Mapping Fishing Activities and Suitable Fishing Grounds Using Nighttime Satellite Images and Maximum Entropy Modelling
"> Figure 1
<p>Flow of application of VIIRS boat detection data to map out potential fishing grounds for small pelagic fishes in the Philippines. VBD: VIIRS boat detection; CFA: core fishing area; HDBSCAN: hierarchical density-based spatial clustering of applications with noise.</p> "> Figure 2
<p>VIIRS boat detection (VBD) data from 1 April 2012 to 31 December 2016 aggregated on a 700 × 700m resolution grid showing (<b>a</b>) number of VBD detection per pixel over 1713 nights and (<b>b</b>) mean radiance value. The 24 nautical mile contiguous zone shapefile for the Philippines came from Flanders Marine Institute’s Marine Regions database [<a href="#B40-remotesensing-10-01604" class="html-bibr">40</a>].</p> "> Figure 3
<p>Core fishing areas (n = 134) identified from HDBSCAN and after removing clusters in areas that overlap with significant vessel traffic and close to major ports and piers, including mining jetties. Details for each CFAs and corresponding names can be found in <a href="#app1-remotesensing-10-01604" class="html-app">Supplementary Table S1</a>.</p> "> Figure 4
<p>Hierarchical clustering of core fishing areas based on scaled mean nightly VBD counts per month using Ward’s linkage method showing two groups based on months of peak fishing activity: (<b>a</b>) southwest monsoon (May to October) and (<b>b</b>) northeast monsoon (November to April).</p> "> Figure 5
<p>Hierarchical clustering of log-10 histograms of radiance values by CFA for nights with less than 50% moon illumination and cloud cover. Colors represent probability density of radiance bin per CFA. High-level groupings (around blue box) are based on spread of values with group (<b>a</b>) indicating high kurtosis, narrow range, and low radiance values while group (<b>b</b>) are high radiance values with large spread and even some bimodality.</p> "> Figure 6
<p>Density distribution of environmental predictors inside CFAs (red) versus outside (blue) within the Philippines’ 24 nautical mile contiguous zone. Bathymetry and chlorophyll <span class="html-italic">a</span> values log-10 transformed for clarity. Non-transformed values were used in the MaxEnt models.</p> "> Figure 7
<p>The relative contribution of different environmental predictors in determining the overall fit of the MaxEnt models to the VBD presence data used (normalized to percentages). Values averaged across two replicates of five-fold cross-validation runs of each MaxEnt model. Error bars are ±1 standard deviation. Chl-a: chlorophyll <span class="html-italic">a</span>; MLD: mixed layer thickness (by density); SSH: sea surface height; SSS: sea surface salinity; SST: sea surface temperature; SWH: significant wave height.</p> "> Figure 8
<p>Predicted suitability maps for core fishing areas for the selected MaxEnt models. Color scale represents degree of suitability relative to ‘typical’ conditions found inside CFAs with 1 being highly suitable areas and 0 are unsuitable.</p> "> Figure 9
<p>CFAs overlay on a bathymetry map of the Philippines showing most of the CFAs are located in less than 200 meter depths. Inset maps show how VBD points align with depth contours for (<b>a</b>) Northeast Palawan and (<b>b</b>) Visayan Sea.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. VIIRS Boat Detection Data
2.2. Identification of Core Fishing Areas
2.3. Clustering CFAs Based on Monthly Patterns and Radiance Values of VBDs
2.4. MaxEnt Modeling to Identify Environmental Covariates with CFAs
2.5. MaxEnt Scenarios
2.6. Model Validation and Evaluation
3. Results
3.1. Core Fishing Areas in the Philippines Maritime Contiguous Zone
3.2. VBD and Environmental Variables
4. Discussion
4.1. Limitations and Future Improvements
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Booth, A.J. Incorporating the spatial component of fisheries data into stock assessment models. ICES J. Mar. Sci. 2000, 57, 858–865. [Google Scholar] [CrossRef] [Green Version]
- Jennings, S.; Lee, J. Defining fishing grounds with vessel monitoring system data. ICES J. Mar. Sci. 2012, 69, 51–63. [Google Scholar] [CrossRef]
- Tidd, A.; Brouwer, S.; Pilling, G. Shooting fish in a barrel? Assessing fisher-driven changes in catchability within tropical tuna purse seine fleets. Fish Fish. 2017, 1–13. [Google Scholar] [CrossRef]
- Parnell, E.P.; Dayton, P.K.; Fisher, R.A.; Loarie, C.C.; Darrow, R.D. Spatial patterns of fishing effort off San Diego: implications for zonal management and ecosystem function. Ecol. Appl. 2010, 20, 2203–2222. [Google Scholar] [CrossRef] [PubMed]
- Cabral, R.B.; Gaines, S.D.; Johnson, B.A.; Bell, T.W.; White, C. Drivers of redistribution of fishing and non-fishing effort after the implementation of a marine protected area network. Ecol. Appl. 2017, 27, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Walters, C. Folly and fantasy in the analysis of spatial catch rate data. Can. J. Fish. Aquat. Sci. 2003, 60, 1433–1436. [Google Scholar] [CrossRef]
- Lorenzen, K.; Steneck, R.S.; Warner, R.R.; Parma, A.M.; Coleman, F.C.; Leber, K.M. The spatial dimension of fisheries_putting it all in place.pdf. Bull. Mar. Sci. 2010, 86, 169–177. [Google Scholar]
- Heenan, A.; Pomeroy, R.; Bell, J.; Munday, P.L.; Cheung, W.; Logan, C.; Brainard, R.; Yang Amri, A.; Aliño, P.M.; Armada, N.B.; David, L.T.; Rivera-Guieb, R.; Green, S.; Jompa, J.; Leonardo, T.; Mamauag, S.S.; Parker, B.; Shackeroff, J.; Yasin, Z. A climate-informed, ecosystem approach to fisheries management. Mar. Policy 2015, 57, 182–192. [Google Scholar] [CrossRef]
- Gorospe, K.D.; Michaels, W.; Pomeroy, R.; Elvidge, C.; Lynch, P.; Wongbusarakum, S.; Brainard, R.E. The mobilization of science and technology fisheries innovations towards an ecosystem approach to fisheries management in the Coral Triangle and Southeast Asia. Mar. Policy 2016, 74, 143–152. [Google Scholar] [CrossRef]
- Stewart, K.R.; Lewison, R.L.; Dunn, D.C.; Bjorkland, R.H.; Kelez, S.; Halpin, P.N.; Crowder, L.B. Characterizing fishing effort and spatial extent of coastal fisheries. PLoS ONE 2010, 5, e14451. [Google Scholar] [CrossRef] [PubMed]
- Kroodsma, D.A.; Mayorga, J.; Hochberg, T.; Miller, N.A.; Boerder, K.; Ferretti, F.; Wilson, A.; Bergman, B.; White, T.D.; Block, B.A.; Woods, P.; Sullivan, B.; Costello, C.; Worm, B. Tracking the global footprint of fisheries. Science 2018, 359, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Mccauley, B.D.J.; Woods, P.; Sullivan, B.; Bergman, B.; Jablonicky, C.; Roan, A.; Hirshfi, M.; Boerder, K. Ending hide and seek at sea. Science 2016, 351, 1148–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fett, R.W. Fishing Fleet Activities Revealed by Night-Time Data from the Defense Meteorological Satellite Program. Mar. Fish. Rev. 1975, 47, 1972–1975. [Google Scholar]
- Croft, T. Nighttime images of the earth from space. Sci. Am. 1978, 239, 86–98. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y. Application of DMSP/OLS nighttime light images: A meta-analysis and a systematic literature review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 2014, 12, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. Stemming the Tide of Light Pollution Encroaching into Marine Protected Areas. Conserv. Lett. 2016, 9, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.C.; Ghosh, T. Methods for global survey of natural gas flaring from visible infrared imaging radiometer suite data. Energies 2016, 9, 14. [Google Scholar] [CrossRef]
- Miller, S.D.; Straka, W.; Mills, S.P.; Elvidge, C.D.; Lee, T.F.; Solbrig, J.; Walther, A.; Heidinger, A.K.; Weiss, S.C. Illuminating the capabilities of the suomi national Polar-orbiting partnership (NPP) visible infrared imaging radiometer suite (VIIRS) day/night Band. Remote Sens. 2013, 5, 6717–6766. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.C. Automatic boat identification system for VIIRS low light imaging data. Remote Sens. 2015, 7, 3020–3036. [Google Scholar] [CrossRef]
- Straka, W.C.; Seaman, C.J.; Baugh, K.; Cole, K.; Stevens, E.; Miller, S.D. Utilization of the suomi national polar-orbiting partnership (npp) visible infrared imaging radiometer suite (viirs) day/night band for arctic ship tracking and fisheries management. Remote Sens. 2015, 7, 971–989. [Google Scholar] [CrossRef]
- Waluda, C.M.; Trathan, P.N.; Elvidge, C.D.; Hobson, V.R.; Rodhouse, P.G. Throwing light on straddling stocks of Illex argentinus: assessing fishing intensity with satellite imagery. Can. J. Fish. Aquat. Sci. 2002, 59, 592–596. [Google Scholar] [CrossRef]
- Kiyofuji, H.; Saitoh, S.I. Use of nighttime visible images to detect Japanese common squid Todarodes pacificus fishing areas and potential migration routes in the Sea of Japan. Mar. Ecol. Prog. Ser. 2004, 276, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Waluda, C.M.; Yamashiro, C.; Elvidge, C.D.; Hobson, V.R.; Rodhouse, P.G. Quantifying light-fishing for Dosidicus gigas in the eastern Pacific using satellite remote sensing. Remote Sens. Environ. 2004, 91, 129–133. [Google Scholar] [CrossRef]
- Saitoh, S.; Fukaya, A.; Saitoh, K.; Semedi, B. Estimation of number of Pacific saury fishing vessels using night-time visible images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 1013–1016. [Google Scholar]
- Liu, Y.; Saitoh, S.I.; Hirawake, T.; Igarashi, H.; Ishikawa, Y. Detection of Squid and a Pacific Saury fishing vessels around Japan using VIIRS Day/Night Band data. Proc. Asia-Pac. Adv. Netw. 2015, 39, 28–39. [Google Scholar] [CrossRef]
- Alabia, I.D.; Saitoh, S.; Mugo, R.; Igarashi, H.; Ishikawa, Y.; Usui, N.; Kamachi, M.; Awaji, T. Seasonal potential fishing ground prediction of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific. Fish. Oceanogr. 2015, 190–203. [Google Scholar] [CrossRef]
- Syah, A.F.; Saitoh, S.I.; Alabia, I.D.; Hirawake, T. Predicting potential fishing zones for pacific saury (Cololabis saira) with maximum entropy models and remotely sensed data. Fish. Bull. 2016, 114, 330–342. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ghosh, T.; Baugh, K.; Zhizhin, M. Rating the Effectiveness of Fishery Closures With Visible Infrared Imaging Radiometer Suite Boat Detection Data. Front. Mar. Sci. 2018, 5, 1–15. [Google Scholar] [CrossRef]
- Cabral, R.B.; Mayorga, J.; Clemence, M.; Lynham, J.; Koeshendrajana, S.; Muawanah, U.; Nugroho, D.; Anna, Z.; Mira; Ghofar, A.; et al. Rapid and lasting gains from solving illegal fishing. Nat. Ecol. Evol. 2018, 2, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef]
- Macusi, E.D.; Babaran, R.P.; van Zwieten, P.A.M. Strategies and tactics of tuna fishers in the payao (anchored FAD) fishery from general Santos city, Philippines. Mar. Policy 2015, 62, 63–73. [Google Scholar] [CrossRef]
- Geronimo, R.C. Small Fish, Big Impact: Dulong fisheries of San Juan, Batangas, Philippines: A Synthesis Report; Conservation International: Quezon City, Philippines, 2013. [Google Scholar]
- Badan Pusat Statistik. Statistics Indonesia Statistics of Marine and Coastal Resources; BPS-Statistics Indonesia: Jakarta, Indonesia, 2015; p. xviii + 217.
- BFAR. Philippine Fisheries Profile 2016; Department of Agriculture – Bureau of Fisheries and Aquatic Resources: Quezon City, Philippines, 2017; p. 69. [Google Scholar]
- Dickson, J.O.; Alba, E.B.; Munprasit, A.; Chokesanguan, B.; Siriraksophon, S. Fishing Gear and Methods in Southeast Asia: III. Philippines Part 2; Ruangsivakul, N., Prajakjitt, P., Dickson, J.O., Siriraksophon, S., Eds.; Southeast Asian Fisheries Development, Training Department: Samutprakan, Thailand, 2003. [Google Scholar]
- Hernando, A.M.J.; Flores, E.E.C. The Philippines squid fishery: A review. Mar. Fish. Rev. 1981, 43, 13–20. [Google Scholar]
- Zaragoza, E.; Pagdilao, C.; Moreno, E. Overview of small pelagic fisheries. In In Turbulent Seas: The status of Philippine Marine Fisheries; DA-BFAR (Department of Agriculture-Bureau of Fisheries and Aquatic Resources), Ed.; Coastal Resource Management Project: Cebu City, Philippines, 2004; p. 378. [Google Scholar]
- Claus, S.; De Hauwere, N.; Vanhoorne, B.; Souza Dias, F.; Oset García, P.; Schepers, L.; Hernandez, F.; Mees, J.; (Flanders Marine Institute). MarineRegions.org. Available online: http://www.marineregions.org on 2016-08-05. 2016 (accessed on 20 January 2018).
- Jennings, S.; Dulvy, N.K. Reference points and reference directions for size-based indicators of community structure. ICES J. Mar. Sci. 2005, 62, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Saul, S.E.; Walter, J.F.; Die, D.J.; Naar, D.F.; Donahue, B.T. Modeling the spatial distribution of commercially important reef fishes on the West Florida Shelf. Fish. Res. 2013, 143, 12–20. [Google Scholar] [CrossRef]
- Campello, R.J.G.B.; Moulavi, D.; Sander, J. Density-Based Clustering Based on Hierarchical Density Estimates. In Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science; Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G., Eds.; Springer: Berlin, Germany, 2013; Volume 7819, ISBN 978-3-642-37455-5. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.r-project.org/ (accessed on 20 January 2018).
- McInnes, L.; Healy, J.; Astels, S. hdbscan: Hierarchical density based clustering. J. Open Source Softw. 2017, 2, 205. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Bai, Y. Quantitative analysis of VIIRS DNB nightlight point source for light power estimation and stability monitoring. Remote Sens. 2014, 6, 11915–11935. [Google Scholar] [CrossRef]
- Irpino, A.; Verde, R. A New Wasserstein Based Distance for the Hierarchical Clustering of Histogram Symbolic Data. In Data Science and Classification. Studies in Classification, Data Analysis, and Knowledge Organization; Batagelj, V., Bock, H., Ferligoj, A., Žiberna, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Irpino, A. HistDAWass: Histogram-Valued Data Analysis. R Package Version 1.0.1. 2018. Available online: https://CRAN.R-project.org/package=HistDAWass (accessed on 20 January 2018).
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Girardin, R.; Hamon, K.G.; Pinnegar, J.; Poos, J.J.; Thébaud, O.; Tidd, A.; Vermard, Y.; Marchal, P. Thirty years of fleet dynamics modelling using discrete-choice models: What have we learned? Fish Fish. 2017, 18, 638–655. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. [Internet] Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). Available online: http://biodiversityinformatics.amnh.org/open_source/ maxent/ (accessed on 4 August 2018).
- Phillips, S.J.; Dudík, M. Modeling of species distribution with Maxent: New extensions and a comprehensive evalutation. Ecograpy 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Baca-González, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 2017, 5, e3093. [Google Scholar] [CrossRef] [PubMed]
- Robinson, N.M.; Nelson, W.A.; Costello, M.J.; Sutherland, J.E.; Lundquist, C.J. A Systematic Review of Marine-Based Species Distribution Models (SDMs) with Recommendations for Best Practice. Front. Mar. Sci. 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef] [Green Version]
- Merino, G.; Barange, M.; Mullon, C. Climate variability and change scenarios for a marine commodity: Modelling small pelagic fish, fisheries and fishmeal in a globalized market. J. Mar. Syst. 2010, 81, 196–205. [Google Scholar] [CrossRef]
- Zwolinski, J.P.; Emmett, R.L.; Demer, D.A. Predicting habitat to optimize sampling of Pacific sardine (Sardinops sagax). ICES J. Mar. Sci. 2011, 68, 867–879. [Google Scholar] [CrossRef] [Green Version]
- Peck, M.A.; Reglero, P.; Takahashi, M.; Catalán, I.A. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations. Prog. Oceanogr. 2013, 116, 220–245. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, I.C.; Williams, G.D.; Bond, N.A.; Hermann, A.J.; Siedlecki, S.A. Cloudy with a chance of sardines: Forecasting sardine distributions using regional climate models. Fish. Oceanogr. 2016, 25, 15–27. [Google Scholar] [CrossRef]
- Hijmans, R.J. raster: Geographic Data Analysis and Modeling. R package version 2.6-7. 2017. Available online: https://CRAN.R-project.org/package=raster (accessed on 20 January 2018).
- Thuiller, W.; Georges, D.; Engler, R.; Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. R package version 3.3-15/r728. Available online: https://R-Forge.R-project.org/projects/biomod/ 2017 (accessed on 20 January 2018).
- Trinidad, A.C.; Pomeroy, R.S.; Corpuz, P.V.; Aguero, M. Bioeconomics of the Philippine Small Pelagics Fishery; ICLARM: Los Banos, Philippines, 1993; ISBN 971-8709-38-X. [Google Scholar]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; Li, J.; Lohmann, L.G.; Loiselle, B.A.; Manion, G.; Moritz, C.; Nakamura, M.; Nakazawa, Y.; Overton, J.M.; Townsend Peterson, A.; Phillips, S.J.; Richardson, K.; Scachetti-Pereira, R.; Schapire, R.E.; Soberón, J.; Williams, S.; Wisz, M.S.; Zimmermann, N.E. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modelling 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography. 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef] [PubMed]
- Rola, A.C.; Narvaez, T.A.; Naguit, M.R.A.; Elazegui, D.D.; Brillo, B.B.C.; Paunlagui, M.M.; Jalotjot, H.C.; Cervantes, C.P. Impact of the closed fishing season policy for sardines in Zamboanga Peninsula, Philippines. Mar. Policy 2018, 87, 40–50. [Google Scholar] [CrossRef]
- Diego, T.J.A.S.; Fisher, W.L. Trends in the capture fisheries in Cuyo East Pass, Philippines. Int. J. Fish. Aquat. Stud. 2014, 1, 57–72. [Google Scholar]
- Zhao, X.; Li, D.; Li, X.; Zhao, L.; Wu, C. Spatial and seasonal patterns of night-time lights in global ocean derived from VIIRS DNB images. Int. J. Remote Sens. 2018, 1161, 1–31. [Google Scholar] [CrossRef]
- Nurdin, S.; Mustapha, M.A.; Lihan, T. The Relationship between Sea Surface Temperature and Chlorophyll- a Concentration in Fisheries Aggregation Area in the Archipelagic Waters of Spermonde Using Satellite Images. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2014; Volume 1571, pp. 466–472. [Google Scholar]
- Bellido, J.M.; Brown, A.M.; Valavanis, V.D.; Giráldez, A.; Pierce, G.J.; Iglesias, M.; Palialexis, A. Identifying essential fish habitat for small pelagic species in Spanish Mediterranean waters. Hydrobiologia 2008, 612, 171–184. [Google Scholar] [CrossRef]
- Schismenou, E.; Tsoukali, S.; Giannoulaki, M.; Somarakis, S. Modelling small pelagic fish potential spawning habitats: Eggs vs spawners and in situ vs satellite data. Hydrobiologia 2017, 788, 17–32. [Google Scholar] [CrossRef]
- Tugores, P.; Giannoulaki, M.; Iglesias, M.; Bonanno, A.; Tičina, V.; Leonori, I.; MacHias, A.; Tsagarakis, K.; Díaz, N.; Giráldez, A.; Patti, B.; De Felice, A.; Basilone, G.; Valavanis, V. Habitat suitability modelling for sardine Sardina pilchardus in a highly diverse ecosystem: The Mediterranean Sea. Mar. Ecol. Prog. Ser. 2011, 443, 181–205. [Google Scholar] [CrossRef]
- Kaschner, K.; Kesner-Reyes, K.; Garilao, C.; Rius-Barile, J.; Rees, T.; Froese, R. AquaMaps: Predicted range maps for aquatic species. Available online: https://www.aquamaps.org/ (accessed on 20 January 2017).
- Kesner-Reyes, K.; Kaschner, K.; Kullander, S.; Garilao, C.; Baril, J.; Froese, R. AquaMaps: Algorithm and data sources for aquatic organisms. Available online: https://www.aquamaps.org/am.pdf (accessed on 20 January 2017).
- Saraux, C.; Fromentin, J.M.; Bigot, J.L.; Bourdeix, J.H.; Morfin, M.; Roos, D.; Van Beveren, E.; Bez, N. Spatial Structure and Distribution of Small Pelagic Fish in the Northwestern Mediterranean Sea. PLoS ONE 2014, 9, e111211. [Google Scholar] [CrossRef] [PubMed]
- BFAR. Philippine Fisheries Profile 2012; Department of Agriculture – Bureau of Fisheries and Aquatic Resources: Quezon City, Philippines, 2013; p. 69. Available online: https://www.bfar.da.gov.ph/files/img/photos/ 2012FisheriesProfile(Finalcopy)(1).pdf (accessed on 20 January 2017).
- Alabia, I.D.; Saitoh, S.I.; Hirawake, T.; Igarashi, H.; Ishikawa, Y.; Usui, N.; Kamachi, M.; Awaji, T.; Seito, M. Elucidating the potential squid habitat responses in the central North Pacific to the recent ENSO flavors. Hydrobiologia 2016, 772, 215–227. [Google Scholar] [CrossRef]
Gear | Target Species | Description of Light Use |
---|---|---|
Ring net | Small scad, sardine, mackerel | 200–500 watt bulbs (4–8 bulbs/boat) Fish aggregating device (FAD): 500 watt bulbs (2–4 bulbs/FAD) or pressurized gas lamps |
Small pelagic purse seine | Scad, mackerel, sardines | Incandescent 1000 watts/bulb (10–12 bulbs/boat) Halogen 1000–5000 watts/bulb (6–10 bulbs/boat) |
Tuna purse seine | Skipjack tuna | FADs are lighted by a dim light boat which has 2–4 pieces of 1000 watt bulbs. |
Bag net or fish lift net | Roundscad, anchovies, indian sardines | 10–20 halogen lights (1000–5000 watts/bulb) Some use underwater metal halide lights 19 × 1000 watt bulbs or 2–8 units of high wattage metal halide bulbs (1000–5000 watts) |
Commercial round haul seine | Anchovies, squids [38] | No details available on types of lighting used |
Predictor | Original Resolution | Units | Source |
---|---|---|---|
VIIRS boat detection | 742 m | -- | NOAA Earth Observation Group (https://ngdc.noaa.gov/eog/viirs/download_boat.html) |
Bathymetry | 30 arc-s | m | GEBCO (https://www.gebco.net/data_and_products/ gridded_bathymetry_data/gebco_30_second_grid/) |
Sea surface temperature | 4 km | °C | MODIS-AQUA from NOAA CoastWatch (https://coastwatch.pfeg.noaa.gov/erddap/index.html) |
Surface chlorophyll a | 4 km | mg/cm3 | |
Sea surface salinity | 1/12° (9 km) | psu | HYCOM + NCODA Global 1/12° Analysis (https://coastwatch.pfeg.noaa.gov/erddap/index.html) |
Mixed layer thickness (at density change of 0.03 kg/m3) | 1/12° (9 km) | m | |
Sea surface height | 1/12° (9 km) | m | |
Significant wave height | 0.5° | meters | WaveWatch III Global Wave Model (https://coastwatch.pfeg.noaa.gov/erddap/griddap/NWW3_Global_Best.html) |
Model Name | Description |
---|---|
A. Climatology | |
A1. Full | All VBD points within CFAs and mean climatology for all six environmental predictors |
A2. Full–no bathymetry | Bathymetry variable removed |
A3. Northeast monsoon (NEM) | Northeast monsoon model. VBD presence data limited to months within this monsoon period (i.e., November to April). Environmental predictors were averaged for Northeast monsoon months from 2013 to 2016. |
A4. Southwest monsoon (SWM) | Southwest monsoon model. VBD presence data limited to months within this monsoon period (i.e., May to October). Environmental predictors were averaged for Southwest monsoon months from 2013 to 2016. |
B. Annual | |
B1. 2013 | All environmental predictors and VBD in CFAs for 2013 |
B2. 2014 | All environmental predictors and VBD in CFAs for 2014 |
B3. 2015 | All environmental predictors and VBD in CFAs for 2015 |
B4. 2016 | All environmental predictors and VBD in CFAs for 2016 |
C. CFAs | |
C1. Northeast Palawan | VBD in CFA # 106 (Northeast Palawan; Figure 3) and climatology of environmental predictors |
C2. Sulu | VBD in CFA # 70 (Sulu; Figure 3) and climatology of environmental predictors |
Model | Regularization Parameter | Feature Classes * | AUC | TSS |
---|---|---|---|---|
Full climatology | 25 | LQHP | 0.88 | 0.59 |
Full–no bathymetry | 1 | H | 0.84 | 0.52 |
Northeast monsoon | 2 | LQHP | 0.87 | 0.58 |
Southwest monsoon | 17 | LQH | 0.87 | 0.58 |
2013 | 13 | LQHP | 0.88 | 0.61 |
2014 | 1 | LQHP | 0.89 | 0.62 |
2015 | 1 | LQHP | 0.88 | 0.60 |
2016 | 3 | LQHP | 0.87 | 0.58 |
Northeast Palawan | 23 | LQHP | 0.99 | 0.90 |
Sulu | 18 | LQHP | 0.98 | 0.94 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geronimo, R.C.; Franklin, E.C.; Brainard, R.E.; Elvidge, C.D.; Santos, M.D.; Venegas, R.; Mora, C. Mapping Fishing Activities and Suitable Fishing Grounds Using Nighttime Satellite Images and Maximum Entropy Modelling. Remote Sens. 2018, 10, 1604. https://doi.org/10.3390/rs10101604
Geronimo RC, Franklin EC, Brainard RE, Elvidge CD, Santos MD, Venegas R, Mora C. Mapping Fishing Activities and Suitable Fishing Grounds Using Nighttime Satellite Images and Maximum Entropy Modelling. Remote Sensing. 2018; 10(10):1604. https://doi.org/10.3390/rs10101604
Chicago/Turabian StyleGeronimo, Rollan C., Erik C. Franklin, Russell E. Brainard, Christopher D. Elvidge, Mudjekeewis D. Santos, Roberto Venegas, and Camilo Mora. 2018. "Mapping Fishing Activities and Suitable Fishing Grounds Using Nighttime Satellite Images and Maximum Entropy Modelling" Remote Sensing 10, no. 10: 1604. https://doi.org/10.3390/rs10101604
APA StyleGeronimo, R. C., Franklin, E. C., Brainard, R. E., Elvidge, C. D., Santos, M. D., Venegas, R., & Mora, C. (2018). Mapping Fishing Activities and Suitable Fishing Grounds Using Nighttime Satellite Images and Maximum Entropy Modelling. Remote Sensing, 10(10), 1604. https://doi.org/10.3390/rs10101604