Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery
"> Figure 1
<p>Spatial resolution and spectral range occupied by Landsat (7 and 8) and Sentinel-2 bands in the optical spectral region.</p> "> Figure 2
<p>Zones chosen for quality assessment of the extracted shorelines. (1) The sandy beach at El Saler, and (2) part of a dike in the port of Valencia.</p> "> Figure 3
<p>Current workflow of the process.</p> "> Figure 4
<p>Temporal distribution of the 21 scenes acquired from three satellite platforms. Note that on 8 October the study zones were registered both by Landsat 8 and Sentinel-2 with only 18 min of difference.</p> "> Figure 5
<p>The same orthophoto is used in the six images simply as a base map. On these images, the projection of six terrestrial images for El Saler beach is shown. Their projection is made at the mean sea level value for each date. Note that the camera is not fixed, and the different extension covered by the photos is a consequence of the hand-selected region projected. Each map shows the GPS-line, the digitalized-line (almost coincident between them) and the satellite shoreline.</p> "> Figure 6
<p>Sections of: (<b>A</b>) El Saler beach and (<b>C</b>) the port zone in a 10 m pixel size image in the NIR band (band 8) of Sentinel-2 acquired on 17 November 2016; (<b>B</b>) shows two photos for this day rectified by C-Pro over an orthophoto taken from 2010 PNOA sources (used simply as a base map). The reference shoreline position acquired using differential GNSS appears in green, and the automatically detected satellite shoreline in red. (<b>A</b>) shows how the shoreline has been erroneously detected as the whitewater border. In the case of the port (<b>C</b>), where there is no whitewater due to the greater water depth, and the shorelines are correctly detected.</p> "> Figure 7
<p>The blue line is the high-resolution mapped shoreline and the dark blue points represent the sub-pixel shoreline. The base image on the left is Landsat 8. The base image on the right is the 2010 PNOA orthophoto. Higher and lower reflectance pushes the shorelines landwards or seawards respectively.</p> "> Figure 8
<p>Map shows differences between shorelines for Landsat 8 and Sentinel-2 with a few minutes of difference. Negative values indicate that Landsat 8 is displaced landwards with respect to Sentinel-2, while positive values imply seaward bias. Details (<b>A</b>,<b>B</b>) show the influence of the width of the beach in the shoreline positions due to the differing spatial resolutions of these two types of images.</p> "> Figure 9
<p>Inverse relationship between the error in the mean shoreline position using Landsat 8 and Sentinel-2 images (SWIR 2) and (<b>a</b>) wavelength or (<b>b</b>) run-up, respectively.</p> ">
Abstract
:1. Introduction
2. Study Areas
3. Materials and Methods
3.1. Shoreline Extraction from Mid-Resolution Satellite Imagery
3.2. Reference Data for High-Precision Shorelines
3.3. Shoreline Accuracy Assessment Methodology
4. Results
4.1. Assessing How PRC Is Working on Sandy Beaches
4.2. Shoreline Errors by Sensor and Date
4.2.1. Errors on Landsat 7 Shorelines
4.2.2. Landsat 8 Shoreline Errors
4.2.3. Errors of Sentinel-2 Shorelines
5. Discussion
6. Conclusions
- SWIR-1 bands, in all satellite sensor systems, offer the most accurate and robust sub-pixel shorelines on our study area. This result is a starting point that can be extrapolated to other similar areas and studies.
- Shorelines obtained from the NIR band have usually been accurate, but have shown to be more affected by whitewater and foam.
- Shorelines extracted from Landsat 8 and Sentinel 2 show similar disturbances for environmental factors, brightness of the land zone, and wavelength of the incident waves.
- The brightness of the land pixels surrounding the shoreline seems to affect the detected shoreline moving it landwards as the brightness of the pixels increase. This behavior appears clearer at the port area. It was seen in previous publications although modelling it has not been possible.
- A relationship between the bias of the shorelines—obtained from the SWIR-1 band of Landsat 8 and Sentinel-2—and the wavelengths of the sea waves is found. It suggests, even with the scarcity of data, that the state of the sea affects the extracted sub-pixel shorelines.
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Boak, E.H.; Turner, I.L. Shoreline definition and detection: A review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef]
- Ford, M. Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands. Remote Sens. Environ. 2013, 135, 130–140. [Google Scholar] [CrossRef]
- Jones, B.M.; Arp, C.D.; Jorgenson, M.T.; Hinkel, K.M.; Schmutz, J.A.; Flint, P.L. Increase in the rate and uniformity of shoreline erosion in Arctic Alaska. Geophy. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Morton, R.A.; Miller, T.L.; Moore, L.J. National Assessment of Shoreline Change, Part 1: Historical Shoreline Changes and Associated Coastal Land Loss Along the U.S. Gulf of Mexico. U.S. Geological Survey Open-file report 2004–1043. Available online: https://pubs.usgs.gov/of/2004/1043/ofr-2004-1043.pdf (accessed on 21 February 2018).
- Stockdon, H.F.; Sallenger, A.H.; List, J.H.; Holman, R.A. Estimation of the shoreline position and change using airborne topographic lidar data. J. Coast. Res. 2002, 18, 502–513. [Google Scholar]
- Ruggiero, P.; Kaminsky, G.M.; Gelfenbaum, G.; Voigt, B. Seasonal to interannual morphodynamics along a high-energy dissipative littoral cell. J. Coast. Res. 2005, 21, 553–578. [Google Scholar] [CrossRef]
- Moore, L.J.; Ruggiero, P.; List, J.H. Comparing mean high water and high water line shorelines: Should proxy-datum offsets be incorporated into shoreline change analysis? J. Coast. Res. 2006, 22, 894–905. [Google Scholar] [CrossRef]
- List, J.H.; Farris, A.S.; Sullivan, C. Reversing storm hotspots on sandy beaches: Spatial and temporal characteristics. Mar. Geol. 2006, 226, 261–279. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.E.; García-Asenjo, L.; Palomar-Vázquez, J.; Garrigues-Talens, P. New methods and tools to analyze beach-dune system evolution using a Real-Time Kinematic Global Positioning System and Geographic Information Systems. J. Coast. Res. 2005, 49, 34–39. [Google Scholar]
- Psuty, N.P.; Silvera, T.M. Tracking coastal geomorphological change: An application of protocols to collect geotemporal data sets at the national level in the US. J. Coast. Res. 2011, 64, 1253–1257. [Google Scholar]
- White, S.A.; Wang, Y. Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina shoreline. Remote Sens. Environ. 2003, 85, 39–47. [Google Scholar] [CrossRef]
- Shrestha, R.L.; Carter, W.E.; Sartori, M.; Luzum, B.J.; Slatton, K.C. Airborne laser swath mapping: Quantifying changes in sandy beaches over time scales of weeks to years. ISPRS J. Photogramm. Remote Sens. 2005, 59, 222–232. [Google Scholar] [CrossRef]
- Gares, P.; Wang, Y.; White, S.A. Using LIDAR to monitor a beach nourishment project at Wrightsville Beach, North Carolina, USA. J. Coast. Res. 2006, 22, 1206–1219. [Google Scholar] [CrossRef]
- Smeeckaert, J.; Mallet, C.; David, N.; Chehata, N.; Ferraz, A. Large-scale classification of water areas using airborne topographic lidar data. Remote Sens. Environ. 2013, 138, 134–148. [Google Scholar] [CrossRef]
- Hobbs, P.; Gibson, A.; Jones, L.; Poulton, C.; Jenkins, G.; Pearson, S.; Freeborough, K. Monitoring coastal change using terrestrial LiDAR. In Elevation Models for Geoscience; Fleming, C., Marsh, S., Giles, J.M., Eds.; Geological Society of London: London, UK, 2010. [Google Scholar]
- Holman, R.; Stanley, J. The history and technical capabilities of Argus. Coast. Eng. 2007, 54, 477–491. [Google Scholar] [CrossRef]
- Davidson, M.; Van Koningsveld, M.; de Kruif, A.; Rawson, J.; Holman, R.; Lamberti, A.; Medina, R.; Kroon, A.; Aarninkhof, S. The CoastView project: Developing video-derived Coastal State Indicators in support of coastal zone management. Coast. Eng. 2007, 54, 463–475. [Google Scholar] [CrossRef]
- Archetti, R.; Schiaffi, C.F.; Ferrari, M.; Brignone, M.; Rihouey, D. Video systems for coastal monitoring. In Beach Erosion Monitoring Beachmed-e/OpTIMAL Project; Pranzini, E., Wetzel, L., Eds.; Nuova Grafica Fiorentina: Florence, Italy, 2008; pp. 101–109. [Google Scholar]
- Vandebroek, E.; Lindenbergh, R.; van Leijen, F.; de Schipper, M.; de Vries, S.; Hanssen, R. Semi-automated monitoring of a mega-scale beach nourishment using high-resolution terrasar-x satellite data. Remote Sens. 2017, 9, 653. [Google Scholar] [CrossRef]
- Maiti, S.; Bhattacharya, A.K. Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Mar. Geol. 2009, 257, 11–23. [Google Scholar] [CrossRef]
- Mann, T.; Westphal, H. Assessing long-term changes in the beach width of reef islands based on temporally fragmented remote sensing data. Remote Sens. 2014, 6, 6961–6987. [Google Scholar] [CrossRef]
- Almonacid-Caballer, J.; Sánchez-García, E.; Pardo-Pascual, J.E.; Balaguer-Beser, A.A.; Palomar-Vázquez, J. Evaluation of annual mean shoreline position deduced from Landsat imagery as a mid-term coastal evolution indicator. Mar. Geol. 2016, 372, 79–88. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A global analysis of Sentinel-2a, Sentinel-2b and Landsat 8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef]
- Ryu, J.H.; Won, J.S.; Min, K.D. Waterline extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay, Korea. Remote Sens. Environ. 2002, 83, 442–456. [Google Scholar] [CrossRef]
- Ekercin, S. Shoreline change assessment at the Aegean Sea Coasts in Turkey using multitemporal Landsat imagery. J. Coast. Res. 2007, 23, 691–698. [Google Scholar] [CrossRef]
- Yu, K.; Hu, C.; Muller-Karger, F.; Lu, D.; Soto, I. Shoreline changes in west-central Florida between 1987 and 2008 from Landsat observations. Int. J. Remote Sens. 2011, 32, 8299–8313. [Google Scholar] [CrossRef]
- Quang Tuan, N.; Cong Tin, H.; Quang Doc, L.; Anh Tuan, T. Historical monitoring of shoreline changes in the Cua Dai Estuary, Central Vietnam using multi-temporal remote sensing data. Geosciences 2017, 7, 72. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Tateishi, R. A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: An empirical analysis using Landsat TM and ETM+ data. Int. J. Remote Sens. 2006, 27, 3153–3181. [Google Scholar] [CrossRef]
- Hui, F.; Xu, B.; Huang, H.; Yu, Q.; Gong, P. Modelling spatial–temporal change of Poyang Lake using multitemporal Landsat imagery. Int. J. Remote Sens. 2008, 29, 5767–5784. [Google Scholar] [CrossRef]
- Choung, Y.J.; Jo, M.H. Shoreline change assessment for various types of coasts using multi-temporal Landsat imagery of the east coast of South Korea. Remote Sens. Lett. 2015, 7, 91–100. [Google Scholar] [CrossRef]
- Foody, G.M.; Muslim, A.M.; Atkinson, P.M. Super-resolution mapping of the waterline from remotely sensed data. Int. J. Remote Sens. 2005, 26, 5381–5392. [Google Scholar] [CrossRef]
- Muslim, A.M.; Foody, G.M.; Atkinson, P.M. Localized soft classification for super resolution mapping of the shoreline. Int. J. Remote Sens. 2006, 27, 2271–2285. [Google Scholar] [CrossRef]
- Liu, Q.; Trinder, J.; Turner, I. A comparison of sub-pixel mapping methods for coastal areas. ISPRS Ann. 2016, 3, 67–74. [Google Scholar]
- Li, L.; Chen, Y.; Xu, T.; Liu, R.; Shi, K.; Huang, C. Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm. Remote Sens. Environ. 2015, 164, 142–154. [Google Scholar] [CrossRef]
- Li, X.; Ling, F.; Foody, G.M.; Du, Y. Improving super-resolution mapping through combining multiple super-resolution land-cover maps. Int. J. Remote Sens. 2016, 37, 2415–2432. [Google Scholar] [CrossRef]
- Shi, Z.; Li, P.; Jin, H.; Tian, Y.; Chen, Y.; Zhang, X. Improving super-resolution mapping by combining multiple realizations obtained using the indicator-geostatistics based method. Remote Sens. 2017, 9, 773. [Google Scholar] [CrossRef]
- Liu, Q.; Trinder, J.; Turner, I.L. Automatic super-resolution shoreline change monitoring using Landsat archival data: A case study at Narrabeen–Collaroy Beach, Australia. J. Appl. Remote Sens. 2017, 11. [Google Scholar] [CrossRef]
- Cipolletti, M.P.; Delrieux, C.A.; Perillo, G.M.E.; Piccolo, M.C. Superresolution border segmentation and measurement in remote sensing images. Comput. Geosci. 2012, 40, 87–96. [Google Scholar] [CrossRef]
- Ruiz, L.A.; Pardo, J.E.; Almonacid, J.; Rodríguez, B. Coastline automated detection and multi-resolution evaluation using satellite images. In Proceedings of the Coastal Zone 7, Portland, OR, USA, 22–26 July 2007. [Google Scholar]
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vázquez, J. Automatic extraction of shorelines from Landsat TM and ETM multi-temporal images with sub-pixel precision. Remote Sens. Environ. 2012, 123, 1–11. [Google Scholar] [CrossRef]
- Almonacid-Caballer, J. Extraction of Shorelines with Sub-Pixel Precision from Landsat Images (TM, ETM+, OLI) [Obtención de Lineas de Costa con Precisión Sub-Pixel a Partir de Imágenes Landsat (TM, ETM+ y OLI)]. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 10 October 2014. [Google Scholar]
- Iron, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Clerc, S.; MPC Team. S2 MPC. Data Quality Report, 2017, Reference S2-PDGS-MPC-DQR. Available online: https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2-Data-Quality-Report (accessed on 21 February 2018).
- Almonacid-Caballer, J.; Pardo-Pascual, J.E.; Ruiz, L.A. Evaluating fourier cross-correlation sub-pixel registration in landsat images. Remote Sens. 2017, 9, 1051. [Google Scholar] [CrossRef]
- Guizar-Sicairos, M.; Thurman, S.T.; Fienup, J.R. Efficient sub-pixel image registration algorithms. Opt. Lett. 2008, 3, 156–158. [Google Scholar] [CrossRef]
- Wang, C.L.; Zhao, C.X.; Yang, J.Y. Local upsampling Fourier transform for high accuracy image rotation estimation. Adv. Mater. Res. 2011, 268–270, 1488–1593. [Google Scholar] [CrossRef]
- Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Ruiz, L.A.; Palomar-Vázquez, J.; Rodrigo-Alemany, R. Evaluation of storm impact on sandy beaches of the Gulf of Valencia using Landsat imagery. Geomorphology 2014, 214, 334–401. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Pardo-Pascual, J.E.; Balaguer-Beser, A.; Almonacid-Caballer, J. Analysis of the shoreline position extracted from Landsat TM and ETM+ imagery. ISPRS Arch. 2015, XL-7/W3, 991–998. [Google Scholar]
- REDMAR (Red de Mareógrafos de Puertos del Estado). Resumen de los parámetros relacionados con el nivel del mar y la marea que afectan a las condiciones de diseño y explotación portuaria. Puerto de Valencia¸ Dirección Técnica Puertos del Estado. 2014. Available online: http://calipso.puertos.es/BD/informes/globales/GLOB_2_3_3651.pdf (accessed on 21 February 2018).
- Prochniewicz, D.; Szpunar, R.; Walo, J. A new study of describing the reliability of GNSS Network RTK positioning with the use of quality indicators. Meas. Sci. Technol. 2016, 28. [Google Scholar] [CrossRef]
- Paziewski, J.; Wielgosz, P. Investigation of some selected strategies for multi-GNSS instantaneous RTK positioning. Adv. Space Res. 2017, 59, 12–23. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Balaguer-Beser, A.; Pardo-Pascual, J.E. C-Pro: A Coastal Projector monitoring system using terrestrial photogrammetry with a geometric horizon constraint. ISPRS J. Photogramm. Remote Sens. 2017, 128, 255–273. [Google Scholar] [CrossRef]
- Mandanici, E.; Bitelli, G. Preliminary comparison of sentinel-2 and landsat 8 imagery for a combined use. Remote Sens. 2016, 8, 1014. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Whitlock, C.H.; Barlett, D.S.; Gurganus, E.A. Sea foam reflectance and optimum wavelength for remote sensing of ocean aerosols. Geophy. Res. Lett. 1982, 9, 719–722. [Google Scholar] [CrossRef]
- Koepke, P. Effective reflectance of oceanic whitecaps. Appl. Opt. 1984, 23, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Frouin, R.M.; Schwindling, M.; Deschamps, P.Y. Spectral reflectance of sea foam in the visible and near infrared: In situ measurements and remote sensing implications. J. Geophys. Res. 1996, 101, 14361–14371. [Google Scholar] [CrossRef]
- García-Rubio, G.; Huntley, D.; Russell, P. Evaluating shoreline identification using optical satellite images. Mar. Geol. 2015, 359, 96–105. [Google Scholar] [CrossRef]
Band | ||||||
---|---|---|---|---|---|---|
NIR | SWIR 1 | SWIR 2 | ||||
Sensor | Beach | Port | Beach | Port | Beach | Port |
L7H (prc) | 11.1 ± 9.2 | 3.5 ± 9.0 | 6.9 ± 12.0 | 4.1 ± 12.1 | 12.1 ± 18.9 | 3.0± 10.3 |
L7H | 8.7 ± 7.5 | 2.4 ± 8.2 | 4.8 ± 8.0 | 3.7 ± 7.6 | 5.5 ± 6.7 | 2.4 ± 7.5 |
L7L (prc) | 7.7 ± 6.3 | 2.8 ± 10.0 | 3.9 ± 6.0 | 3.8 ± 11.4 | 6.6 ± 5.9 | 7.2 ± 12.7 |
L7L | 7.5 ± 5.6 | 2.7 ± 6.5 | 6.4 ± 5.2 | 4.5 ± 6.6 | 7.8 ± 5.0 | 3.6 ± 5.1 |
L8 (prc) | 2.1 ± 6.2 | 0.7 ± 8.6 | 4.5 ± 8.9 | 5.2 ± 9.6 | 6.2 ± 8.1 | 4.6 ± 6.3 |
L8 | 6.7 ± 3.7 | 3.0 ± 6.7 | 6.5 ± 3.1 | 5.5 ± 6.7 | 8.2 ± 3.0 | 4.4 ± 5.0 |
Zone | ||||||
---|---|---|---|---|---|---|
Beach | Port | Beach | Port | Beach | Port | |
Band | 19 July 2016 | 14 September 2016 | 7 October 2016 | |||
NIR | 9.6 ± 2.7 | −1.3 ± 7.9 | 6.4 ± 5.5 | 3.1 ± 5.8 | 12.5 ± 7.2 | 3.5 ± 6.6 |
SWIR1 | 4.5 ± 3.0 | −0.9 ± 6.7 | 5.7 ± 11.2 | 5.1 ± 2.9 | 5.4 ± 5.4 | 2.8 ± 5.3 |
SWIR2 | 6.3 ± 3.2 | −1.8 ± 4.5 | 6.2 ± 4.1 | 3.3 ± 4.4 | 5.3 ± 5.4 | 0.9 ± 5.6 |
Zone | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beach | Port | Beach | Port | Beach | Port | Beach | Port | Beach | Port | Beach | Port | |
Band | 25 May 2016 | 1 June 2016 | 10 June 2016 | 28 July 2016 | 21 September 2016 | 30 September 2016 | ||||||
NIR | 11.6 ± 3.4 | 2.9 ± 3.5 | 5.2 ± 5.2 | −0.4 ± 8.3 | 9.8 ± 5.2 | 4.0 ± 3.3 | 9.5 ± 5.3 | 6.6 ± 7.6 | 3.3 ± 3.7 | 0.2 ± 6.5 | 6.4 ± 3.2 | 3.9 ± 4.9 |
SWIR1 | 8.1 ± 3.4 | 3.9 ± 5.0 | 5.2 ± 3.3 | 1.2 ± 8.2 | 10.6 ± 6.0 | 5.6 ± 3.9 | 7.2 ± 4.4 | 7.2 ± 6.5 | 2.1 ± 2.9 | 4.5 ± 7.9 | 5.2 ± 3.2 | 5.1 ± 4.6 |
SWIR2 | 9.6 ± 3.6 | 4.4 ± 4.1 | 7.1 ± 3.4 | 2.4 ± 5.1 | 10.8 ± 5.8 | 4.7 ± 4.1 | 9.1 ± 4.0 | 5.3 ± 4.5 | 3.7 ± 3.5 | 3.0 ± 6.8 | 6.7 ± 3.8 | 2.5 ± 4.3 |
Zone | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beach | Port | Beach | Port | Beach | Port | Beach | Port | Beach | Port | Beach | Port | Beach | Port | |
Band | 24 May 2016 | 2 June 2016 | 9 June 2016 | 18 June 2016 | 25 June 2016 | 6 September 2016 | 8 October 2016 | |||||||
NIR | 8.2 ± 3.0 | 2.3 ± 7.9 | 2.3 ± 2.4 | 2.8 ± 4.8 | 10.1 ± 3.2 | 5.3 ± 8.5 | 8.6 ± 5.1 | - | 11.2 ± 2.9 | 2.9 ± 7.0 | 1.2 ± 4.6 | 2.5 ± 5.5 | 4.4 ± 3.7 | 2.4 ± 5.4 |
SWIR1 | 7.9 ± 2.5 | 5.4 ± 8.2 | 2.6 ± 2.3 | 4.2 ± 5.1 | 9.8 ± 2.6 | 7.2 ± 8.3 | 3.4 ± 3.2 | - | 10.0 ± 2.8 | 6.7 ± 7.3 | 0.8 ± 5.1 | 4.8 ± 5.3 | 1.7 ± 2.8 | 4.9 ± 4.7 |
SWIR2 | 9.2 ± 2.3 | 4.6 ± 5.4 | 4.3 ± 2.5 | 3.7 ± 4.0 | 10.9 ± 2.7 | 5.7 ± 5.8 | 4.6 ± 2.9 | - | 11.3 ± 2.9 | 4.4 ± 5.1 | 2.7 ± 4.8 | 4.2 ± 4.8 | 2.7 ± 2.8 | 4.0 ± 4.8 |
Zone | ||||||||
---|---|---|---|---|---|---|---|---|
Beach | Port | Beach | Port | Beach | Port | Beach | Port | |
Band | 8 September 2016 | 8 October 2016 | 7 November 2016 | 17 November 2016 | ||||
NIR 10 | −3.6 ± 6.2 | 4.6 ± 2.2 | −1.8 ± 2.0 | 4.7 ± 2.8 | −1.6 ± 1.7 | 7.0 ± 3.2 | 50.6 ± 30.6 | 9.9 ± 3.3 |
NIR 20 | 3.5 ±3.2 | 2.4 ± 4.3 | 2.2 ± 3.2 | 1.7 ± 6.6 | 2.6 ± 2.3 | 6.7 ± 5.2 | 47.8 ± 34.1 | 11.5 ± 7.5 |
SWIR1 | −1.5 ± 2.1 | 2.9 ± 4.2 | −2.8 ± 2.0 | 3.6 ± 3.7 | −2.0 ± 2.3 | 5.0 ± 5.0 | −5.9 ± 2.7 | 3.1 ± 4.7 |
SWIR2 | −1.2 ± 2.2 | 2.3 ± 3.9 | −2.2 ± 2.3 | 3.2 ± 2.9 | −2.0 ± 2.1 | 4.5 ± 3.3 | −6.5 ± 2.7 | 1.4 ± 3.9 |
Mean Error (m) by Spectral Band | Wave Data and Other Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Date | Type of Image | NIR | SWIR-1 | SWIR-2 | H1/3 | Tp | L | H/L | R2% |
24-May | Landsat 8 | 7.70 | 6.93 | 8.11 | 0.32 | 3.96 | 8.77 | 0.04 | 0.10 |
25-May | Landsat 7-L | 11.64 | 8.08 | 9.56 | 0.50 | 5.40 | 11.96 | 0.04 | 0.13 |
1-June | Landsat 7-L | 5.22 | 5.18 | 7.11 | 0.30 | 3.79 | 8.39 | 0.04 | 0.09 |
2-June | Landsat 8 | 2.30 | 2.55 | 4.28 | 0.16 | 3.40 | 7.53 | 0.02 | 0.07 |
9-June | Landsat 8 | 10.13 | 9.79 | 10.87 | 0.26 | 2.95 | 6.53 | 0.04 | 0.08 |
10-June | Landsat 7-L | 9.75 | 10.55 | 10.79 | 0.28 | 3.79 | 8.39 | 0.03 | 0.09 |
17-June | Landsat 7-H | 5.25 | 3.70 | 4.39 | 0.12 | 2.13 | 4.72 | 0.03 | 0.06 |
18-June | Landsat 8 | 8.58 | 3.36 | 4.60 | 0.74 | 4.61 | 10.21 | 0.07 | 0.15 |
25-June | Landsat 8 | 11.18 | 10.00 | 11.25 | 0.36 | 2.92 | 6.47 | 0.06 | 0.09 |
19-July | Landsat 7-H | 9.60 | 4.46 | 6.28 | 0.47 | 5.88 | 13.02 | 0.04 | 0.13 |
28-July | Landsat 7-L | 9.46 | 7.18 | 9.07 | 0.47 | 5.76 | 12.76 | 0.04 | 0.13 |
6-September | Landsat 8 | 1.19 | 0.79 | 2.67 | 0.55 | 6.94 | 15.37 | 0.04 | 0.15 |
8-September | Sentinel-2 | 3.52 | −1.52 | −1.15 | 0.72 | 7.62 | 16.88 | 0.04 | 0.18 |
14-September | Landsat 7-H | 6.43 | 5.74 | 6.16 | 0.38 | 2.65 | 5.87 | 0.06 | 0.09 |
21-September | Landsat 7-L | 3.34 | 2.14 | 3.73 | 0.26 | 4.35 | 9.63 | 0.03 | 0.09 |
30-September | Landsat 7-L | 6.39 | 5.22 | 6.66 | 0.53 | 5.38 | 11.92 | 0.04 | 0.13 |
7-October | Landsat 7-H | 12.47 | 5.35 | 5.27 | 0.51 | 4.47 | 9.90 | 0.05 | 0.12 |
8-October | Landsat 8 | 4.41 | 1.73 | 2.70 | 0.47 | 7.84 | 17.36 | 0.03 | 0.15 |
8-October | Sentinel-2 | 2.21 | −2.79 | −2.19 | 0.47 | 7.84 | 17.36 | 0.03 | 0.15 |
7-November | Sentinel-2 | 2.62 | −2.03 | −1.97 | 0.42 | 6.14 | 13.60 | 0.03 | 0.13 |
17-November | Sentinel-2 | 47.71 | −5.87 | −6.47 | 0.89 | 8.96 | 19.84 | 0.04 | 0.22 |
Beach | Port | |||||||
---|---|---|---|---|---|---|---|---|
SWIR-1 | SWIR-2 | SWIR-1 | SWIR-2 | |||||
μ ± σ | RMSE | μ ± σ | RMSE | μ ± σ | RMSE | μ ± σ | RMSE | |
Landsat 7-H | 4.6 ± 6.5 | 8.0 | 6.0 ± 6.7 | 9.0 | 4.1 ± 7.5 | 8.5 | 1.2 ± 7.5 | 7.6 |
Landsat 7-L | 5.5 ± 4.9 | 7.4 | 7.4 ± 4.7 | 8.8 | 4.9 ± 6.5 | 8.1 | 3.9 ± 5.1 | 6.4 |
Landsat 8 + Sentinel-2 | 3.1 ± 5.8 | 6.6 | 4.0 ± 6.0 | 7.2 | 4.5 ± 6.0 | 7.5 | 3.7 ± 4.6 | 5.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardo-Pascual, J.E.; Sánchez-García, E.; Almonacid-Caballer, J.; Palomar-Vázquez, J.M.; Priego de los Santos, E.; Fernández-Sarría, A.; Balaguer-Beser, Á. Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sens. 2018, 10, 326. https://doi.org/10.3390/rs10020326
Pardo-Pascual JE, Sánchez-García E, Almonacid-Caballer J, Palomar-Vázquez JM, Priego de los Santos E, Fernández-Sarría A, Balaguer-Beser Á. Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sensing. 2018; 10(2):326. https://doi.org/10.3390/rs10020326
Chicago/Turabian StylePardo-Pascual, Josep E., Elena Sánchez-García, Jaime Almonacid-Caballer, Jesús M. Palomar-Vázquez, Enrique Priego de los Santos, Alfonso Fernández-Sarría, and Ángel Balaguer-Beser. 2018. "Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery" Remote Sensing 10, no. 2: 326. https://doi.org/10.3390/rs10020326
APA StylePardo-Pascual, J. E., Sánchez-García, E., Almonacid-Caballer, J., Palomar-Vázquez, J. M., Priego de los Santos, E., Fernández-Sarría, A., & Balaguer-Beser, Á. (2018). Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sensing, 10(2), 326. https://doi.org/10.3390/rs10020326