirupati, India. Sci. World J. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Churches, C.E.; Wampler, P.J.; Sun, W.; Smith, A.J. Evaluation of Forest Cover Estimates for Haiti Using Supervised Classification of Landsat Data. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 203–216. [Google Scholar] [CrossRef]
- Boori, M.S.; Voženílek, V.; Choudhary, K. Land Use/Cover Disturbance Due to Tourism in Jeseníky Mountain, Czech Republic: A Remote Sensing and GIS Based Approach. Egypt. J. Remote Sens. Space Sci. 2015, 18, 17–26. [Google Scholar] [CrossRef]
- Rawat, J.S.; Kumar, M. Monitoring Land Use/Cover Change Using Remote Sensing and GIS Techniques: A Case Study of Hawalbagh Block, District Almora, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2015, 18, 77–84. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Environmental Systems Research Institute. Image Classification Using the ArcGIS Spatial Analyst Extension. Available online: http://desktop.arcgis.com/en/arcmap/latest/extensions/spatial-analyst/image-classification/image-classification-using-spatial-analyst.htm (accessed on 19 November 2018).
- Gao, J.; Liu, Y. Determination of Land Degradation Causes in Tongyu County, Northeast China via Land Cover Change Detection. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 9–16. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Ikiel, C.; Ustaoglu, B.; Dutucu, A.A.; Kilic, D.E. Remote Sensing and GIS-Based Integrated Analysis of Land Cover Change in Duzce Plain and Its Surroundings (North Western Turkey). Environ. Monit. Assess. 2013, 185, 1699–1709. [Google Scholar] [CrossRef] [PubMed]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Wickham, J.D.; Stehman, S.V.; Gass, L.; Dewitz, J.; Fry, J.A.; Wade, T.G. Accuracy Assessment of NLCD 2006 Land Cover and Impervious Surface. Remote Sens. Environ. 2013, 130, 294–304. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Martin, R.; Brabyn, L.; Beard, C. Effects of Class Granularity and Cofactors on the Performance of Unsupervised Classification of Wetlands Using Multi-Spectral Aerial Photography. J. Spat. Sci. 2014, 59, 269–282. [Google Scholar] [CrossRef]
- U.S. Department of Housing and Urban Development (HUD). Comprehensive Housing Market Analysis-El Paso, Texas; U.S. Department of Housing and Urban Development (HUD): Washington, DC, USA, 2014; pp. 1–11.
- U.S. Department of Housing and Urban Development (HUD). Comprehensive Housing Market Analysis-Las Cruces, New Mexico; U.S. Department of Housing and Urban Development (HUD): Washington, DC, USA, 2011; pp. 1–9.
- Thompson, D. Suburban Sprawl: Exposing Hidden Costs, Identifying Innovations; University of Ottawa: Ottawa, ON, Canada, 2013; pp. 1–44. [Google Scholar]
Land Use Category | Description | Aggregated USGS NLCD Classes |
---|---|---|
Water | All open water in natural and human-made surface water bodies | Water |
Agriculture and other vegetation | All cultivated food crops, pastures, public parks, residential yards, pecan trees and riparian vegetation | Pasture/Hay, Cultivated Crops |
Upland mixed vegetation | All barren soil and desert landscape mixed with upland scrub/shrub vegetation and forest | Barrenland, Shrubland, Forest, Herbaceous/Grassland |
Developed | All urban developments including low, medium and high intensity, and developed open spaces | Developed Open Space, Developed Low Intensity, Developed Medium Intensity, Developed High Intensity |
Method | Type of Change | Time Pattern | Advantages | Disadvantages |
---|---|---|---|---|
Time series | Movement or change in character | Trend Cycle before and after | Strong visual impact if change is substantial; shows conditions at each date/time | Readers have to visually compare maps to see where, and how much change has occurred |
Tracking map | Movement | Trend Cycle before and after | Easier to see movement and rate of change than with time series, especially if change is subtle | Can be difficult to read if more than a few features |
Measuring change | Change in character | Trend Cycle before and after | Shows difference in amounts or values | Does not show actual conditions at each time; change is calculated between two times only |
Classified Category | Actual Category: Ground Truth | User’s Accuracy (%) | Error of Commission (%) | ||||
---|---|---|---|---|---|---|---|
Agriculture and Other Vegetation | Developed | Upland Mixed Vegetation | Water | Total Number of Samples | |||
Agriculture and other vegetation | 24 | 1 | 1 | 26 | 92 | 8 | |
Developed | 0 | 20 | 3 | 23 | 87 | 13 | |
Upland mixed vegetation | 1 | 1 | 62 | 64 | 97 | 3 | |
Water | 1 | 4 | 5 | 80 | 20 | ||
Total | 26 | 22 | 65 | 5 | 118 | ||
Producer accuracy (%) | 92 | 91 | 95 | 80 | Overall accuracy | 93 | |
Error of omission (%) | 8 | 9 | 5 | 20 | Kappa coefficient | 89 |
Year | Land Use Category Area (km2) | ||||
---|---|---|---|---|---|
Water | Agriculture and Other Vegetation | Upland Mixed Vegetation | Developed | Total Area | |
Region of Interest | |||||
1990 | 28.80 | 506.70 | 3627.22 | 125.21 | 4288 |
1995 | 17.36 | 531.12 | 3610.50 | 129.24 | 4288 |
2000 | 20.04 | 520.52 | 3551.11 | 196.32 | 4288 |
2005 | 16.58 | 572.78 | 3366.08 | 332.69 | 4288 |
2010 | 16.85 | 501.78 | 3371.23 | 397.12 | 4288 |
2015 | 17.87 | 725.63 | 3060.35 | 485.17 | 4288 |
El Paso-Ciudad Juárez Metropolitan Area | |||||
1990 | 2.18 | 162.93 | 2072.64 | 482.26 | 2720 |
1995 | 3.81 | 149.33 | 2080.80 | 486.06 | 2720 |
2000 | 2.72 | 157.76 | 1967.10 | 592.42 | 2720 |
2005 | 7.34 | 109.89 | 1993.76 | 609.01 | 2720 |
2010 | 4.90 | 162.93 | 1877.62 | 674.56 | 2720 |
2015 | 4.90 | 139.26 | 1883.87 | 691.97 | 2720 |
City of Las Cruces | |||||
1990 | 2.51 | 50.35 | 568.63 | 44.51 | 666 |
1995 | 3.33 | 74.49 | 538.87 | 49.31 | 666 |
2000 | 2.79 | 77.63 | 533.95 | 51.64 | 666 |
2005 | 2.72 | 69.91 | 540.22 | 53.15 | 666 |
2010 | 2.86 | 72.86 | 522.94 | 67.32 | 666 |
2015 | 3.45 | 77.92 | 511.82 | 72.83 | 666 |
Year | Land Use Category Area (km2) | |||||
---|---|---|---|---|---|---|
Water | Agriculture and Other Vegetation | Upland Mixed Vegetation | Developed | Total Area | ||
City of Las Cruces | ||||||
NLCD | 2011 | 0.41 | 12.84 | 72.98 | 13.78 | 666 |
This study | 2010 | 0.43 | 10.94 | 78.52 | 10.11 | 666 |
El Paso-Ciudad Juárez Metropolitan Area | ||||||
* NLCD | 2011 | 0.08 | 5.96 | 39.29 | 16.22 | - |
This study | 2010 | 0.18 | 5.99 | 69.03 | 24.80 | 2720 |
Region of Interest | ||||||
* NLCD | 2011 | 0.39 | 11.76 | 57.62 | 9.89 | - |
This study | 2010 | 0.39 | 11.70 | 78.64 | 9.26 | 4288 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mubako, S.; Belhaj, O.; Heyman, J.; Hargrove, W.; Reyes, C. Monitoring of Land Use/Land-Cover Changes in the Arid Transboundary Middle Rio Grande Basin Using Remote Sensing. Remote Sens. 2018, 10, 2005. https://doi.org/10.3390/rs10122005
Mubako S, Belhaj O, Heyman J, Hargrove W, Reyes C. Monitoring of Land Use/Land-Cover Changes in the Arid Transboundary Middle Rio Grande Basin Using Remote Sensing. Remote Sensing. 2018; 10(12):2005. https://doi.org/10.3390/rs10122005
Chicago/Turabian StyleMubako, Stanley, Omar Belhaj, Josiah Heyman, William Hargrove, and Carlos Reyes. 2018. "Monitoring of Land Use/Land-Cover Changes in the Arid Transboundary Middle Rio Grande Basin Using Remote Sensing" Remote Sensing 10, no. 12: 2005. https://doi.org/10.3390/rs10122005