Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology
<p>(<b>a</b>) Overall location of Fontainebleau area in France with the coverage resulting from Sentinel-1 descending orbit; (<b>b</b>) zoom in on the Fontainebleau Forest with the coverages from ascending (brown rectangle) and descending (blue rectangle) Sentinel-1 acquisitions (relative orbits no. 59 and 110, respectively); (<b>c</b>) inventory of tree species in the Forest’s stands. Colors indicate the dominant species.</p> "> Figure 2
<p>(<b>a</b>) Multi-polarization color-composite of the radar backscattering coefficient <span class="html-italic">σ</span><sup>0</sup> image acquired on 18 March 2015: R: <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, G: <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, B: <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>/<math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>; (<b>b</b>) coherence derived from the 18–30 March 2015 acquisitions of the second sub-swath: R: <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>ρ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>, G: <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>ρ</mi> <mrow> <mi>V</mi> <mi>H</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>, B: <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>ρ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>/<math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>ρ</mi> <mrow> <mi>V</mi> <mi>H</mi> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mrow> </semantics></math>. The red circle corresponds to the Fontainebleau Forest. Paris is the bright feature in white-yellow, northwest of Fontainebleau. The dashed rectangle corresponds to the area shown in <a href="#remotesensing-10-02049-f003" class="html-fig">Figure 3</a>.</p> "> Figure 3
<p>Temporal color-composite <span class="html-italic">σ</span><sup>0</sup> image, (R: 05/05/2015, G: 02/09/2015, B: 19/12/2015) (<b>a</b>) VV polarization; (<b>b</b>) VH polarization. The area corresponds to the dashed rectangle in <a href="#remotesensing-10-02049-f002" class="html-fig">Figure 2</a>. The red circle corresponds to the Fontainebleau Forest.</p> "> Figure 4
<p>Temporal color-composite |<span class="html-italic">ρ</span>| image, (R: 5–17 May, G: 02–14 Sept., B: 19–31 Dec. 2015).(<b>a</b>) VV polarization; (<b>b</b>) VH polarization. The red circle corresponds to the Fontainebleau Forest.</p> "> Figure 5
<p>Temporal profiles of <span class="html-italic">σ</span><sup>0</sup> observed over an oak stand. (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> <mo>/</mo> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> are represented in blue, magenta, and green, respectively. <span class="html-italic">In situ</span> precipitation is also shown (cyan)<span class="html-italic">;</span> ascending and descending passes measurements are plotted as “•” and “*”, respectively. (<b>b</b>) Landsat-8 Operational Land Imager (OLI)-derived Normalized Difference Vegetation Index (NDVI) (-- raw data; — maximum value over a sliding 48-day period) overlaid on <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> <mo>/</mo> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> signatures.</p> "> Figure 6
<p>Temporal profile of <span class="html-italic">σ</span><sup>0</sup> observed over a pine stand. (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> <mo>/</mo> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> are represented in blue, magenta, and green, respectively. <span class="html-italic">In situ</span> precipitation is also shown (cyan)<span class="html-italic">;</span> ascending and descending passes measurements are plotted as “•” and “*”, respectively. (<b>b</b>) Landsat-8 OLI-derived NDVI (-- raw data; — maximum value over a sliding 48-day period) overlaid on <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>V</mi> </mrow> <mn>0</mn> </msubsup> <mo>/</mo> <msubsup> <mi>σ</mi> <mrow> <mi>V</mi> <mi>H</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> signatures.</p> "> Figure 7
<p>Temporal profiles of |<span class="html-italic">ρ</span>| observed over an oak (<b>a</b>) and a pine (<b>b</b>) stand with VV and VH polarization. <span class="html-italic">In situ</span> temperatures at 2 m are also shown (cyan).</p> ">
Abstract
:1. Introduction
2. Study Site and Data
2.1. Study Site
2.2. Sentinel-1 Data
2.3. Landsat-8 Data
3. Results and Discussion
3.1. Spatio-Temporal Analysis
3.2. Temporal Profile Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Justice, C.O.; Townshend, J.R.G.; Holben, B.N.; Tucker, C.J. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 1985, 8, 1271–1318. [Google Scholar] [CrossRef]
- Hansen, M.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Keenan, T.F.; Gray, J.; Fried, L.M.A.; Toomey, M.; Bohrer, G.; Hollinger, D.Y.; Munger, J.W.; O’Keefe, J.; Schmid, H.P.; Wing, I.S.; et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 2014, 4, 598–604. [Google Scholar] [CrossRef]
- Chmielewski, F.M.; Rötzer, T. Response of tree phenology to climate change across Europe. Agric. For. Meteorol. 2001, 108, 101–112. [Google Scholar] [CrossRef]
- Kramer, K.; Leinonen, I.; Loustau, D. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: An overview. Int. J. Biometeorol. 2000, 44, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Frison, P.-L.; Mougin, E. Monitoring global vegetation dynamics with ERS-1 wind scatterometer data. Int. J. Remote Sens. 1996, 17, 3201–3218. [Google Scholar] [CrossRef]
- Frison, P.-L.; Paillou, P.; Sayah, N.; Pottier, E.; Rudant, J.-P. Spatio-temporal monitoring of evaporitic processes using multi-resolution C-band radar remote sensing: Example of the Chott el Djerid, Tunisia. Can. J. Remote Sens. 2013, 39, 127–137. [Google Scholar] [CrossRef]
- Wooding, M.G.; Zmuda, A.D.; Griffiths, G.H. Crop discrimination using multi-temporal ERS-1 SAR data. In Proceedings of the 2nd ERS-1 Symposium, Hamburg, Germany, 11–14 October 1993; pp. 51–56. [Google Scholar]
- Proisy, C.; Mougin, E.; Dufrêne, E.; Le Dantec, V. Monitoring seasonal changes of a mixed temperate forest using ERS SAR observations. IEEE Trans. Geosci. Remote Sens. 2000, 38, 540–552. [Google Scholar] [CrossRef]
- ICOS Ecosystem Thematic Center. Available online: www.europe-fluxdata.eu/icos (accessed on 7 September 2018).
- Copernicus Open Data Hub. Available online: https://scihub.copernicus.eu (accessed on 7 September 2018).
- PEPS—French Access to the Sentinel Products. Available online: https://peps.cnes.fr/rocket/#/home (accessed on 7 September 2018).
- Alaska Satellite Facility. Available online: https://www.asf.alaska.edu/sentinel/data (accessed on 7 September 2018).
- Sentinel-1 SAR Technical Guide. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar (accessed on 7 September 2018).
- Small, D. Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- Frison, P.-L.; Lardeux, C. Vegetation cartography from Sentinel-1 radar images. In QGIS and Application in Agriculture and Forest; Baghdadi, N., Mallet, C., Zribi, M., Eds.; ISTE Press Ltd.: London, UK; Elsevier Ltd.: Oxford, UK, 2017; pp. 181–214. ISBN 978-1786301888. [Google Scholar]
- OrfeoToolBox. Available online: https://www.orfeo-toolbox.org (accessed on 7 September 2018).
- STEP Science Toolbox Exploitation Platform: SNAP. Available online: http://step.esa.int/main/toolboxes/snap (accessed on 7 September 2018).
- Meyer, F.J. Sentinel-1 InSAR Processing Using the SNAP Toolbox. Available online: https://media.asf.alaska.edu/uploads/pdf/s-1tbx_insar_recipe_6-16-17_final.pdf (accessed on 8 November 2018).
- Zribi, M.; Saux-Picart, S.; André, C.; Descroix, L.; Ottlé, C.; Kallel, A. Soil moisture mapping based on ASAR/ENVISAT radar data over a Sahelian region. Int. J. Remote Sens. 2007, 28, 3547–3565. [Google Scholar] [CrossRef]
- Baghdadi, N.; El Hajj, M.; Zribi, M.; Fayad, I. Coupling SAR C-band and optical data for soil moisture and leaf area index retrieval over irrigated grasslands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1129–1244. [Google Scholar] [CrossRef]
- Baup, F.; Mougin, E.; de Rosnay, P.; Timouk, F.; Chênerie, I. Surface soil moisture estimation over the AMMA Sahelian site in Mali using ENVISAT/ASAR data. Remote Sens. Environ. 2007, 109, 473–481. [Google Scholar] [CrossRef] [Green Version]
- CLS, S1-A N-Cyclic Performance Report—2018-06. Technical Report, October 2018. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/document-library (accessed on 29 November 2018).
- Karam, M.A.; Fung, A.K.; Lang, R.H.; Chauhan, N.S. A microwave scattering model for layered vegetation. IEEE Trans. Geosci. Remote Sens. 1992, 30, 767–784. [Google Scholar] [CrossRef] [Green Version]
Acquisition Mode | Resolution (Range × Azimuth) | Pixel Spacing (Range × Azimuth) | Number of Looks |
---|---|---|---|
SLC | 2.7 × 22 m to 3.5 × 22 m | 2.3 × 14.1 m | 1×1 |
GRDH | 20 × 22 m | 10 × 10 m | 5×1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frison, P.-L.; Fruneau, B.; Kmiha, S.; Soudani, K.; Dufrêne, E.; Le Toan, T.; Koleck, T.; Villard, L.; Mougin, E.; Rudant, J.-P. Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology. Remote Sens. 2018, 10, 2049. https://doi.org/10.3390/rs10122049
Frison P-L, Fruneau B, Kmiha S, Soudani K, Dufrêne E, Le Toan T, Koleck T, Villard L, Mougin E, Rudant J-P. Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology. Remote Sensing. 2018; 10(12):2049. https://doi.org/10.3390/rs10122049
Chicago/Turabian StyleFrison, Pierre-Louis, Bénédicte Fruneau, Syrine Kmiha, Kamel Soudani, Eric Dufrêne, Thuy Le Toan, Thierry Koleck, Ludovic Villard, Eric Mougin, and Jean-Paul Rudant. 2018. "Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology" Remote Sensing 10, no. 12: 2049. https://doi.org/10.3390/rs10122049
APA StyleFrison, P. -L., Fruneau, B., Kmiha, S., Soudani, K., Dufrêne, E., Le Toan, T., Koleck, T., Villard, L., Mougin, E., & Rudant, J. -P. (2018). Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology. Remote Sensing, 10(12), 2049. https://doi.org/10.3390/rs10122049