Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning
"> Figure 1
<p>Data acquisition and data processing workflow for each of the eight flights over the test field. On the left side, there are the settings for the main PhotoScan processing parameters.</p> "> Figure 2
<p>Location of the targets (ground control points (GCPs): red; checkpoints: green) and of the Digital Surface Model (DSM) checkpoints (yellow) on the orthophoto mosaic generated from one of the eight flights.</p> "> Figure 3
<p>The check areas listed in <a href="#remotesensing-10-00311-t001" class="html-table">Table 1</a>: orange: asphalt; red: roof; green: meadow; blue: ploughed field. Also shown are the location of the GCPs (red triangles) and of the signalised checkpoints (green triangles).</p> "> Figure 4
<p>Root mean square errors (RMSEs) on 14 checkpoints respectively for horizontal (<b>a</b>) and vertical (<b>b</b>) coordinates, for the different flights and ground control configurations. Notice that the horizontal and vertical coordinates error scale ranges differ.</p> "> Figure 4 Cont.
<p>Root mean square errors (RMSEs) on 14 checkpoints respectively for horizontal (<b>a</b>) and vertical (<b>b</b>) coordinates, for the different flights and ground control configurations. Notice that the horizontal and vertical coordinates error scale ranges differ.</p> "> Figure 5
<p>Mean values (<b>a</b>) and standard deviations (<b>b</b>) of the cell wise DSM elevation ranges for each surface class by each block control configuration and RTK mode (<b>m</b> = master, <b>n</b> = network).</p> "> Figure 6
<p>Two pairs of terrain profiles from the DSM generated with the <b>RTK</b> (<b>a1, b1</b>) and <b>RTK+1GCP</b> (<b>b1, b2</b>) configurations, respectively. The graphs of each pair refer to the same profile, and show the effect of enforcing the GCP in the <b>RTK+1GCP</b> configuration.</p> "> Figure 6 Cont.
<p>Two pairs of terrain profiles from the DSM generated with the <b>RTK</b> (<b>a1, b1</b>) and <b>RTK+1GCP</b> (<b>b1, b2</b>) configurations, respectively. The graphs of each pair refer to the same profile, and show the effect of enforcing the GCP in the <b>RTK+1GCP</b> configuration.</p> "> Figure 7
<p>Mean values (<b>a</b>) and standard deviations (<b>b</b>) of the DSM error for each flight and each block control configuration measured on about 1600 ground checkpoints.</p> "> Figure 7 Cont.
<p>Mean values (<b>a</b>) and standard deviations (<b>b</b>) of the DSM error for each flight and each block control configuration measured on about 1600 ground checkpoints.</p> "> Figure A1
<p>Colour-coded DSM cell elevation range: flights RTK1-RTK4 with the <b>12GCP</b> configuration.</p> "> Figure A2
<p>Colour-coded DSM cell elevation range: flights RTK1-RTK4 with the <b>RTK</b> configuration.</p> "> Figure A3
<p>Colour-coded DSM cell elevation range: flights RTK1-RTK4 with the <b>RTK+1GCP</b> configuration.</p> "> Figure A4
<p>Colour-coded DSM cell elevation range: flights NRTK1-NRTK4 with the <b>12GCP</b> configuration.</p> "> Figure A5
<p>Colour-coded DSM cell elevation range: flights NRTK1-NRTK4 with the <b>RTK</b> configuration.</p> "> Figure A6
<p>Colour-coded DSM cell elevation range: flights NRTK1-NRTK4 with the <b>RTK+1GCP</b> configuration.</p> ">
Abstract
:1. Introduction
1.1. High Resolution DSM from UAV Photogrammetry
1.2. GNSS-Assisted Block Georeferencing and Control
1.3. Camera Calibration
1.4. RTK versus NRTK
1.5. Paper Motivations and Objectives
2. Materials and Methods
2.1. Test Organisation
2.2. Test Site Description
2.3. Reference Network
2.4. Survey Flights
2.5. Experiment Evaluation Methods
2.6. BBA Settings and Block Control Configurations
2.7. DSM Generation
3. Results
3.1. Empirical Accuracy Assessment of Different Block Control Configurations
3.2. DSM Repeatability and Accuracy
4. Discussion
4.1. Empirical Accuracy Assessment of AAT Compared to Traditional Ground Control
4.2. RTK versus NRTK
4.3. DSM Repeatability and Accuracy
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Interior Orientation and Self-Calibration Parameters |
---|
Principal distance; principal point coordinates; radial distortion parameters K1, K2, and K3; tangential distortion parameters P1 and P2 |
Appendix B
References
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Eisenbeiss, H. UAV Photogrammetry. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2009. [Google Scholar]
- Niethammer, U.; Rothmund, S.; James, M.R.; Travelletti, J.; Joswig, M. UAV-based remote sensing of landslides. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, XXXVIII-5, 496–501. [Google Scholar]
- Lucieer, A.; Jong, S.M.D.; Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; De Jong, S.M. Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sens. 2015, 7, 1736–1757. [Google Scholar] [CrossRef]
- Manousakis, J.; Zekkos, D.; Saroglou, H.; Clark, M. Comparison of UAV-enabled photogrammetry-based 3D point clouds and interpolated DSMs of sloping terrain for rockfall hazard analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLII-2/W2, 71–77. [Google Scholar] [CrossRef]
- Yu, M.; Huang, Y.; Zhou, J.; Mao, L. Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion. Environ. Earth Sci. 2017, 76, 520. [Google Scholar] [CrossRef]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef] [Green Version]
- Ouédraogo, M.M.; Degré, A.; Debouche, C.; Lisein, J. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds. Geomorphology 2014, 214, 339–355. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A.; Osborn, J. The Impact of the Calibration Method on the Accuracy of Point Clouds Derived Using Unmanned Aerial Vehicle Multi-View Stereopsis. Remote Sens. 2015, 7, 11933–11953. [Google Scholar] [CrossRef]
- Pineux, N.; Lisein, J.; Swerts, G.; Bielders, C.L.; Lejeune, P.; Colinet, G.; Degré, A. Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed? Geomorphology 2017, 280, 122–136. [Google Scholar] [CrossRef]
- De Michele, C.; Avanzi, F.; Passoni, D.; Barzaghi, R.; Pinto, L.; Dosso, P.; Ghezzi, A.; Gianatti, R.; Della Vedova, G. Using a fixed-wing UAS to map snow depth distribution: An evaluation at peak accumulation. The Cryosphere 2016, 10, 511–522. [Google Scholar] [CrossRef]
- Dall’Asta, E.; Forlani, G.; Roncella, R.; Santise, M.; Diotri, F.; Morra di Cella, U. Unmanned Aerial Systems and DSM matching for rock glacier monitoring. ISPRS J. Photogramm. Remote Sens. 2017, 127, 102–114. [Google Scholar] [CrossRef]
- Gindraux, S.; Boesch, R.; Farinotti, D. Accuracy Assessment of Digital Surface Models from Unmanned Aerial Vehicles’ Imagery on Glaciers. Remote Sens. 2017, 9, 186. [Google Scholar] [CrossRef]
- Qin, R. An object-based hierarchical method for change detection using unmanned aerial vehicle images. Remote Sens. 2014, 6, 7911–7932. [Google Scholar] [CrossRef]
- Unger, J.; Reich, M.; Heipke, C. UAV-based photogrammetry: Monitoring of a building zone. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-5, 23–25. [Google Scholar] [CrossRef]
- Cryderman, C.; Mah, S.B.; Shufletoski, A. Evaluation of UAV photogrammetric accuracy for mapping and earthworks computations. Geomatica 2014, 68, 309–317. [Google Scholar] [CrossRef]
- Siebert, S.; Teizer, J. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Autom. Constr. 2014, 41, 1–14. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- Eltner, A.; Kaiser, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellán, A. Image-based surface reconstruction in geomorphometry—merits, limits and developments. Earth Surf. Dynam. 2016, 4, 359–389. [Google Scholar] [CrossRef]
- Kraus, K. Photogrammetry: Geometry from Images and Laser Scans; De Gruyter: Berlin, Germany, 2007. [Google Scholar]
- Fraser, C.S. Network Design. In Close Range Photogrammetry and Machine Vision; Whittles Publishing: Caithness, UK, 1996; pp. 256–281. [Google Scholar]
- Tonkin, T.N.; Midgley, N.G. Ground-control networks for image based surface reconstruction: An investigation of optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry. Remote Sens. 2016, 8, 786. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement 2017, 98, 221–227. [Google Scholar] [CrossRef]
- Clapuyt, F.; Vanacker, V.; Van Oost, K. Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms. Geomorphology 2016, 260, 4–15. [Google Scholar] [CrossRef]
- Wackrow, R.; Chandler, J.H. Minimising systematic error surfaces in digital elevation models using oblique convergent imagery. Photogramm. Record 2011, 26, 16–31. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Proc. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef]
- Wu, C. Critical configurations for radial distortion self-calibration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 25–32. [Google Scholar] [CrossRef]
- Sona, G.; Pinto, L.; Pagliari, D.; Passoni, D.; Gini, R. Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Sci. Inform. 2014, 7, 97–107. [Google Scholar] [CrossRef]
- Jaud, M.; Passot, S.; Le Bivic, R.; Delacourt, C.; Grandjean, P.; Le Dantec, N. Assessing the accuracy of high resolution digital surface models computed by PhotoScan® and MicMac® in sub-optimal survey conditions. Remote Sens. 2016, 8, 465. [Google Scholar] [CrossRef]
- Nocerino, E.; Menna, F.; Remondino, F.; Saleri, R. Accuracy and Block Deformation Analysis in Automatic UAV and Terrestrial Photogrammetry—Lessons learnt. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2013, II-5/W1, 203–208. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shea, J.M.; Shrestha, A.B.; Pellicciotti, F.; Bierkens, M.F.P.; de Jong, S.M. High-resolution monitoring of himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens. Environ. 2014, 150, 93–103. [Google Scholar] [CrossRef]
- Bilker, M.; Honkavaara, E.; Jaakkola, J. GPS supported Aerial Triangulation using untargeted ground control. Int. Arch. Photogramm. Remote Sens. 1998, XXXII-3/W1, 2–9. [Google Scholar]
- Heipke, C.; Jacobsen, K.; Wegmann, H.; Andersen, O.; Nilsen, B. Integrated sensor orientation-an OEEPE Test. Int. Arch. Photogramm. Remote Sens. 2000, XXXIII-B3/1, 373–380. [Google Scholar]
- Santise, M. UAS Photogrammetric Blocks: Accuracy, Georeferencing and Control. Ph.D. Thesis, University of Parma, Parma, Italy, 2016. [Google Scholar]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landforms 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Gerke, M.; Przybilla, H.J. Accuracy Analysis of Photogrammetric UAV Image Blocks: Influence of On board RTKGNSS and Cross Flight Patterns. Photogramm. Fernerkund. Geoinf. 2016, 1, 17–30. [Google Scholar] [CrossRef]
- Hugenholtz, C.; Brown, O.; Walker, J.; Barchyn, T.; Nesbit, P.; Kucharczyk, M.; Myshak, S. Spatial Accuracy of UAV-Derived Orthoimagery and Topography: Comparing Photogrammetric Models Processed with Direct Geo-Referencing and Ground Control Points. Geomatica 2016, 70, 21–30. [Google Scholar] [CrossRef]
- Benassi, F.; Dall’Asta, E.; Diotri, F.; Forlani, G.; Morra di Cella, U.; Roncella, R.; Santise, M. Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation. Remote Sens. 2017, 9, 172. [Google Scholar] [CrossRef]
- Hugenholtz, C.; Brown, O.; Walker, J.; Barchyn, T.; Nesbit, P.; Kucharczyk, M.; Myshak, S. Spatial Accuracy of UAV-Derived Orthoimagery and Topography: Comparing Photogrammetric Models Processed with Direct Geo-Referencing and Ground Control Points. Geomatica 2016, 70, 21–30. [Google Scholar] [CrossRef]
- Cramer, M.; Stallmann, D.; Haala, N. Direct georeferencing using GPS/inertial exterior orientations for photogrammetric applications. Int. Arch. Photogramm. Remote Sens. 2000, XXXIII-B3/1, 198–205. [Google Scholar]
- Cramer, M. Direct Geocoding—Is Aerial Triangulation Obsolete? In Proceedings of the Photogrammetric Week ’99, Stuttgart, Germany, 20–24 September 1999; pp. 59–70. [Google Scholar]
- Rehak, M.; Skaloud, J. Fixed-wing micro aerial vehicle for accurate corridor mapping. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, 2-1/W1, 23–31. [Google Scholar] [CrossRef]
- Cina, A.; Piras, M. Performance of low-cost GNSS receiver for landslides monitoring: Test and results. Geomat. Nat Hazards Risk 2015, 6, 497–514. [Google Scholar] [CrossRef]
- Cramer, M.; Przybilla, H.-J.; Zurhorst, A. UAV cameras: Overview and geometric calibration benchmark. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, XLII-2/W6, 85–92. [Google Scholar] [CrossRef]
- Mian, O.; Lutes, J.; Lipa, G.; Hutton, J.J.; Gavelle, E.; Borghini, S. Direct georeferencing on small unmanned aerial platforms for improved reliability and accuracy of mapping without the need for ground control points. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2015, XL-1/W4, 397–402. [Google Scholar] [CrossRef]
- Agisoft PhotoScan. Available online: http://www.agisoft.com/downloads/user-manuals/ (accessed on 28 January 2018).
- Cramer, M.; Stallmann, D. System calibration for direct georeferencing. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2002, XXXIV-3/A, 79–84. [Google Scholar]
Surface Type | Asphalt | Roof | Meadow | Ploughed Field | Total |
---|---|---|---|---|---|
size (m2) | 12883 | 8626 | 28504 | 17838 | 67851 |
RMSE XY (m) | ||||||
12GCPm1 | RTKm1 | RTKm+1GCP1 | 12GCPn2 | RTKn2 | RTKn+1GCP2 | |
Min | 0.012 | 0.021 | 0.021 | 0.015 | 0.021 | 0.017 |
Max | 0.020 | 0.025 | 0.029 | 0.016 | 0.042 | 0.032 |
RMSE Z (m) | ||||||
12GCPm1 | RTKm1 | RTKm+1GCP1 | 12GCPn2 | RTKn2 | RTKn+1GCP2 | |
Min | 0.017 | 0.019 | 0.018 | 0.021 | 0.067 | 0.029 |
Max | 0.024 | 0.095 | 0.039 | 0.033 | 0.126 | 0.047 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forlani, G.; Dall’Asta, E.; Diotri, F.; Cella, U.M.d.; Roncella, R.; Santise, M. Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sens. 2018, 10, 311. https://doi.org/10.3390/rs10020311
Forlani G, Dall’Asta E, Diotri F, Cella UMd, Roncella R, Santise M. Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sensing. 2018; 10(2):311. https://doi.org/10.3390/rs10020311
Chicago/Turabian StyleForlani, Gianfranco, Elisa Dall’Asta, Fabrizio Diotri, Umberto Morra di Cella, Riccardo Roncella, and Marina Santise. 2018. "Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning" Remote Sensing 10, no. 2: 311. https://doi.org/10.3390/rs10020311
APA StyleForlani, G., Dall’Asta, E., Diotri, F., Cella, U. M. d., Roncella, R., & Santise, M. (2018). Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sensing, 10(2), 311. https://doi.org/10.3390/rs10020311