Structure Tensor-Based Algorithm for Hyperspectral and Panchromatic Images Fusion
"> Figure 1
<p>Diagram of the proposed hyperspectral image fusion algorithm. (<math display="inline"> <semantics> <mi>m</mi> </semantics> </math> and <math display="inline"> <semantics> <mi>M</mi> </semantics> </math> (<math display="inline"> <semantics> <mrow> <mi>m</mi> <mo><</mo> <mi>M</mi> </mrow> </semantics> </math> ) represent the image height of the original HS and PAN images, respectively. <math display="inline"> <semantics> <mi>n</mi> </semantics> </math> and <math display="inline"> <semantics> <mi>N</mi> </semantics> </math> (<math display="inline"> <semantics> <mrow> <mi>n</mi> <mo><</mo> <mi>N</mi> </mrow> </semantics> </math> ) represent the image width of the two images, and <math display="inline"> <semantics> <mi>d</mi> </semantics> </math> represents the number of the HS image bands.).</p> "> Figure 2
<p>Trace and determinant at each pixel on two enhanced PAN images. (<b>a1</b>,<b>a2</b>) PAN image; (<b>b1</b>,<b>b2</b>) Trace of structure tensor at each pixel; (<b>c1</b>,<b>c2</b>) Determinant of structure tensor at each pixel.</p> "> Figure 3
<p>Spatial information of an enhanced PAN image extracted by the gradient methods and the structure tensor method. (<b>a</b>) PAN image; (<b>b</b>) Enhanced PAN image; (<b>c</b>) Horizontal gradient method; (<b>d</b>) Vertical gradient method; (<b>e</b>) Structure tensor method.</p> "> Figure 4
<p>CC values with different tradeoff parameter settings.</p> "> Figure 5
<p>Fusion results obtained by each method for Pavia University dataset. (<b>a</b>) Reference HS image; (<b>b</b>) Simulated PAN image; (<b>c</b>) Interpolated HS image; (<b>d</b>) PCA; (<b>e</b>) GFPCA; (<b>f</b>) BT; (<b>g</b>) CNMF; (<b>h</b>) BSF; (<b>i</b>) MGH; (<b>j</b>) STF.</p> "> Figure 6
<p>Error images of the competing methods for Pavia University dataset. (<b>a</b>) PCA; (<b>b</b>) GFPCA; (<b>c</b>) BT; (<b>d</b>) CNMF; (<b>e</b>) BSF; (<b>f</b>) MGH; (<b>g</b>) STF.</p> "> Figure 7
<p>Fusion results obtained by each method for Moffett field dataset. (<b>a</b>) Reference HS image; (<b>b</b>) Simulated PAN image; (<b>c</b>) Interpolated HS image; (<b>d</b>) PCA; (<b>e</b>) GFPCA; (<b>f</b>) BT; (<b>g</b>) CNMF; (<b>h</b>) BSF; (<b>i</b>) MGH; (<b>j</b>) STF.</p> "> Figure 8
<p>Spectral reflectance difference values comparison on four single pixels shown in <a href="#remotesensing-10-00373-f007" class="html-fig">Figure 7</a>a.</p> "> Figure 9
<p>Fusion results obtained by each method for Washington DC dataset. (<b>a</b>) Reference HS image; (<b>b</b>) Simulated PAN image; (<b>c</b>) Interpolated HS image; (<b>d</b>) PCA; (<b>e</b>) GFPCA; (<b>f</b>) BT; (<b>g</b>) CNMF; (<b>h</b>) BSF; (<b>i</b>) MGH; (<b>j</b>) STF.</p> "> Figure 10
<p>Error images of the competing methods for Washington DC dataset. (<b>a</b>) PCA; (<b>b</b>) GFPCA; (<b>c</b>) BT; (<b>d</b>) CNMF; (<b>e</b>) BSF; (<b>f</b>) MGH; (<b>g</b>) STF.</p> "> Figure 11
<p>Fusion results obtained by each method for Hyperion dataset. (<b>a</b>) HS image; (<b>b</b>) PAN image; (<b>c</b>) Interpolated HS image; (<b>d</b>) PCA; (<b>e</b>) GFPCA; (<b>f</b>) BT; (<b>g</b>) CNMF; (<b>h</b>) BSF; (<b>i</b>) MGH; (<b>j</b>) STF.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Proposed Hyperspectral Image Fusion Algorithm
3.1. Upsamping and Adaptive Weighted for the HS Image
3.2. Image Enhancement and Structure Tensor Processing for the PAN Image
3.3. Weighted Fusion of Spatial Details
3.4. Constructing Gains Matrix and Injecting Spatial Details
4. Experimental Results and Discussion
4.1. Experimental Setup
- Pavia University dataset: Pavia University dataset was acquired by the Reflective Optics System Imaging (ROSIS) over Pavia, Italy. The HS image consists of 115 bands covering the spectral range 0.4–0.9 . The dimensions of the experimental PAN image are 250 × 250 with the spatial resolution of 1.3 m. The test HS image is of size 50 × 50 pixels with the spatial resolution of 6.5 m. For Pavia University dataset, 103 bands are applied to experimentation.
- Moffett field dataset: Moffett field dataset is a standard data product which has been provided by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [29]. This dataset contains 224 bands in the spectral range of 0.4–2.5 . The size of the PAN and HS images that are used for experimentation are 250 × 160 and 50 × 32. The spatial resolution of the experimental PAN and HS images are 20 m and 100 m, respectively. The water absorption and noise corrupted bands are removed, and 176 bands are used for experimentation.
- Washington DC dataset: Washington DC dataset is an airborne hyperspectral data over the Washington DC Mall. This dataset includes 210 bands in the spectral range of 0.4–2.4 . Bands in the opaque atmosphere region are removed from the dataset, and 191 bands are left for experimentation. The test PAN image is of size 250 × 250 pixels, and the size of the HS image is of 50 × 50 pixels.
- Hyperion dataset: The EO-I spacecraft launched in 2000, and carried two primary instruments which were Advanced Land Imager (ALI) and Hyperion [29]. Hyperion instrument can provide the HS image which contains 242 bands covering the spectral range of 0.4–2.5 . ALI instrument is capable of providing the PAN image. For Hyperion dataset, 128 bands are applied to experimentation. The size of the test PAN image is 216 × 174 with the spatial resolution of 10 m. The experimental HS image is of size 72 × 58 pixels with the spatial resolution of 30 m.
4.2. Tradeoff Parameter Setting
4.3. Experiments on Simulated Hyperspectral Remote Sensing Datasets
4.3.1. Pavia University Dataset
4.3.2. Moffett Field Dataset
4.3.3. Washington DC Dataset
4.4. Experiments on Real Hyperspectral Remote Sensing Datasets
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Richards, J.A. Remote Sensing Digital Image Analysis: An Introduction; Springer: New York, NY, USA, 2013. [Google Scholar]
- Li, Y.S.; Xie, W.Y.; Li, H.Q. Hyperspectral image reconstruction by deep convolutional neural network for classification. Pattern Recognit. 2017, 63, 371–383. [Google Scholar] [CrossRef]
- Li, J.; Dias, J.B.; Plaza, A. Spectral–spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 809–823. [Google Scholar] [CrossRef]
- Ertürk, A.; Iordache, M.D.; Plaza, A. Sparse unmixing with dictionary pruning for hyperspectral change detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 321–330. [Google Scholar] [CrossRef]
- Ellis, R.J.; Scott, P.W. Evaluation of hyperspectral remote sensing as a means of environmental monitoring in the St. Austell China clay (kaolin) region, Cornwall, UK. Remote Sens. Environ. 2004, 93, 118–130. [Google Scholar] [CrossRef]
- Carrino, T.A.; Crósta, A.P.; Toledo, C.L.; Silva, A.M. Hyperspectral remote sensing applied to mineral exploration in southern Peru: A multiple data integration approach in the Chapi Chiara gold prospect. Int. J. Appl. Earth Obs. Geoinform. 2018, 64, 287–300. [Google Scholar] [CrossRef]
- Bishop, C.; Liu, J.G.; Mason, P. Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China. Int. J. Remote Sens. 2011, 32, 2409–2426. [Google Scholar] [CrossRef]
- Mahesha, S.; Jayasa, D.S.; Paliwala, J.; Whiteb, N.D.G. Hyperspectral imaging to classify and monitor quality of agricultural materials. J. Stored Prod. Res. 2015, 61, 17–26. [Google Scholar] [CrossRef]
- Chion, C.; Landry, J.A.; Da Costa, L. A Genetic-programming-based method for hyperspectral data information extraction: Agricultural Applications. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2446–2457. [Google Scholar] [CrossRef]
- Qu, J.H.; Li, Y.S.; Dong, W.Q. Hyperspectral pansharpening with guided filter. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2152–2156. [Google Scholar] [CrossRef]
- Liu, J.M.; Liang, S.L. Pan-sharpening using a guided filter. Int. J. Remote Sens. 2016, 37, 1777–1800. [Google Scholar] [CrossRef]
- Carper, W.; Lillesand, T.M.; Kiefer, P.W. The use of Intensity-Hue-Saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 1990, 56, 459–467. [Google Scholar]
- Tu, T.M.; Su, S.C.; Shyu, H.C.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion 2001, 2, 117–186. [Google Scholar] [CrossRef]
- Anderson, J.A.; Sides, S.C.; Chavez, P.S. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic. Photogramm. Eng. Remote Sens. 1991, 57, 295–303. [Google Scholar]
- Chavez, P.S.; Kwarteng, A.Y.A. Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis. Photogramm. Eng. Remote Sens. 1989, 55, 339–348. [Google Scholar]
- Shettigara, V. A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set. Photogramm. Eng. Remote Sens. 1992, 58, 561–567. [Google Scholar]
- Shah, V.P.; Younan, N.; King, R.L. An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Trans. Geosci. Remote Sens. 2008, 56, 1323–1335. [Google Scholar] [CrossRef]
- Laben, C.; Brower, B. Process for Enhacing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent 6,011,875, 4 January 2000. [Google Scholar]
- Aiazzi, B.; Baronti, S.; Selva, M. Improving component substitution pansharpening through multivariate regression of MS + Pan data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [Google Scholar] [CrossRef]
- Gillespie, A.R.; Kahle, A.B.; Walker, R.E. Color enhancement of highly correlated images-II. Channel ratio and “chromaticity” transformation techniques. Remote Sens. Environ. 1987, 22, 343–365. [Google Scholar] [CrossRef]
- Choi, J.; Yu, K.; Kim, Y. A new adaptive component-substitution based satellite image fusion by using partial replacement. IEEE Trans. Geosci. Remote Sens. 2011, 49, 295–309. [Google Scholar] [CrossRef]
- Thomas, C.; Ranchin, T.; Wald, L.; Chanussot, J. Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1301–1312. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.G. Smoothing filter based intensity modulation: A spectral preserve image fusion technique for improving spatial details. Int. J. Remote Sens. 2000, 21, 3461–3472. [Google Scholar] [CrossRef]
- Mallat, S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 674–693. [Google Scholar] [CrossRef]
- Burt, P.J.; Adelson, E.H. The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 1983, 31, 532–540. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored multiscale fusion of high-resolution MS and pan imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [Google Scholar] [CrossRef]
- Vivone, G.; Restaino, R.; Mura, M.D.; Licciardi, G.; Chanussot, J. Contrast and error-based fusion schemes for multispectral image pansharpening. IEEE Trans. Geosci. Remote Sens. Lett. 2014, 11, 930–934. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. 25 years of pansharpening: A critical review and new developments. In Signal Image Processing for Remote Sensing, 2nd ed.; Chen, C.H., Ed.; CRC Press: Boca Raton, FL, USA, 2011; Chapter 28; pp. 533–548. [Google Scholar]
- Mookambiga, A.; Gomathi, V. Comprehensive review on fusion techniques for spatial information enhancement in hyperspectral imagery. Multidimens. Syst. Signal Process. 2016, 27, 863–889. [Google Scholar] [CrossRef]
- Wei, Q.; Dobigeon, N.; Tourneret, J.Y. Bayesian fusion of multiband images. IEEE J. Sel. Top. Signal Process. 2015, 9, 1117–1127. [Google Scholar] [CrossRef]
- Simoes, M.; Dias, J.B.; Almeida, L.; Chanussot, J. A convex formulation for hyperspectral image superresolution via subspace-based regularization. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3373–3388. [Google Scholar] [CrossRef]
- Wei, Q.; Dobigeon, N.; Tourneret, J.Y. Fast fusion of multiband images based on solving a sylvester equation. IEEE Trans. Image Process. 2015, 24, 4109–4121. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [PubMed]
- Hoyer, P.O. Non negative sparse coding. In Proceedings of the IEEE Workshop Neural Network Signal Processing, Martigny, Switzerland, 6 September 2002; pp. 557–565. [Google Scholar]
- Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled nonnegative matrix factorization unmixing for hyper-spectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 2012, 50, 528–537. [Google Scholar] [CrossRef]
- Ghassemian, H. A review of remote sensing image fusion methods. Inf. Fusion 2016, 32, 75–89. [Google Scholar] [CrossRef]
- Ghahremani, M.; Ghassemian, H. Remote-sensing image fusion based on Curvelets and ICA. Int. J. Remote Sens. 2015, 36, 4131–4143. [Google Scholar] [CrossRef]
- Liao, W.; Huang, X.; Coillie, F.; Gautama, S.; Pizurica, A.; Philips, W.; Liu, H.; Zhu, T.; Shimoni, M.; Moser, G.; et al. Processing of multiresolution thermal hyperspectral and digital color data: Outcome of the 2014 IEEE GRSS data fusion contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2984–2996. [Google Scholar] [CrossRef]
- Licciardi, G.; Khan, M.M.; Chanussot, J.; Montanvert, A.; Condat, L.; Jutten, C. Fusion of hyperspectral and panchromatic images using multiresolution analysis and nonlinear PCA band reduction. EURASIP J. Adv. Signal Process. 2012, 1, 1–17. [Google Scholar] [CrossRef]
- Harris, C. A combined corner and edge detector. Proc. Alvey Vis. Conf. 1988, 3, 147–151. [Google Scholar]
- Zenzo, S.D. A note on the gradient of a multi-image. Comput. Vis. Graph. Image Process. 1986, 33, 116–125. [Google Scholar] [CrossRef]
- Köthe, U. Edge and Junction Detection with an Improved Structure Tensor. Pattern. Recognit. 2003, 2781, 25–32. [Google Scholar]
- Li, S. An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. J. Struct. Biol. 2003, 144, 152–161. [Google Scholar]
- Weickert, J.; Schuster, O.; Richter, S. A tensor-driven active contour model for moving object segmentation. In Proceedings of the 2001 International Conference on Image Processing, Thessaloniki, Greece, 7–10 October 2001. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Alparone, L.; Wald, L.; Chanussot, J.; Thomas, C.; Gamba, P.; Bruce, L. Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3012–3021. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, L.; Tao, D.; Huang, X. On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 879–893. [Google Scholar] [CrossRef]
Dataset | Size | Spatial Resolution | Band Number | Spectral Range |
---|---|---|---|---|
Pavia University | PAN 250 × 250 HS 50 × 50 | 1.3 m 6.5 m | 103 | 0.4–0.9 |
Moffett field | PAN 250 × 160 HS 50 × 32 | 20 m 100 m | 176 | 0.4–2.5 |
Washington DC | PAN 250 × 250 HS 50 × 50 | 3 m 15 m | 191 | 0.4–2.4 |
Hyperion | PAN 216 × 174 HS 72 × 58 | 10 m 30 m | 128 | 0.4–2.5 |
Index | PCA | GFPCA | BT | CNMF | BSF | MGH | STF |
---|---|---|---|---|---|---|---|
CC | 0.9342 | 0.8142 | 0.9375 | 0.8598 | 0.9059 | 0.8608 | 0.9336 |
SAM | 7.2570 | 9.5526 | 6.6324 | 7.6670 | 8.8048 | 7.2589 | 6.6212 |
RMSE | 0.0387 | 0.0596 | 0.0389 | 0.0493 | 0.0428 | 0.0867 | 0.0386 |
ERGAS | 4.2443 | 6.8524 | 3.9901 | 5.7962 | 4.8990 | 7.7826 | 3.9733 |
Index | PCA | GFPCA | BT | CNMF | BSF | MGH | STF |
---|---|---|---|---|---|---|---|
CC | 0.9046 | 0.9163 | 0.8705 | 0.9398 | 0.9558 | 0.9586 | 0.9647 |
SAM | 12.0820 | 10.1200 | 8.3690 | 7.3153 | 7.9628 | 6.4328 | 6.2690 |
RMSE | 0.0479 | 0.0444 | 0.0524 | 0.0372 | 0.0321 | 0.0489 | 0.0308 |
ERGAS | 6.5091 | 6.1392 | 8.2161 | 5.1683 | 4.5358 | 6.6523 | 3.9744 |
Index | PCA | GFPCA | BT | CNMF | BSF | MGH | STF |
---|---|---|---|---|---|---|---|
CC | 0.8485 | 0.7650 | 0.8157 | 0.7655 | 0.8294 | 0.8502 | 0.8636 |
SAM | 7.9107 | 9.9500 | 7.9970 | 8.4167 | 10.0846 | 7.5508 | 7.3970 |
RMSE | 0.0145 | 0.0148 | 0.0205 | 0.0148 | 0.0149 | 0.0359 | 0.0140 |
ERGAS | 80.7202 | 59.4649 | 45.0533 | 43.2606 | 73.4928 | 95.2458 | 72.3328 |
Index | PCA | GFPCA | BT | CNMF | BSF | MGH | STF |
---|---|---|---|---|---|---|---|
CC | 0.7154 | 0.7309 | 0.7545 | 0.8702 | 0.8233 | 0.8661 | 0.8780 |
SAM | 4.2361 | 4.8197 | 2.9466 | 3.1359 | 4.7309 | 2.7979 | 2.6465 |
RMSE | 0.0476 | 0.0488 | 0.0775 | 0.0453 | 0.0459 | 0.0389 | 0.0421 |
ERGAS | 8.9573 | 9.8286 | 9.9465 | 8.6040 | 8.9578 | 8.5842 | 8.0167 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, J.; Lei, J.; Li, Y.; Dong, W.; Zeng, Z.; Chen, D. Structure Tensor-Based Algorithm for Hyperspectral and Panchromatic Images Fusion. Remote Sens. 2018, 10, 373. https://doi.org/10.3390/rs10030373
Qu J, Lei J, Li Y, Dong W, Zeng Z, Chen D. Structure Tensor-Based Algorithm for Hyperspectral and Panchromatic Images Fusion. Remote Sensing. 2018; 10(3):373. https://doi.org/10.3390/rs10030373
Chicago/Turabian StyleQu, Jiahui, Jie Lei, Yunsong Li, Wenqian Dong, Zhiyong Zeng, and Dunyu Chen. 2018. "Structure Tensor-Based Algorithm for Hyperspectral and Panchromatic Images Fusion" Remote Sensing 10, no. 3: 373. https://doi.org/10.3390/rs10030373