A New Soil Moisture Downscaling Approach for SMAP, SMOS, and ASCAT by Predicting Sub-Grid Variability
"> Figure 1
<p><math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>θ</mi> </msub> <mrow> <mo>(</mo> <mover accent="true"> <mi>θ</mi> <mo stretchy="false">¯</mo> </mover> <mo>)</mo> </mrow> </mrow> </semantics> </math> functions for different satellite grid cells at German locations (<b>left</b>) and for US locations (<b>right</b>).</p> "> Figure 2
<p>SMAP soil moisture time series for NRW and RLP (<b>left</b>) and OR and IA (<b>right</b>) including the respective soil moisture standard deviation time series.</p> "> Figure 3
<p>SMAP sub-grid soil moisture standard deviation at specific mean soil moisture values (<b>a</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>θ</mi> </msub> <mrow> <mo>(</mo> <mrow> <mover accent="true"> <mi>θ</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>0.1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math>; (<b>b</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>θ</mi> </msub> <mrow> <mo>(</mo> <mrow> <mover accent="true"> <mi>θ</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>0.2</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math>; (<b>c</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>θ</mi> </msub> <mrow> <mo>(</mo> <mrow> <mover accent="true"> <mi>θ</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>0.3</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math>; (<b>d</b>) <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>θ</mi> </msub> <mrow> <mo>(</mo> <mrow> <mover accent="true"> <mi>θ</mi> <mo stretchy="false">¯</mo> </mover> <mo>=</mo> <mn>0.4</mn> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math>.</p> "> Figure 4
<p>(<b>a</b>) SMAP soil moisture annual mean for the year 2016; (<b>b</b>) SMAP sub-grid soil moisture standard deviation at 2016 mean soil moisture; and (<b>c</b>) mean saturated soil moisture. White regions in (<b>b</b>) indicate lower SMAP soil moisture retrievals than residual soil water content <math display="inline"> <semantics> <mrow> <mover accent="true"> <mrow> <msub> <mi>θ</mi> <mi>r</mi> </msub> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics> </math> parameterization from the Toth et al. [<a href="#B92-remotesensing-10-00427" class="html-bibr">92</a>] pedotransfer function so that <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi>θ</mi> </msub> <mrow> <mo>(</mo> <mrow> <mover accent="true"> <mrow> <msub> <mi>θ</mi> <mrow> <mn>2016</mn> </mrow> </msub> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> <mo>)</mo> </mrow> </mrow> </semantics> </math> estimations are not possible.</p> "> Figure 5
<p>Field capacity of the Upper Rhine valley region calculated from SoilGrids to be used as a proxy for downscaling. Selected grid points NRW and RLP indicate the German focus center pixels discussed in <a href="#sec3dot1-remotesensing-10-00427" class="html-sec">Section 3.1</a>. Soil moisture monitoring networks in the TERENO Rur catchment in Germany and in the REMEDHUS region in Spain are used for validation.</p> "> Figure 6
<p>(<b>a</b>) Original SMAP soil moisture mean for 2016 and the Upper Rhine valley region; (<b>b</b>) Downscaled SMAP soil moisture mean for 2016; and (<b>c</b>) Downscaled interpolated SMAP soil moisture mean for 2016.</p> "> Figure 7
<p>Spatial correlation of SMAP original coarse product, the SMAP downscaled result, and the SMAP interpolated and downscaled result for 2016 with in situ measurements of the REMEDHUS network, and precipitation average for the REMEDHUS region.</p> ">
Abstract
:1. Introduction
2. Soil Data Base and Moisture Variability Estimation Methods
2.1. A Closed Form Expression to Estimate Soil Moisture Variability
2.2. SoilGrids
2.3. Toth Pedotransfer Function for MvG Model Parameterization
2.4. Satellite Soil Moisture Data Products
2.5. How to Use the Estimated Sub-Grid Soil Moisture Variability Data for Downscaling?
3. Results and Discussion
3.1. Specific Analysis Based on Selected Grid Points
3.2. Discussion of Global Heterogeneity Maps
- South East Asia
- Amazon basin
- Northern Europe
- Canada
- Qinghai-Tibet Plateau
- Japan, Korea, North East China, South East Russia
- South Chile
3.3. Publication of the Sub-Grid Heterogeneity Product
3.4. Downscaling Results
3.5. Validity of the Approach
4. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McColl, K.A.; Alemohammad, S.H.; Akbar, R.; Konings, A.G.; Yueh, S.; Entekhabi, D. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 2017, 10, 100–104. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil moisture for hydrological applications: Open questions and new opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The smos mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (smap) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S.; Figa-Saldana, J.; de Rosnay, P.; Jann, A.; Schneider, S.; et al. The ascat soil moisture product: A review of its specifications, validation results, and emerging applications. Meteorologische Zeitschrift 2013, 22, 5–33. [Google Scholar] [CrossRef]
- Bierkens, M.F.P.; Bell, V.A.; Burek, P.; Chaney, N.; Condon, L.E.; David, C.H.; de Roo, A.; Doll, P.; Drost, N.; Famiglietti, J.S.; et al. Hyper-resolution global hydrological modelling: What is next? “Everywhere and locally relevant”. Hydrol. Processes 2015, 29, 310–320. [Google Scholar] [CrossRef]
- Wood, E.F.; Roundy, J.K.; Troy, T.J.; van Beek, L.P.H.; Bierkens, M.F.P.; Blyth, E.; de Roo, A.; Doll, P.; Ek, M.; Famiglietti, J.; et al. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring earth’s terrestrial water. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- McCabe, M.F.; Rodell, M.; Alsdorf, D.E.; Miralles, D.G.; Uijlenhoet, R.; Wagner, W.; Lucieer, A.; Houborg, R.; Verhoest, N.E.C.; Franz, T.E.; et al. The future of earth observation in hydrology. Hydrol. Earth Syst. Sci. Discuss. 2017, 21, 3879–3914. [Google Scholar] [CrossRef]
- Brocca, L.; Crow, W.T.; Ciabatta, L.; Massari, C.; Rosnay, P.D.; Enenkel, M.; Hahn, S.; Amarnath, G.; Camici, S.; Tarpanelli, A.; et al. A review of the applications of ascat soil moisture products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2285–2306. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V. Soil moisture at watershed scale: Remote sensing techniques. J. Hydrol. 2014, 516, 258–272. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Larson, K.M.; Njoku, E.G.; Small, E.E.; et al. State of the art in large-scale soil moisture monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef] [Green Version]
- Vereecken, H.; Schnepf, A.; Hopmans, J.W.; Javaux, M.; Or, D.; Roose, D.O.T.; Vanderborght, J.; Young, M.H.; Amelung, W.; Aitkenhead, M.; et al. Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil moisture remote sensing: State-of-the-science. Vadose Zone J. 2017, 16. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Ryu, D.R.; Berg, A.A.; Rodell, M.; Jackson, T.J. Field observations of soil moisture variability across scales. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Rodríguez-Iturbe, I.; Porporato, A. Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics; Cambridge Press: Cambridge, UK, 2004. [Google Scholar]
- Mohanty, B.P.; Cosh, M.; Lakshmi, V.; Montzka, C. Remote sensing for vadose zone hydrology—A synthesis from the vantage point. Vadose Zone J. Spec. Sect. Remote Sens. Vadose Zone Hydrol. 2013, 12. [Google Scholar] [CrossRef]
- Rötzer, K.; Montzka, C.; Vereecken, H. Spatio-temporal variability of global soil moisture products. J. Hydrol. 2015, 522, 187–202. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Pachepsky, Y.; Montzka, C.; van der Kruk, J.; Bogena, H.; Weihermüller, L.; Herbst, M.; Martinez, G.; Vanderborght, J. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol. 2014, 516, 76–96. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.F.; Fiorentino, M.; Rodriguez-Iturbe, I.; Wood, E.F. Scaling characteristics of spatial patterns of soil moisture from distributed modelling. Adv. Water Resour. 2007, 30, 2145–2150. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I.; Vogel, G.K.; Rigon, R.; Entekhabi, D.; Castelli, F.; Rinaldo, A. On the spatial-organization of soil-moisture fields. Geophys. Res. Lett. 1995, 22, 2757–2760. [Google Scholar] [CrossRef]
- Si, B.C. Spatial scaling analyses of soil physical properties: A review of spectral and wavelet methods all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Vadose Zone J. 2008, 7, 547–562. [Google Scholar]
- Pachepsky, Y.; Hill, R.L. Scale and scaling in soils. Geoderma 2017, 287, 4–30. [Google Scholar] [CrossRef]
- Hohenbrink, T.L.; Lischeid, G.; Schindler, U.; Hufnagel, J. Disentangling the effects of land management and soil heterogeneity on soil moisture dynamics. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef]
- Korres, W.; Koyama, C.N.; Fiener, P.; Schneider, K. Analysis of surface soil moisture patterns in agricultural landscapes using empirical orthogonal functions. Hydrol. Earth Syst. Sci. 2010, 14, 751–764. [Google Scholar] [CrossRef]
- Martini, E.; Wollschlager, U.; Kogler, S.; Behrens, T.; Dietrich, P.; Reinstorf, F.; Schmidt, K.; Weiler, M.; Werban, U.; Zacharias, S. Spatial and temporal dynamics of hillslope-scale soil moisture patterns: Characteristic states and transition mechanisms. Vadose Zone J. 2015, 14. [Google Scholar] [CrossRef]
- Wang, J.H.; Ge, Y.; Heuvelink, G.B.M.; Zhou, C.H. Upscaling in situ soil moisture observations to pixel averages with spatio-temporal geostatistics. Remote Sens. 2015, 7, 11372–11388. [Google Scholar] [CrossRef]
- Korres, W.; Reichenau, T.G.; Fiener, P.; Koyama, C.N.; Bogena, H.R.; Comelissen, T.; Baatz, R.; Herbst, M.; Diekkruger, B.; Vereecken, H.; et al. Spatio-temporal soil moisture patterns—A meta-analysis using plot to catchment scale data. J. Hydrol. 2015, 520, 326–341. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Morbidelli, R.; Melone, F.; Moramarco, T. Soil moisture spatial variability in experimental areas of Central Italy. J. Hydrol. 2007, 333, 356–373. [Google Scholar] [CrossRef]
- Ryu, D.; Famiglietti, J.S. Multi-scale spatial correlation and scaling behavior of surface soil moisture. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Vachaud, G.; Desilans, A.P.; Balabanis, P.; Vauclin, M. Temporal stability of spatially measured soil-water probability density-function. Soil Sci. Soc. Am. J. 1985, 49, 822–828. [Google Scholar] [CrossRef]
- Vanderlinden, K.; Vereecken, H.; Hardelauf, H.; Herbst, M.; Martinez, G.; Cosh, M.H.; Pachepsky, Y.A. Temporal stability of soil water contents: A review of data and analyses. Vadose Zone J. 2012, 11. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, K.; Qin, J.; Chen, Y.; Tang, W.; Montzka, C.; Wu, H.; Lin, C.; Han, M.; Vereecken, H. Spatiotemporal analysis of soil moisture observations within a tibetan mesoscale area and its implication to regional soil moisture measurements. J. Hydrol. 2013, 482, 92–104. [Google Scholar] [CrossRef]
- Biswas, A. Scaling analysis of soil water storage with missing measurements using the second-generation continuous wavelet transform. Eur. J. Soil Sci. 2014, 65, 594–604. [Google Scholar] [CrossRef]
- Casagrande, E.; Mueller, B.; Miralles, D.G.; Entekhabi, D.; Molini, A. Wavelet correlations to reveal multiscale coupling in geophysical systems. J. Geophys. Res. Atmos. 2015, 120, 7555–7572. [Google Scholar] [CrossRef]
- Rivera, D.; Lillo, M.; Granda, S. Representative locations from time series of soil water content using time stability and wavelet analysis. Environ. Monit. Assess. 2014, 186, 9075–9087. [Google Scholar] [CrossRef] [PubMed]
- Das, N.N.; Mohanty, B.P. Temporal dynamics of psr-based soil moisture across spatial scales in an agricultural landscape during smex02: A wavelet approach. Remote Sens. Environ. 2008, 112, 522–534. [Google Scholar] [CrossRef]
- Biswas, A.; Si, B.C. Identifying scale specific controls of soil water storage in a hummocky landscape using wavelet coherency. Geoderma 2011, 165, 50–59. [Google Scholar] [CrossRef]
- Hupet, F.; Vanclooster, M. Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field. J. Hydrol. 2002, 261, 86–101. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Rudnicki, J.W.; Rodell, M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol. 1998, 210, 259–281. [Google Scholar] [CrossRef]
- Rosenbaum, U.; Bogena, H.R.; Herbst, M.; Huisman, J.A.; Peterson, T.J.; Weuthen, A.; Western, A.W.; Vereecken, H. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Brocca, L.; Tullo, T.; Melone, F.; Moramarco, T.; Morbidelli, R. Catchment scale soil moisture spatial-temporal variability. J. Hydrol. 2012, 422, 63–75. [Google Scholar] [CrossRef]
- Choi, M.; Jacobs, J.M. Spatial soil moisture scaling structure during soil moisture experiment 2005. Hydrol. Processes 2011, 25, 926–932. [Google Scholar] [CrossRef]
- Riley, W.J.; Shen, C. Characterizing coarse-resolution watershed soil moisture heterogeneity using fine-scale simulations. Hydrol. Earth Syst. Sci. 2014, 18, 2463–2483. [Google Scholar] [CrossRef]
- Vereecken, H.; Kamai, T.; Harter, T.; Kasteel, R.; Hopmans, J.; Vanderborght, J. Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated flow perspective. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Salvucci, G.D. Limiting relations between soil moisture and soil texture with implications for measured, modeled and remotely sensed estimates. Geophys. Res. Lett. 1998, 25, 1757–1760. [Google Scholar] [CrossRef]
- Lawrence, J.E.; Hornberger, G.M. Soil moisture variability across climate zones. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
- Koster, R.D.; Brocca, L.; Crow, W.T.; Burgin, M.S.; De Lannoy, G.J.M. Precipitation estimation using l-band and c-band soil moisture retrievals. Water Resour. Res. 2016, 52, 7213–7225. [Google Scholar] [CrossRef]
- Western, A.W.; Grayson, R.B.; Bloschl, G.; Willgoose, G.R.; McMahon, T.A. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res. 1999, 35, 797–810. [Google Scholar] [CrossRef]
- Gwak, Y.; Kim, S. Factors affecting soil moisture spatial variability for a humid forest hillslope. Hydrol. Processes 2017, 31, 431–445. [Google Scholar] [CrossRef]
- James, S.E.; Partel, M.; Wilson, S.D.; Peltzer, D.A. Temporal heterogeneity of soil moisture in grassland and forest. J. Ecol. 2003, 91, 234–239. [Google Scholar] [CrossRef]
- Ivanov, V.Y.; Fatichi, S.; Jenerette, G.D.; Espeleta, J.F.; Troch, P.A.; Huxman, T.E. Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- D’Odorico, P.; Caylor, K.; Okin, G.S.; Scanlon, T.M. On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J. Geophys. Res. Biogeosci. 2007, 112. [Google Scholar] [CrossRef]
- Teuling, A.J.; Troch, P.A. Improved understanding of soil moisture variability dynamics. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Clapp, R.B.; Hornberger, G.M.; Cosby, B.J. Estimating spatial variability in soil-moisture with a simplified dynamic-model. Water Resour. Res. 1983, 19, 739–745. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; de Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Wang, T.J.; Franz, T.E.; Zlotnik, V.A.; You, J.S.; Shulski, M.D. Investigating soil controls on soil moisture spatial variability: Numerical simulations and field observations. J. Hydrol. 2015, 524, 576–586. [Google Scholar] [CrossRef]
- Qu, W.; Bogena, H.R.; Huisman, J.A.; Vanderborght, J.; Schuh, M.; Priesack, E.; Vereecken, H. Predicting subgrid variability of soil water content from basic soil information. Geophys. Res. Lett. 2015, 42, 789–796. [Google Scholar] [CrossRef]
- Malbeteau, Y.; Merlin, O.; Molero, B.; Rudiger, C.; Bacon, S. Dispatch as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements: Application to smos and amsr-e data in Southeastern Australia. Int. J. Appl. Earth Obs. 2016, 45, 221–234. [Google Scholar] [CrossRef]
- Piles, M.; Sanchez, N.; Vall-llossera, M.; Camps, A.; Martinez-Fernandez, J.; Martinez, J.; Gonzalez-Gambau, V. A downscaling approach for smos land observations: Evaluation of high-resolution soil moisture maps over the Iberian Peninsula. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3845–3857. [Google Scholar] [CrossRef]
- Molero, B.; Merlin, O.; Malbéteau, Y.; Al Bitar, A.; Cabot, F.; Stefan, V.; Kerr, Y.; Bacon, S.; Cosh, M.H.; Bindlish, R.; et al. Smos disaggregated soil moisture product at 1 km resolution: Processor overview and first validation results. Remote Sens. Environ. 2016, 180, 361–376. [Google Scholar] [CrossRef]
- Piles, M.; Petropoulos, G.P.; Sánchez, N.; González-Zamora, Á.; Ireland, G. Towards improved spatio-temporal resolution soil moisture retrievals from the synergy of smos and msg seviri spaceborne observations. Remote Sens. Environ. 2016, 180, 403–417. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Zhou, P.; Shao, Y.; Gao, S. Validation analysis of smap and amsr2 soil moisture products over the united states using ground-based measurements. Remote Sens. 2017, 9, 104. [Google Scholar] [CrossRef]
- Montzka, C.; Bogena, H.R.; Zreda, M.; Monerris, A.; Morrison, R.; Muddu, S.; Vereecken, H. Validation of spaceborne and modelled surface soil moisture products with cosmic-ray neutron probes. Remote Sens. 2017, 9, 103. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of smap surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; Neill, P.E.O.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al. Assessment of the smap passive soil moisture product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- Pan, M.; Cai, X.T.; Chaney, N.W.; Entekhabi, D.; Wood, E.F. An initial assessment of smap soil moisture retrievals using high-resolution model simulations and in situ observations. Geophys. Res. Lett. 2016, 43, 9662–9668. [Google Scholar] [CrossRef]
- Chen, F.; Crow, W.T.; Colliander, A.; Cosh, M.H.; Jackson, T.J.; Bindlish, R.; Reichle, R.H.; Chan, S.K.; Bosch, D.D.; Starks, P.J.; et al. Application of triple collocation in ground-based validation of soil moisture active/passive (smap) level 2 data products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 489–502. [Google Scholar] [CrossRef]
- Montzka, C.; Bogena, H.R.; Weihermüller, L.; Jonard, F.; Bouzinac, C.; Kainulainen, J.; Balling, J.E.; Loew, A.; Dall’Amico, J.T.; Rouhe, E.; et al. Brightness temperature and soil moisture validation at different scales during the smos validation campaign in the Rur and Erft catchments, Germany. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1728–1743. [Google Scholar] [CrossRef]
- Al Bitar, A.; Leroux, D.; Kerr, Y.H.; Merlin, O.; Richaume, P.; Sahoo, A.; Wood, E.F. Evaluation of smos soil moisture products over continental U.S. Using the scan/snotel network. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1572–1586. [Google Scholar] [CrossRef] [Green Version]
- Bircher, S.; Skou, N.; Kerr, Y.H. Validation of smos l1c and l2 products and important parameters of the retrieval algorithm in the Skjern river catchment, Western Denmark. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2969–2985. [Google Scholar] [CrossRef] [Green Version]
- Rötzer, K.; Montzka, C.; Bogena, H.; Wagner, W.; Kerr, Y.H.; Kidd, R.; Vereecken, H. Catchment scale validation of smos and ascat soil moisture products using hydrological modeling and temporal stability analysis. J. Hydrol. 2014, 519, 934–946. [Google Scholar] [CrossRef]
- Sanchez, N.; Martinez-Fernandez, J.; Scaini, A.; Perez-Gutierrez, C. Validation of the smos l2 soil moisture data in the remedhus network (Spain). IEEE Trans. Geosci. Remote Sens. 2012, 50, 1602–1611. [Google Scholar] [CrossRef]
- Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martinez-Fernandez, J.; Llorens, P.; et al. Soil moisture estimation through ascat and amsr-e sensors: An intercomparison and validation study across europe. Remote Sens. Environ. 2011, 115, 3390–3408. [Google Scholar] [CrossRef]
- Merlin, O.; Escorihuela, M.J.; Mayoral, M.A.; Hagolle, O.; Al Bitar, A.; Kerr, Y. Self-calibrated evaporation-based disaggregation of smos soil moisture: An evaluation study at 3 km and 100 m resolution in Catalunya, Spain. Remote Sens. Environ. 2013, 130, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, P.K.; Han, D.W.; Ramirez, M.R.; Islam, T. Machine learning techniques for downscaling smos satellite soil moisture using modis land surface temperature for hydrological application. Water Resour. Manag. 2013, 27, 3127–3144. [Google Scholar] [CrossRef]
- Verhoest, N.E.C.; van den Berg, M.J.; Martens, B.; Lievens, H.; Wood, E.F.; Pan, M.; Kerr, Y.H.; Al Bitar, A.; Tomer, S.K.; Drusch, M.; et al. Copula-based downscaling of coarse-scale soil moisture observations with implicit bias correction. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3507–3521. [Google Scholar] [CrossRef]
- Kolassa, J.; Reichle, R.H.; Draper, C.S. Merging active and passive microwave observations in soil moisture data assimilation. Remote Sens. Environ. 2017, 191, 117–130. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Njoku, E.G. An algorithm for merging smap radiometer and radar data for high-resolution soil-moisture retrieval. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1504–1512. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. Gmes sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Montzka, C.; Jagdhuber, T.; Horn, R.; Bogena, H.; Hajnsek, I.; Reigber, A.; Vereecken, H. Investigation of smap fusion algorithms with airborne active and passive l-band microwave remote sensing. IEEE Trans. Geosci. Rem. Sens. 2016, 54, 3878–3889. [Google Scholar] [CrossRef]
- Das, N.; Entekhabi, D.; Kim, S.; Yueh, S.; Dunbar, R.S.; Colliander, A. Smap/Sentinel-1 l2 Radiometer/Radar 30-Second Scene 3 km Ease-Grid Soil Moisture; Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [Google Scholar]
- Das, N.N.; Entekhabi, D.; Njoku, E.G.; Shi, J.C.J.C.; Johnson, J.T.; Colliander, A. Tests of the smap combined radar and radiometer algorithm using airborne field campaign observations and simulated data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2018–2028. [Google Scholar] [CrossRef]
- Wu, X.; Walker, J.P.; Das, N.N.; Panciera, R.; Rüdiger, C. Evaluation of the smap brightness temperature downscaling algorithm using active–passive microwave observations. Remote Sens. Environ. 2014, 155, 210–221. [Google Scholar] [CrossRef]
- Jagdhuber, T.; Konings, A.G.; McColl, K.A.; Alemohammad, S.H.; Das, N.N.; Montzka, C.; Link, M.; Akbar, R.; Entekhabi, D. Physically-based modelling of active-passive microwave covariations over vegetated surfaces. IEEE Trans. Geosci. Rem. Sens. 2018. in review. [Google Scholar]
- Stoorvogel, J.J.; Bakkenes, M.; Temme, A.J.A.M.; Batjes, N.H.; ten Brink, B.J.E. S-world: A global soil map for environmental modelling. Land Degrad. Dev. 2017, 28, 22–33. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.J.; Duan, Q.Y.; Liu, B.Y.; Yuan, H. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 2014, 6, 249–263. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; MacMillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M. Soilgrids1km—Global soil information based on automated mapping. PLoS ONE 2014, 9, e105992. [Google Scholar] [CrossRef] [PubMed]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. Soilgrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.X.; Wallstrom, T.C.; Winter, C.L. Stochastic analysis of steady-state unsaturated flow in heterogeneous media: Comparison of the brooks-corey and gardner-russo models. Water Resour. Res. 1998, 34, 1437–1449. [Google Scholar] [CrossRef]
- Toth, B.; Weynants, M.; Nemes, A.; Mako, A.; Bilas, G.; Toth, G. New generation of hydraulic pedotransfer functions for Europe. Eur. J. Soil Sci. 2015, 66, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Mualem, Y. New model for predicting hydraulic conductivity of unsaturated porous-media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Toth, G.; Jones, A.; Montanarella, L. Lucas Topsoil Survey. Methodology, Data and Results; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Van Engelen, V.; Dijkshoorn, J. Global and National Soils and Terrain Digital Databases (Soter), Procedures Manual; Version 2.0; ISRIC: Wageningen, The Netherlands, 2012; p. 192. [Google Scholar]
- Wösten, J.H.M.; Lilly, A.; Nemes, A.; Le Bas, C. Development and use of a database of hydraulic properties of European soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- Patil, N.G.; Singh, S.K. Pedotransfer functions for estimating soil hydraulic properties: A review. Pedosphere 2016, 26, 417–430. [Google Scholar] [CrossRef]
- Looy, K.V.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.; Padarian, J.; et al. Pedotransfer functions in earth system science: Challenges and perspectives. Rev. Geophys. 2017. [Google Scholar] [CrossRef]
- O’Neill, P.; Chan, S.; Njoku, E.; Jackson, T. Smap l3 Radiometer Global Daily 36 km Ease-Grid Soil Moisture; Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016. [Google Scholar]
- Al Bitar, A.; Mialon, A.; Kerr, Y.; Cabot, F.; Richaume, P.; Jacquette, E.; Quesney, A.; Mahmoodi, A.; Tarot, S.; Parrens, M.; et al. The global smos level 3 daily soil moisture and brightness temperature maps. Earth Syst. Sci. Data Discuss. 2017, 201, 71–41. [Google Scholar]
- Peng, J.; Niesel, J.; Loew, A. Evaluation of soil moisture downscaling using a simple thermal-based proxy—The Remedhus network (Spain) example. Hydrol. Earth Syst. Sci. 2015, 19, 4765–4782. [Google Scholar] [CrossRef]
- Im, J.; Park, S.; Rhee, J.; Baik, J.; Choi, M. Downscaling of amsr-e soil moisture with modis products using machine learning approaches. Environ. Earth Sci. 2016, 75, 1120. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A. A comparison study on empirical microwave soil moisture downscaling methods based on the integration of microwave-optical/ir data on the Tibetan Plateau. Int. J. Remote Sens. 2015, 36, 4986–5002. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J.; Cosh, M.; Basara, J. Passive microwave soil moisture downscaling using vegetation index and skin surface temperature. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Ranney, K.J.; Niemann, J.D.; Lehman, B.M.; Green, T.R.; Jones, A.S. A method to downscale soil moisture to fine resolutions using topographic, vegetation, and soil data. Adv. Water Resour. 2015, 76, 81–96. [Google Scholar] [CrossRef]
- Hasan, S.; Montzka, C.; Rüdiger, C.; Ali, M.; Bogena, H.; Vereecken, H. Soil moisture retrieval from airborne l-band passive microwave using high resolution multispectral data. ISPRS J. Photogramm. Remote Sens. 2014, 91, 59–71. [Google Scholar] [CrossRef]
- Gonzalez-Zamora, A.; Sanchez, N.; Martinez-Fernandez, J. Validation of aquarius soil moisture products over the northwest of Spain: A comparison with smos. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2763–2769. [Google Scholar] [CrossRef]
- Montzka, C.; Canty, M.; Kreins, P.; Kunkel, R.; Menz, G.; Vereecken, H.; Wendland, F. Multispectral remotely sensed data in modelling the annual variability of nitrate concentrations in the leachate. Environ. Model. Softw. 2008, 23, 1070–1081. [Google Scholar] [CrossRef]
- Montzka, C.; Canty, M.; Kunkel, R.; Menz, G.; Vereecken, H.; Wendland, F. Modelling the water balance of a mesoscale catchment basin using remotely sensed land cover data. J. Hydrol. 2008, 353, 322–334. [Google Scholar] [CrossRef]
- Rudolph, S.; van der Kruk, J.; von Hebel, C.; Ali, M.; Herbst, M.; Montzka, C.; Pätzold, S.; Robinson, D.A.; Vereecken, H.; Weihermüller, L. Linking satellite derived lai patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements. Geoderma 2015, 241–242, 262–271. [Google Scholar] [CrossRef]
- Han, X.; Li, X.; Franssen, H.J.H.; Vereecken, H.; Montzka, C. Spatial horizontal correlation characteristics in the land data assimilation of soil moisture. Hydrol. Earth Syst. Sci. 2012, 16, 1349–1363. [Google Scholar] [CrossRef] [Green Version]
- Han, X.J.; Franssen, H.J.H.; Montzka, C.; Vereecken, H. Soil moisture and soil properties estimation in the community land model with synthetic brightness temperature observations. Water Resour. Res. 2014, 50, 6081–6105. [Google Scholar] [CrossRef]
- Baatz, R.; Bogena, H.R.; Franssen, H.J.H.; Huisman, J.A.; Montzka, C.; Vereecken, H. An empirical vegetation correction for soil water content quantification using cosmic ray probes. Water Resour. Res. 2015, 51, 2030–2046. [Google Scholar] [CrossRef] [Green Version]
- Baatz, R.; Bogena, H.R.; Franssen, H.J.H.; Huisman, J.A.; Qu, W.; Montzka, C.; Vereecken, H. Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods. J. Hydrol. 2014, 516, 231–244. [Google Scholar] [CrossRef]
- Bogena, H.; Kunkel, R.; Puetz, T.; Vereecken, H.; Kruger, E.; Zacharias, S.; Dietrich, P.; Wollschlager, U.; Kunstmann, H.; Papen, H.; et al. Tereno—Long-term monitoring network for terrestrial environmental research. Hydrol. Wasserbewirtsch. 2012, 56, 138–143. [Google Scholar]
- Kolassa, J.; Gentine, P.; Prigent, C.; Aires, F.; Alemohammad, S.H. Soil moisture retrieval from amsr-e and ascat microwave observation synergy. Part 2: Product evaluation. Remote Sens. Environ. 2017, 195, 202–217. [Google Scholar] [CrossRef]
- Lievens, H.; Reichle, R.H.; Liu, Q.; De Lannoy, G.J.M.; Dunbar, R.S.; Kim, S.B.; Das, N.N.; Cosh, M.; Walker, J.P.; Wagner, W. Joint sentinel-1 and smap data assimilation to improve soil moisture estimates. Geophys. Res. Lett. 2017, 44, 6145–6153. [Google Scholar] [CrossRef]
- Montzka, C.; Herbst, M.; Weihermüller, L.; Verhoef, A.; Vereecken, H. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves. Earth Syst. Sci. Data 2017, 9, 529–543. [Google Scholar] [CrossRef]
- Coopersmith, E.J.; Cosh, M.H.; Petersen, W.A.; Prueger, J.; Niemeier, J.J. Soil moisture model calibration and validation: An ars watershed on the South Fork Iowa River. J. Hydrometeorol. 2015, 16, 1087–1101. [Google Scholar] [CrossRef]
- Rowlandson, T.L.; Hornbuckle, B.K.; Bramer, L.M.; Patton, J.C.; Logsdon, S.D. Comparisons of evening and morning smos passes over the Midwest United States. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1544–1555. [Google Scholar] [CrossRef]
- Rondinelli, W.J.; Hornbuckle, B.K.; Patton, J.C.; Cosh, M.H.; Walker, V.A.; Carr, B.D.; Logsdon, S.D. Different rates of soil drying after rainfall are observed by the smos satellite and the south fork in situ soil moisture network. J. Hydrometeorol. 2015, 16, 889–903. [Google Scholar] [CrossRef]
- Hornbuckle, B.K.; Patton, J.C.; VanLoocke, A.; Suyker, A.E.; Roby, M.C.; Walker, V.A.; Iyer, E.R.; Herzmann, D.E.; Endacott, E.A. Smos optical thickness changes in response to the growth and development of crops, crop management, and weather. Remote Sens. Environ. 2016, 180, 320–333. [Google Scholar] [CrossRef]
- Bramer, L.M.; Hornbuckle, B.K.; Caragea, P.C. How many measurements of soil moisture within the footprint of a ground-based microwave radiometer are required to account for meter-scale spatial variability? Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Vereecken, H.; Maes, J.; Feyen, J.; Darius, P. Estimating the soil-moisture retention characteristic from texture, bulk-density, and carbon content. Soil Sci. 1989, 148, 389–403. [Google Scholar] [CrossRef]
- Weynants, M.; Vereecken, H.; Javaux, M. Revisiting vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone J. 2009, 8, 86–95. [Google Scholar] [CrossRef]
- Reynolds, C.A.; Jackson, T.J.; Rawls, W.J. Estimating soil water-holding capacities by linking the food and agriculture organization soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour. Res. 2000, 36, 3653–3662. [Google Scholar] [CrossRef]
- Nachtergaele, F.O.; van Velthuizen, H.T.; Verelst, L.; Wiberg, D.; Batjes, N.H.; Dijkshoorn, J.A.; van Engelen, V.W.P.; Fischer, G.; Jones, A.; Montanarella, L.; et al. Harmonized World Soil Database; Version 1.2; FAO: Rome, Italy; Laxenburg, Austria, 2012. [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Sanchez, N.; Martinez-Fernandez, J.; Calera, A.; Torres, E.; Perez-Gutierrez, C. Combining remote sensing and in situ soil moisture data for the application and validation of a distributed water balance model (hidromore). Agric. Water Manag. 2010, 98, 69–78. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A.N. A downscaling method for improving the spatial resolution of amsr-e derived soil moisture product based on msg-seviri data. Remote Sens. 2013, 5, 6790–6811. [Google Scholar] [CrossRef]
Mission | Variable | Unit | Dimensions | Variable Name |
---|---|---|---|---|
ASCAT | Grid point index | - | 3,264,391 | gpi |
Cell number | - | 3,264,391 | cell | |
Average residual soil water content | cm3 cm−3 | 3,264,391 | mean_thetar | |
Average saturated soil water content | cm3 cm−3 | 3,264,391 | mean_thetas | |
Latitude | Decimal degree | 3,264,391 | latitude | |
Longitude | Decimal degree | 3,264,391 | longitude | |
Number of valid high resolution pixels | - | 3,264,391 | size_valid | |
Sub-grid soil moisture standard deviation | cm3 cm−3 | 3,264,391 × 60 | std_theta | |
Mean soil moisture | cm3 cm−3 | 60 | mean_sm | |
SMAP | Average residual soil water content | cm3 cm−3 | 406 × 964 | mean_thetar |
Average saturated soil water content | cm3 cm−3 | 406 × 964 | mean_thetas | |
Latitude | Decimal degree | 406 | latitude | |
Longitude | Decimal degree | 964 | longitude | |
Number of valid high resolution pixels | - | 406 × 964 | size_valid | |
Sub-grid soil moisture standard deviation | cm3 cm−3 | 406 × 964 × 60 | std_theta | |
Mean soil moisture | cm3 cm−3 | 60 | mean_sm | |
SMOS | Average residual soil water content | cm3 cm−3 | 584 × 1388 | mean_thetar |
Average saturated soil water content | cm3 cm−3 | 584 × 1388 | mean_thetas | |
Latitude | Decimal degree | 584 | latitude | |
Longitude | Decimal degree | 1388 | longitude | |
Number of valid high resolution pixels | - | 584 × 1388 | size_valid | |
Sub-grid soil moisture standard deviation | cm3 cm−3 | 584 × 1388 × 60 | std_theta | |
Mean soil moisture | cm3 cm−3 | 60 | mean_sm |
Site | RMSD | Bias | ubRMSD | R | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Orig | D | D/I | Orig | D | D/I | Orig | D | D/I | Orig | D | D/I | |
TERENO Sites | ||||||||||||
Gevenich | 0.051 | 0.086 | 0.071 | 0.013 | 0.070 | 0.051 | 0.050 | 0.048 | 0.048 | 0.820 | 0.826 | 0.829 |
Merzen-hausen | 0.053 | 0.041 | 0.061 | 0.030 | −0.005 | −0.049 | 0.043 | 0.041 | 0.037 | 0.803 | 0.799 | 0.817 |
Ruraue | 0.136 | 0.150 | 0.136 | −0.122 | −0.136 | −0.123 | 0.063 | 0.061 | 0.058 | 0.745 | 0.744 | 0.765 |
Schone-seiffen | 0.068 | 0.068 | 0.094 | 0.018 | 0.018 | −0.072 | 0.065 | 0.065 | 0.061 | 0.701 | 0.701 | 0.755 |
Mean | 0.077 | 0.086 | 0.091 | −0.015 | −0.013 | −0.048 | 0.055 | 0.054 | 0.051 | 0.767 | 0.768 | 0.792 |
REMEDHUS Sites | ||||||||||||
K10 | 0.086 | 0.077 | 0.086 | 0.075 | 0.067 | 0.072 | 0.042 | 0.037 | 0.046 | 0.889 | 0.890 | 0.879 |
M5 | 0.037 | 0.033 | 0.034 | 0.013 | 0.008 | 0.005 | 0.035 | 0.032 | 0.034 | 0.901 | 0.901 | 0.897 |
N9 | 0.052 | 0.062 | 0.062 | −0.039 | −0.052 | −0.052 | 0.035 | 0.033 | 0.033 | 0.895 | 0.898 | 0.904 |
I6 | 0.121 | 0.117 | 0.122 | 0.105 | 0.101 | 0.105 | 0.060 | 0.057 | 0.062 | 0.815 | 0.815 | 0.809 |
H7 | 0.129 | 0.117 | 0.136 | 0.115 | 0.106 | 0.121 | 0.058 | 0.052 | 0.062 | 0.865 | 0.867 | 0.876 |
K9 | 0.058 | 0.048 | 0.055 | 0.045 | 0.035 | 0.041 | 0.036 | 0.033 | 0.038 | 0.873 | 0.879 | 0.868 |
H9 | 0.184 | 0.197 | 0.180 | −0.168 | −0.180 | −0.164 | 0.075 | 0.081 | 0.073 | 0.917 | 0.916 | 0.923 |
J14 | 0.035 | 0.033 | 0.032 | −0.005 | −0.006 | −0.008 | 0.034 | 0.032 | 0.031 | 0.934 | 0.931 | 0.930 |
M9 | 0.082 | 0.086 | 0.089 | −0.063 | −0.070 | −0.072 | 0.052 | 0.049 | 0.052 | 0.731 | 0.730 | 0.726 |
F6 | 0.096 | 0.102 | 0.086 | −0.082 | −0.091 | −0.072 | 0.048 | 0.046 | 0.046 | 0.784 | 0.787 | 0.822 |
H13 | 0.061 | 0.058 | 0.057 | −0.036 | −0.021 | −0.034 | 0.049 | 0.054 | 0.046 | 0.888 | 0.887 | 0.886 |
L3 | 0.060 | 0.047 | 0.056 | 0.036 | 0.024 | 0.031 | 0.048 | 0.041 | 0.047 | 0.885 | 0.884 | 0.879 |
J12 | 0.151 | 0.146 | 0.154 | −0.144 | −0.139 | −0.148 | 0.044 | 0.044 | 0.042 | 0.875 | 0.874 | 0.864 |
E10 | 0.051 | 0.050 | 0.049 | −0.002 | −0.003 | 0.014 | 0.051 | 0.050 | 0.047 | 0.788 | 0.788 | 0.852 |
O7 | 0.041 | 0.043 | 0.052 | 0.025 | 0.028 | 0.039 | 0.035 | 0.033 | 0.035 | 0.870 | 0.870 | 0.874 |
K4 | 0.119 | 0.112 | 0.114 | 0.106 | 0.100 | 0.102 | 0.054 | 0.049 | 0.052 | 0.905 | 0.906 | 0.907 |
L7 | 0.061 | 0.063 | 0.067 | −0.053 | −0.056 | −0.060 | 0.030 | 0.029 | 0.030 | 0.919 | 0.920 | 0.919 |
J3 | 0.112 | 0.104 | 0.113 | 0.102 | 0.095 | 0.103 | 0.047 | 0.042 | 0.046 | 0.935 | 0.939 | 0.938 |
F11 | 0.073 | 0.076 | 0.077 | 0.055 | 0.059 | 0.062 | 0.048 | 0.047 | 0.045 | 0.927 | 0.924 | 0.936 |
Mean | 0.085 | 0.083 | 0.085 | 0.004 | 0.000 | 0.005 | 0.047 | 0.045 | 0.046 | 0.873 | 0.874 | 0.878 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montzka, C.; Rötzer, K.; Bogena, H.R.; Sanchez, N.; Vereecken, H. A New Soil Moisture Downscaling Approach for SMAP, SMOS, and ASCAT by Predicting Sub-Grid Variability. Remote Sens. 2018, 10, 427. https://doi.org/10.3390/rs10030427
Montzka C, Rötzer K, Bogena HR, Sanchez N, Vereecken H. A New Soil Moisture Downscaling Approach for SMAP, SMOS, and ASCAT by Predicting Sub-Grid Variability. Remote Sensing. 2018; 10(3):427. https://doi.org/10.3390/rs10030427
Chicago/Turabian StyleMontzka, Carsten, Kathrina Rötzer, Heye R. Bogena, Nilda Sanchez, and Harry Vereecken. 2018. "A New Soil Moisture Downscaling Approach for SMAP, SMOS, and ASCAT by Predicting Sub-Grid Variability" Remote Sensing 10, no. 3: 427. https://doi.org/10.3390/rs10030427
APA StyleMontzka, C., Rötzer, K., Bogena, H. R., Sanchez, N., & Vereecken, H. (2018). A New Soil Moisture Downscaling Approach for SMAP, SMOS, and ASCAT by Predicting Sub-Grid Variability. Remote Sensing, 10(3), 427. https://doi.org/10.3390/rs10030427