Standardized Soil Moisture Index for Drought Monitoring Based on Soil Moisture Active Passive Observations and 36 Years of North American Land Data Assimilation System Data: A Case Study in the Southeast United States
"> Figure 1
<p>(<b>a</b>) Mosaic of the three consecutive standardized soil moisture index (SSI) maps from 1 to 3 April 2015. Areas in yellow to red represent areas that are experiencing very dry conditions, indicating drought. (<b>b</b>) SSI map for the whole month of April 2015.</p> "> Figure 2
<p>(<b>a</b>) Palmer drought severity index (PDSI) for April 2015. Areas in yellow and red represent areas that are experiencing dry conditions; (<b>b</b>) Normalized difference water index (NDWI) calculated for 01 to 03 April 2015. Likewise, areas in yellow and red represent areas that are experiencing low vegetation water content and therefore a dry condition.</p> "> Figure 3
<p>(<b>a</b>) Scatter plot for April 2015. The correlation between SSI and PDSI is moderate (r = 0.52); (<b>b</b>) Scatter plot for 1 to 3 April 2015. The correlation between SSI and NDWI is strong (r = 0.56).</p> "> Figure 4
<p>Scatter plot between SCAN values and SMAP values for the four anomaly stations with the R-squared values: Uapb-Earle station in Arkansas (for the year 2015), R-squared value was 0.1506; N Piedmont Arec station in Virginia (for 2016), R-square value was 0.2499; the Sellers Lake #1 station in Florida (for 2015), R-square value was 0.2827; and the Princeton #1 station in Kentucky (for 2015), R-square value was 0.3115.</p> "> Figure 5
<p>SMAP and SCAN time plot comparison to identify the anomaly: (<b>a</b>) Uapb-Earle station in Arkansas (2085); (<b>b</b>) Sellers Lake #1 station in Florida (2012); (<b>c</b>) Princeton #1 station in Kentucky (2005); and (<b>d</b>) N Piedmont Arec station in Virginia (2039).</p> "> Figure 5 Cont.
<p>SMAP and SCAN time plot comparison to identify the anomaly: (<b>a</b>) Uapb-Earle station in Arkansas (2085); (<b>b</b>) Sellers Lake #1 station in Florida (2012); (<b>c</b>) Princeton #1 station in Kentucky (2005); and (<b>d</b>) N Piedmont Arec station in Virginia (2039).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Processing
2.3. Data Analysis
2.4. Validation
- Vegetation water content ≤ 5 kg/m2
- Urban fraction ≤ 0.25
- Water fraction ≤ 0.1
- Digital Elevation Model (DEM) slope standard deviation ≤ 3 degrees
3. Results
3.1. SSI Spatial Analysis
3.2. Validation Result
3.2.1. SMAP Validation
3.2.2. Validation with PDSI and NDWI
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
- Mean (NLDAS) = 23.705
- STD (NLDAS) = 5.5943
- Mean (SMAP) = 0.35731
- STD (SMAP) = 0.11158
- Mean (NLDAS) = 66.343 × Mean(SMAP)
- STD (NLDAS) = 50.137 × STD(SMAP)
Date | NLDAS Mean | SMAP Mean | N/S | NLDAS Std | SMAP Std | N/S |
---|---|---|---|---|---|---|
1 April 2015 | 23.705 | 0.35731 | 66.34 | 5.5943 | 0.11158 | 50.13 |
2 April 2015 | 23.413 | 0.35734 | 65.52 | 5.7149 | 0.08671 | 65.91 |
3 April 2015 | 23.912 | 0.40322 | 59.30 | 6.6633 | 0.09153 | 72.80 |
1 April 2016 | 26.860 | 0.38171 | 70.37 | 6.5042 | 0.08346 | 77.93 |
2 April 2016 | 26.087 | 0.44331 | 58.84 | 5.4096 | 0.07346 | 73.64 |
3 April 2016 | 24.792 | 0.41021 | 60.44 | 5.4099 | 0.08887 | 60.88 |
1 April 2017 | 23.829 | 0.36315 | 65.62 | 6.6062 | 0.10416 | 63.43 |
2 April 2017 | 23.036 | N/A1 | N/A 1 | 6.4982 | N/A 1 | N/A 1 |
3 April 2017 | 25.442 | 0.36161 | 70.36 | 8.3495 | 0.12412 | 67.27 |
References
- Melillo, J.M.; Richmond, T.; Yohe, G. Climate Change Impacts in the United States; Government Printing Office: Washington, DC, USA, 2014.
- McNulty, S.; Director, S.H.; Wiener, S.; Treasure, S.H.; Myers, J.M.; Farahani, H.; Fouladbash, L.; Marshall, D.; Steele, R.F. Southeast regional climate hub assessment of climate change vulnerability and adaptation and mitigation strategies. Agric. Res. Serv. 2015, 2015, 1–61. [Google Scholar]
- Parry, M.; Canziani, O.F.; Palutikof, J.P.; van der Linden, P.J.; Hanson, C.E. Climate Change 2007: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2014—Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Field, C.B. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- SERCH LIGHTS Alerts Help Land Managers Prepare for Drought. Available online: https://forestthreats.org/research/projects/2015-accomplishment-highlights/serch-lights-alerts-help-land-managers-prepare-for-drought/ (accessed on 1 August 2016).
- Fact Sheet: Drought. Available online: http://www.nws.noaa.gov/om/csd/graphics/content/outreach/brochures/FactSheet_Drought.pdf (accessed on 1 August 2016).
- Thornthwaite, C.W.; Mather, J. The Water Balance; Drexel Institute Of Technology-Laboratory of Climatology: Centerton, NJ, USA, 1955. [Google Scholar]
- Ritchie, J. Soil water balance and plant water stress. In Understanding Options for Agricultural Production; Springer: Berlin, Germany, 1998; pp. 41–54. [Google Scholar]
- Palmer, W.C. Meteorological Drought; US Department of Commerce Weather Bureau: Washington, DC, USA, 1965; Volume 30.
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Sivakumar, M.; Motha, R.; Wilhite, D.; Wood, D. Agricultural Drought Indices Proceedings of an Expert Meeting. 2–4 June 2010, Murcia, Spain; World Meteorological Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Sheikh, V.; Visser, S.; Stroosnijder, L. A simple model to predict soil moisture: Bridging event and continuous hydrological (BEACH) modelling. Environ. Model. Softw. 2009, 24, 542–556. [Google Scholar] [CrossRef]
- Meng, L.; Quiring, S.M. A comparison of soil moisture models using soil climate analysis network observations. J. Hydrometeorol. 2008, 9, 641–659. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground—Based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- De Rosnay, P.; Drusch, M.; Boone, A.; Balsamo, G.; Decharme, B.; Harris, P.; Kerr, Y.; Pellarin, T.; Polcher, J.; Wigneron, J.P. Amma Land Surface Model Intercomparison Experiment coupled to The Community Microwave Emission Model: Almip-Mem. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Phys. Chem. Earth 2015, 83, 36–56. [Google Scholar]
- Keyantash, J.; Dracup, J.A. The quantification of drought: An evaluation of drought indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Hayes, M.J. Drought Indices; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Quiring, S.M.; Papakryiakou, T.N. An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Meteorol. 2003, 118, 49–62. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–183. [Google Scholar]
- Edwards, D.; McKee, T. Characteristics of 20th Century Drought in the United States at Multiple Time Scales; Colorado State University, Department of Atmospheric Science: Fort Collins, CO, USA, 1997. [Google Scholar]
- Illston, B.G.; Basara, J.B.; Crawford, K.C. Seasonal to interannual variations of soil moisture measured in Oklahoma. Int. J. Climatol. 2004, 24, 1883–1896. [Google Scholar] [CrossRef]
- What Is the U.S. Drought Monitor? Available online: http://droughtmonitor.unl.edu/data/docs/USDMbrochure.pdf (accessed on 19 November 2016).
- Al-Yaari, A.; Wigneron, J.P.; Kerr, Y.; Rodriguez-Fernandez, N.; O’Neill, P.E.; Jackson, T.J.; De Lannoy, G.J.M.; Al Bitar, A.; Mialon, A.; Richaume, P.; et al. Evaluating soil moisture retrievals from ESA’s SMOS and NASA’s SMAP brightness temperature datasets. Remote Sens. Environ. 2017, 193, 257–273. [Google Scholar] [CrossRef]
- Xia, Y.; Sheffield, J.; Ek, M.B.; Dong, J.; Chaney, N.; Wei, H.; Meng, J.; Wood, E.F. Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol. 2014, 512, 107–125. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). SMAP handbook. In Mapping Soil Moisture and Freeze/Thaw from Space; Jet Propulsion Laboratory: Pasadena, CA, USA, 2014. [Google Scholar]
- Xia, Y.; Ek, M.B.; Wu, Y.; Ford, T.; Quiring, S.M. Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part I: Comparison and analysis. J. Hydrometeorol. 2015, 16, 1962–1980. [Google Scholar] [CrossRef]
- Soil Climate Analysis Network (SCAN). Brochure. Available online: https://www.wcc.nrcs.usda.gov/scan/SCAN_brochure.pdf (accessed on 1 August 2016).
- Velpuri, N.M.; Senay, G.B.; Morisette, J.T. Evaluating new SMAP soil moisture for drought monitoring in the rangelands of the us high plains. Rangelands 2016, 38, 183–190. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.; Cosh, M.; Dunbar, R.; Dang, L.; Pashaian, L. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gao, B.-C. Ndwi—A Normalized Difference Water Index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Qian, T. A global dataset of palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, H.; Wang, L.; Deng, C. Evaluation of AMSR2 soil moisture products over the contiguous United States using in situ data from the International Soil Moisture Network. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 187–199. [Google Scholar] [CrossRef]
Platform & Sensor | Parameter | Use |
---|---|---|
SMAP Passive Radiometer | Soil moisture, Level-3, 36 km resolution | Daily measurement of soil moisture |
NLDAS | Soil moisture, Noah model | Historical mean and standard deviation of soil moisture |
USDA SCAN | Soil moisture | Validation |
Station ID | State Code | Station Name |
---|---|---|
2013 | GA | Watkinsville #1 |
2024 | MS | Goodwin Ck Pasture |
2053 | AL | Wtars |
2039 | VA | N Piedmont Arec |
2005 | KY | Princeton #1 |
2012 | FL | Sellers Lake #1 |
2085 | AR | Uapb-Earle |
Station ID | Station Name | R2 for 2015 | R2 for 2016 | RMSE for 2015 | RMSE for 2016 |
---|---|---|---|---|---|
2013 | Watkinsville #1 | 0.6802 | 0.9124 | 0.0567 | 0.0791 |
2024 | Goodwin Ck Pasture | 0.7634 | 0.6817 | 0.0795 | 0.0591 |
2053 | Wtars | 0.4612 | 0.9177 | 0.0624 | 0.0428 |
2039 | N Piedmont Arec | 0.5783 | 0.2499 | 0.0712 | 0.0774 |
2005 | Princeton #1 | 0.3115 | 0.5144 | 0.0762 | 0.0526 |
2012 | Sellers Lake #1 | 0.2827 | 0.468 | 0.1288 | 0.1379 |
2085 | Uapb-Earle | 0.1506 | N/A | 0.0983 | N/A |
Average | 0.4611 | 0.6240 | 0.0819 | 0.0748 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Wang, L.; Ross, K.W.; Liu, C.; Berry, K. Standardized Soil Moisture Index for Drought Monitoring Based on Soil Moisture Active Passive Observations and 36 Years of North American Land Data Assimilation System Data: A Case Study in the Southeast United States. Remote Sens. 2018, 10, 301. https://doi.org/10.3390/rs10020301
Xu Y, Wang L, Ross KW, Liu C, Berry K. Standardized Soil Moisture Index for Drought Monitoring Based on Soil Moisture Active Passive Observations and 36 Years of North American Land Data Assimilation System Data: A Case Study in the Southeast United States. Remote Sensing. 2018; 10(2):301. https://doi.org/10.3390/rs10020301
Chicago/Turabian StyleXu, Yaping, Lei Wang, Kenton W. Ross, Cuiling Liu, and Kimberly Berry. 2018. "Standardized Soil Moisture Index for Drought Monitoring Based on Soil Moisture Active Passive Observations and 36 Years of North American Land Data Assimilation System Data: A Case Study in the Southeast United States" Remote Sensing 10, no. 2: 301. https://doi.org/10.3390/rs10020301