Vicarious Radiometric Calibration of the Hyperspectral Imaging Microsatellites SPARK-01 and -02 over Dunhuang, China
"> Figure 1
<p>Diagram of the SPARK satellite.</p> "> Figure 2
<p>Central spectral wavelengths of various SPARK-01 and -02 bands.</p> "> Figure 3
<p>Cross-track central spectral wavelengths for channels centered near 760 nm for SPARK-01 (<b>a</b>) and -02 (<b>b</b>), respectively.</p> "> Figure 4
<p>Dunhuang calibration site for medium-high resolution satellites, as illustrated in a Landsat 8/OLI image acquired on 2 February 2017. (<b>a</b>) Scaled subset image; (<b>b</b>) 5× magnification of a portion of the original image, where the red rectangle is the outline of the calibration site.</p> "> Figure 5
<p>Subsets of SPARK-01 and -02 data acquired over the Dunhuang calibration site featuring pseudo color composited from the 141 (856.60 nm), 111 (648.60 nm) and 84 (550.30 nm) bands. (<b>a</b>) SPARK-01 data acquired on 7 March 2017 at 06:48:30 UTC; (<b>b</b>) SPARK-02 data acquired on 28 February 2017 at 06:52:32 UTC. These images were 180° rotated from the original raw data to maintain the northern and eastern directions on the top and the right hand, respectively.</p> "> Figure 5 Cont.
<p>Subsets of SPARK-01 and -02 data acquired over the Dunhuang calibration site featuring pseudo color composited from the 141 (856.60 nm), 111 (648.60 nm) and 84 (550.30 nm) bands. (<b>a</b>) SPARK-01 data acquired on 7 March 2017 at 06:48:30 UTC; (<b>b</b>) SPARK-02 data acquired on 28 February 2017 at 06:52:32 UTC. These images were 180° rotated from the original raw data to maintain the northern and eastern directions on the top and the right hand, respectively.</p> "> Figure 6
<p>(<b>a</b>) Photo of the calibration site; (<b>b</b>) Schematic of the surface measurement route.</p> "> Figure 7
<p>Ground reflectance at the Dunhuang calibration site on different dates. Measurements on 7 March and 28 February 2017 correspond to SPARK-01 and SPARK-02, respectively.</p> "> Figure 8
<p>Ground reflectance measured on 7 March 2017 over the desert area south of the Dunhuang calibration site.</p> "> Figure 9
<p>550 nm AOD (<b>a</b>) and CWV (<b>b</b>) retrieved from CE318 measurements and Microtops II measurements on 7 March and 28 February 2017, respectively.</p> "> Figure 9 Cont.
<p>550 nm AOD (<b>a</b>) and CWV (<b>b</b>) retrieved from CE318 measurements and Microtops II measurements on 7 March and 28 February 2017, respectively.</p> "> Figure 10
<p>Vertical profiles of (<b>a</b>) pressure; (<b>b</b>) temperature; and (<b>c</b>) relative humidity measured using radiosondes released on 7 March and 28 February 2017.</p> "> Figure 10 Cont.
<p>Vertical profiles of (<b>a</b>) pressure; (<b>b</b>) temperature; and (<b>c</b>) relative humidity measured using radiosondes released on 7 March and 28 February 2017.</p> "> Figure 11
<p>Diffuse-to-global irradiance ratios measured (<b>a</b>) at 550 nm on the date of the SPARK satellite overpass during the Dunhuang experiment, and (<b>b</b>) for the entire spectrum at the time of the SPARK satellite overpass.</p> "> Figure 12
<p>DN curves from SPARK-01 and -02 at the Dunhuang calibration site, averaged over 6 × 6 pixels.</p> "> Figure 13
<p>Schematics of (<b>a</b>) normal and (<b>b</b>) 90° yaw imaging methods in the SPARK satellite.</p> "> Figure 14
<p>90° yaw images and delay lines in different columns, including the (<b>a</b>) subset image and (<b>b</b>) delay effect correction scheme for SPARK-01 satellite images and the (<b>c</b>) subset image and (<b>d</b>) delay effect correction scheme for SPARK-02 satellite images.</p> "> Figure 15
<p>A scatter plot of ln(1 − <math display="inline"> <semantics> <mrow> <msub> <mi>α</mi> <mi>s</mi> </msub> </mrow> </semantics> </math>) versus <span class="html-italic">m</span> at 549.89 nm.</p> "> Figure 16
<p>Goodness-of-fit statistics for diffuse-to-global irradiance ratio measurements according to Equation (8).</p> "> Figure 17
<p>Diffuse-to-global irradiance ratio extrapolated and interpolated to the solar direction (<math display="inline"> <semantics> <mrow> <msub> <mi>α</mi> <mi>s</mi> </msub> </mrow> </semantics> </math>) and viewing direction (<math display="inline"> <semantics> <mrow> <msub> <mi>α</mi> <mi>v</mi> </msub> </mrow> </semantics> </math>) during the satellite overpasses.</p> "> Figure 18
<p>Relative radiometric correction coefficients for SPARK-01 satellite images at 650.4 nm, 551.5 nm, and 461.7 nm showing (<b>a</b>) gain curves (non-uniform correction coefficients) and (<b>b</b>) offset curves (dark current).</p> "> Figure 18 Cont.
<p>Relative radiometric correction coefficients for SPARK-01 satellite images at 650.4 nm, 551.5 nm, and 461.7 nm showing (<b>a</b>) gain curves (non-uniform correction coefficients) and (<b>b</b>) offset curves (dark current).</p> "> Figure 19
<p>Relative radiometric correction coefficients for SPARK-02 satellite images at 638.0 nm, 549.5 nm, and 459.0 nm showing (<b>a</b>) gain curves (non-uniform correction coefficients) and (<b>b</b>) offset curves (dark current).</p> "> Figure 20
<p>Row-averaged values at 650.4 nm, 551.5 nm, and 461.7 nm from images acquired over the calibration site on 7 March and 28 February 2017 using SPARK-01 (<b>a</b>) before and (<b>b</b>) after relative calibration, and at 638.0 nm, 549.5 nm, and 459.0 nm using SPARK-02 (<b>c</b>) before and (<b>d</b>) after relative calibration.</p> "> Figure 20 Cont.
<p>Row-averaged values at 650.4 nm, 551.5 nm, and 461.7 nm from images acquired over the calibration site on 7 March and 28 February 2017 using SPARK-01 (<b>a</b>) before and (<b>b</b>) after relative calibration, and at 638.0 nm, 549.5 nm, and 459.0 nm using SPARK-02 (<b>c</b>) before and (<b>d</b>) after relative calibration.</p> "> Figure 21
<p>MODTRAN-simulated radiance for the SPARK-01 satellite calculated using both reflectance- and irradiance-based methods.</p> "> Figure 22
<p>MODTRAN-simulated radiance for the SPARK-02 satellite calculated using reflectance-, irradiance-, and improved irradiance-based methods.</p> "> Figure 23
<p>Relative differences in radiance using different aerosol types for the SPARK-01 calibration for 7 March 2017 using (<b>a</b>) the reflectance-based method and (<b>b</b>) the irradiance-based method.</p> "> Figure 24
<p>Relative differences in radiance using different aerosol types for the SPARK-02 calibration for 28 February 2017 using (<b>a</b>) the reflectance-based method and (<b>b</b>) the irradiance-based method.</p> "> Figure 24 Cont.
<p>Relative differences in radiance using different aerosol types for the SPARK-02 calibration for 28 February 2017 using (<b>a</b>) the reflectance-based method and (<b>b</b>) the irradiance-based method.</p> "> Figure 25
<p>Calibration uncertainties caused by the AOD measurements for SPARK-01 and -02 using the (<b>a</b>) reflectance- and (<b>b</b>) irradiance- based (or improved irradiance-based) methods, respectively.</p> "> Figure 26
<p>Calibration uncertainties caused by the water vapor content measurements for SPARK-01 and -02 using the (<b>a</b>) reflectance- and (<b>b</b>) irradiance- based (or improved irradiance-based) methods, respectively.</p> "> Figure 27
<p>Calibration uncertainties caused by the vertical atmospheric profile measurements for SPARK-01 and -02 using the (<b>a</b>) reflectance- and (<b>b</b>) irradiance-based methods, respectively. “US”, “MS”, and “MW” refer to the relative difference in predicted radiance derived from replacing radiosonde measurements with these three atmospheric models.</p> "> Figure 28
<p>Averaged DNs from 6 × 6 pixel areas in the calibration site and DNs calculated by shifting the 6 × 6 pixel area by up to two pixels in all directions for SPARK-01 and -02.</p> "> Figure 29
<p>Spectral fit result and optimal spectral calibration result with an –0.1 nm shift at the desert in Dunhuang (<a href="#remotesensing-10-00120-f005" class="html-fig">Figure 5</a>). (<b>a</b>,<b>c</b>) are for SPARK-01 before and after spectral shifting; and (<b>b</b>,<b>d</b>) are for SPARK-02 before and after spectral shifting.</p> "> Figure 29 Cont.
<p>Spectral fit result and optimal spectral calibration result with an –0.1 nm shift at the desert in Dunhuang (<a href="#remotesensing-10-00120-f005" class="html-fig">Figure 5</a>). (<b>a</b>,<b>c</b>) are for SPARK-01 before and after spectral shifting; and (<b>b</b>,<b>d</b>) are for SPARK-02 before and after spectral shifting.</p> "> Figure 30
<p>Calibration uncertainties caused by spectral shift of −0.1 nm for SPARK-01 and -02.</p> "> Figure 31
<p>Calibration uncertainties caused by spectral shift of ±1 nm for SPARK-01 (<b>a</b>) and -02 (<b>b</b>).</p> "> Figure 32
<p>Total calibration uncertainty estimated for SPARK-01 and -02 using (<b>a</b>) the reflectance-based method and (<b>b</b>) the irradiance-based method.</p> "> Figure 33
<p>Central wavelength positions measured pre-launch in laboratory for SPARK-01 and -02.</p> "> Figure 34
<p>Comparison of in-situ desert reflectance measurements with retrieved reflectance from the SPARK-01 image acquired on 7 March 2017.</p> ">
Abstract
:1. Introduction
2. Calibration Site and Measurements
2.1. Calibration Site
2.2. SPARK Satellite Observations
2.3. Ground Reflectance Measurements
2.4. Atmospheric Data
3. Methods
3.1. Relative Radiometric Calibration and Spectral De-Smiling Correction
3.1.1. Dark Current Subtraction
3.1.2. De-Smiling Correction
3.1.3. Uniform Normalization
3.2. Absolute Radiometric Calibrations
4. Results
4.1. Relative Radiometric Calibration
4.2. Absolute Radiometric Calibrations
5. Discussion
5.1. Uncertainty Due to Aerosol Type Assumptions
5.2. Uncertainty Due to AOD Measurements
5.3. Uncertainty Due to Water Vapor Measurements
5.4. Uncertainty Due to Atmospheric Profile Measurements
5.5. Uncertainty Due to Image Misregistration Errors
5.6. Uncertainty Due to Spectral Wavelength Shift
5.7. Total Calibration Uncertainty Estimation
5.8. Spectral Smile Effect Correction
5.9. Preliminary Validation
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tong, Q.; Xue, Y.; Zhang, L. Progress in hyperspectral remote sensing science and technology in China over the past three decades. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 70–91. [Google Scholar] [CrossRef]
- Biggar, S.F. In-Flight Methods for Satellite Sensor Absolute Radiometric Calibration. Ph.D. Thesis, College of Optical Sciences, University of Arizona, Tucson, AZ, USA, 1990; p. 157. [Google Scholar]
- Slater, P.N.; Biggar, S.F.; Holm, R.G.; Jackson, R.D.; Mao, Y.; Moran, M.S.; Yuan, B. Reflectance- and Radiance-Based Methods for the In-Flight Absolute Calibration of Multispectral Sensors. Remote Sens. Environ. 1987, 22, 11–37. [Google Scholar] [CrossRef]
- Gellman, D.I.; Biggar, S.F.; Dinguirard, M.C.; Henry, P.J.; Moran, M.S.; Thome, K.J.; Slater, P.N. Review of SPOT-1 and -2 Calibrations at White Sands from Launch to the Present. Proc. SPIE 1993, 1938, 118–125. [Google Scholar]
- Thome, K.J.; Gellman, D.I.; Parada, R.J.; Biggar, S.F.; Slater, P.N.; Moran, M.S. In-Flight Radiometric Calibration of Landsat-5 Thematic Mapper from 1984 to Present. Proc. SPIE 1993, 1938, 126–130. [Google Scholar]
- Thome, K.J.; Helder, D.L.; Aaron, D.; Dewald, J.D. Landsat-5 TM and Landsat-7 ETM+ Absolute Radiometric Calibration Using the Reflectance-Based Method. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2777–2785. [Google Scholar] [CrossRef]
- Vane, G.; Green, R.O.; Chrien, T.G.; Enmark, H.T.; Hansen, E.G.; Porter, W.M. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 1993, 44, 127–143. [Google Scholar] [CrossRef]
- Green, R.O.; Pavri, B.E.; Chrien, T.G. On-Orbit Radiometric and Spectral Calibration Characteristics of EO-1 Hyperion Derived with an Under-flight of AVIRIS and in-situ Measurements at Salar de Arizaro, Argentina. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1194–1203. [Google Scholar] [CrossRef]
- Pearlman, J.S.; Barry, P.S.; Segal, C.C.; Shepanski, J.; Beiso, D.; Carmanet, S.L. Hyperion, a space-based imaging spectrometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1160–1173. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Qiu, K. In-Flight Radiometric Calibration for VIR Channels of FY-IC Satellite Sensor by Using Irradiance-Based Method. J. Remote Sens. 2003, 7, 458–464. [Google Scholar]
- Hu, X.; Zhang, Y.; Liu, Z.; Zhang, G.; Huang, Y.; Qiu, K.; Wang, Y.; Zhang, L.; Zhu, X.; Rong, Z. Optical Characteristics of China Radiometric Calibration Site for Remote Sensing Satellite Sensors. Proc. SPIE 2001, 4151, 77–86. [Google Scholar]
- Bruegge, C.J.; Diner, D.J.; Kahn, R.A.; Chrien, N.; Helmlinger, M.C.; Gaitley, B.J.; Abdou, W.A. The MISR radiometric calibration process. Remote Sens. Environ. 2007, 107, 2–11. [Google Scholar] [CrossRef]
- Czapla-Myers, J.; McCorkel, J.; Anderson, N.; Thome, K.; Biggar, S.; Helder, D.; Aaron, D.; Leigh, L.; Mishra, N. The Ground-Based Absolute Radiometric Calibration of Landsat 8 OLI. Remote Sens. 2015, 7, 600–626. [Google Scholar] [CrossRef]
- Pinto, C.; Ponzoni, F.; Castro, R.; Leigh, L.; Mishra, N.; Aaron, D.; Helder, D. First in-flight radiometric calibration of MUX and WFI on-board CBERS-4. Remote Sens. 2016, 8, 405. [Google Scholar] [CrossRef]
- Mattar, C.; Hernández, J.; Santamaría-Artigas, A.; Durán-Alarcón, C.; Olivera-Guerra, L.; Inzunza, M.; Tapia, D.; Escobar-lavín, E. A first in-flight absolute calibration of the Chilean Earth Observation Satellite. ISPRS J. Photogramm. Remote Sens. 2014, 92, 16–25. [Google Scholar] [CrossRef]
- Chen, Z.C.; Zhang, B.; Zhang, H.; Zhang, W.J. Vicarious Calibration of Beijing-1 Multispectral Imagers. Remote Sens. 2014, 6, 1432–1450. [Google Scholar] [CrossRef]
- Slater, P.N.; Biggar, S.F.; Palmer, J.M.; Thome, K.J. Unified approach to absolute radiometric calibration in the solar-reflective range. Remote Sens. Environ. 2001, 77, 293–303. [Google Scholar] [CrossRef]
- de Vries, C.; Danaher, T.; Denham, R.; Scarth, P.; Phinn, S. An operational radiometric calibration procedure for the Landsat sensors based on pseudo-invariant target sites. Remote Sens. Environ. 2007, 107, 414–429. [Google Scholar] [CrossRef]
- Markham, B.L.; Helder, D.L. Forty-year calibrated record of earth-reflected radiance from Landsat: A review. Remote Sens. Environ. 2012, 122, 30–40. [Google Scholar] [CrossRef]
- Li, H.W.; Zhang, H.; Chen, Z.C.; Zhang, B. A Method Suitable for Vicarious Calibration of a UAV Hyperspectral Remote Sensor. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3209–3223. [Google Scholar]
- Brook, A.; Bendor, E. Supervised Vicarious Calibration (SVC) of Multi-Source Hyperspectral Remote-Sensing Data. Remote Sens. 2015, 7, 6196–6223. [Google Scholar] [CrossRef]
- Brook, A.; Polinova, M.; Ben-Dor, E. Fine tuning of the SVC method for airborne hyperspectral sensors: The BRDF correction of the calibration nets targets. Remote Sens. Environ. 2018, 204, 861–871. [Google Scholar] [CrossRef]
- Dadon, A.; Ben-Dor, E.; Karnieli, A. Use of Derivative Calculations and Minimum Noise Fraction Transform for Detecting and Correcting the Spectral Curvature Effect (Smile) in Hyperion Images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2603–2612. [Google Scholar] [CrossRef]
- Yokoya, N.; Miyamura, N.; Iwasaki, A. Detection and correction of spectral and spatial misregistrations for hyperspectral data using phase correlation method. Appl. Opt. 2010, 49, 4568–4579. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.G.; Krause, K.S. Relative radiometric correction of QuickBird imagery using the side-slither technique on-orbit. Proc. SPIE 2004, 5542, 426–436. [Google Scholar]
- Anderson, C.; Naughton, D.; Brunn, A.; Thiele, M. Radiometric correction of RapidEye imagery using the on-orbit side-slither method. Proc. SPIE 2011, 8180, 1–15. [Google Scholar]
- Gerace, A.; Schott, J.; Gartley, M.; Montanaro, M. An Analysis of the Side Slither On-Orbit Calibration Technique Using the DIRSIG Model. Remote Sens. 2014, 6, 10523–10545. [Google Scholar] [CrossRef]
- Wu, D.; Yin, Y.; Wang, Z.; Gu, X.; Verbrugghe, M.; Guyot, G. Radiometric Characterisation of Dunhuang Satellite Calibration Test Site (China). In Physical Measurements and Signatures in Remote Sensing; Guyot, G., Phulpin, T., Eds.; Balkema: Rotterdam, The Netherlands, 1997; Volume 1, pp. 151–160. [Google Scholar]
- Hu, X.; Liu, J.; Sun, L.; Rong, Z.; Li, Y.; Zhang, Y.; Zheng, Z.; Wu, R.; Zhang, L.; Gu, X. Characterization of CRCS Dunhuang Test Site and Vicarious Calibration Utilization for Fengyun (FY) Series Sensors. Can. J. Remote Sens. 2010, 36, 566–582. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, G.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET-A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, B.; Chen, D.M.; Li, J.S.; Zhao, G.N. Influence of Filter Band Function on Retrieval of Aerosol Optical Depth from Sunphotometer Data. J. Atmos. Ocean. Technol. 2013, 30, 929–941. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.C.; Zhang, B.; Chen, C.Y. Improved Algorithm for Water Vapor Retrieval and Field Calibration in the Channel 940-nm of Sun-photometer. In Proceedings of the 23rd CALCON Technical Conference, Logan, UT, USA, 11–14 August 2014. [Google Scholar]
- Seftor, C. Ozone over Your Head. Available online: https://ozoneaq.gsfc.nasa.gov/tools/ozonemap/ (accessed on 27 July 2017).
- Datt, B.; Jupp, D.L.B. Hyperion Data Processing Workshop, Hands-On Processing Instructions; CSIRO Office of Space Science & Applications Earth Observation Centre: Canberra, Australia, 2004. [Google Scholar]
- Dinguirard, M.; Slater, P.N. Calibration of Space-Multispectral Imaging Sensors: A Review. Remote Sens. Environ. 1999, 68, 194–205. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Schiller, S.J. Technique for estimating uncertainties in top-of-atmosphere radiances derived by vicarious calibration. Proc. SPIE 2013, 5151, 502–516. [Google Scholar]
- Zhang, Y.Q.; Zhang, W.J.; Chen, Z.C.; Zhang, B. A comparative analysis of the accuracy of alternative spectral calibration methods based on TG-1 hyperspectral imager. J. Infrared Millim. Waves 2015, 34, 360–367. [Google Scholar]
- Biggar, S.; Slater, P.; Gellman, D. Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4–1.1 μm range. Remote Sens. Environ. 1994, 48, 245–252. [Google Scholar] [CrossRef]
- Thome, K.J. Validation Plan for MODIS Level 1 At-Sensor Radiance; Remote Sensing Group of the Optical Sciences Center, University of Arizona: Tucson, AZ, USA, 1999. [Google Scholar]
- Liu, X.; Bhartia, P.; Chance, K.; Froidevaux, L.; Spurr, R.; Kurosu, T. Validation of Ozone Monitoring Instrument (OMI) ozone profiles and stratospheric ozone columns with Microwave Limb Sounder (MLS) measurements. Atmos. Chem. Phys. 2010, 10, 2539–2549. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Shettle, E.P. MODTRAN®5.2.1 User’s Manual; Spectral Science, Inc.: Burlington, MA, USA, 2011. [Google Scholar]
- Thome, K.J. Absolute Radiometric Calibration of Landsat-7 ETM+ Using the Reflectance-Based Method. Remote Sens. Environ. 2001, 78, 27–38. [Google Scholar] [CrossRef]
- Chang, T.; Xiong, X.; Angal, A.; Wu, A.; Geng, X. Aqua and Terra MODIS RSB Calibration Comparison Using BRDF Modeled Reflectance. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2288–2298. [Google Scholar] [CrossRef]
Satellite Characteristic | Description |
---|---|
Spectral bands | 160 bands ranging from 400 to 1000 nm (151 and 153 valid bands for SPARK-01 and -02, respectively) |
Swath and spatial resolution | 100 km with a resolution of 50 m at nadir viewing |
Signal-to-noise ratio (SNR) | ≥100:1 on average with conditions: solar zenith = 45°, ground reflectance = 0.3, and visibility = 23 KM. |
Revisit period | 13–25 days |
Observation area | 2500 km × 6000 km per day |
Mass | 50 kg |
Dimensions | 300 mm × 300 mm × 450 mm |
Cost | US$ 3 million per satellite |
Production cycle | 1 year |
Lifetime | Over 1 year |
Date | Satellite | Pass Time (UTC) | Solar Zenith (°) | Solar Azimuth (°) | Viewing Zenith (°) | Viewing Azimuth (°) |
---|---|---|---|---|---|---|
7 March | SPARK-01 | 6:48 | 47.0579 | 198.5470 | 5.0 | 93.101 |
28 Febraury | SPARK-02 | 6:52 | 49.8249 | 198.4959 | 1.9 | 88.011 |
Date | Satellite | Imaging Time (UTC) | Lines | Location | Imaging Manner |
---|---|---|---|---|---|
13 March | SPARK-01 | 19:29 | 79,640 | 26.335°N, 160.668°E (Coral Sea) | Normal |
11 March | SPARK-01 | 21:12 | 39,911 | 12.352°N, 29.810°E (Sudan) | 90° yaw |
27 Febraury | SPARK-02 | 12:04 | 42,645 | 60.634°N, 22.301°W (Labrador Sea) | Normal |
11 Febraury | SPARK-02 | 20:36 | 22,960 | 13.849°N, 12.874°E (Niger) | 90° yaw |
Satellite | SPARK-01 | SPARK-02 | ||||
---|---|---|---|---|---|---|
Method | Rural and Urban | Rural and Maritime | Rural and Desert | Rural and Urban | Rural and Maritime | Rural and Desert |
Reflectance-based | 6.58% | 0.76% | 1.46% | 14.46% | 1.77% | 3.78% |
Irradiance-/improved irradiance-based | 2.07% | 0.30% | 0.58% | 9.23% | 0.23% | 2.63% |
Source of Uncertainty | SPARK-01 Uncertainty (%) | SPARK-02 Uncertainty (%) |
---|---|---|
Ground reflectance measurement | 2.0 | 2.0 |
Non-Lambertian ground properties | 2.0 | 2.0 |
AOD retrieval | 0–0.6 | 0–0.7 |
Water vapor retrieval | 0–3.0 | 0–3.8 |
Ozone absorption computation | 0.6 | 0.6 |
Assumption of aerosol type | 2.1–3.6 | 5.9–7.8 |
Assumption of atmospheric model | 0–1.7 | 0.3–0.8 |
Radiative transfer code accuracy | 1 | 1 |
Spectral wavelength shift | 0–1.6 | 0–1.1 |
Image uncertainty errors | 0.3–3.3 | 0.4–7.5 |
Total uncertainty (root sum of squares) | 4.0–5.5 | 7.3–10.4 |
Source of Uncertainty | SPARK-01 Uncertainty (%) | SPARK-02 Uncertainty (%) |
---|---|---|
Ground reflectance measurement | 2.0 | 2.0 |
AOD retrieval | 1.5–2.6 | 0.9–1.4 |
Water vapor retrieval | 0–2.9 | 0–3.8 |
Ozone absorption computation | 0.6 | 0.6 |
Assumption of aerosol type | 0.4–1.5 | 3.3–5.0 |
Assumption of atmospheric model | 0.2–1.2 | 0.2–1.2 |
Radiative transfer code accuracy | / | 1.0 |
Spectral wavelength shift | 0–1.6 | 0–1.1 |
Image uncertainty errors | 0.3–3.3 | 0.4–7.5 |
Ratio of diffuse-to-global irradiance measurement | 2.0 | 2.0 |
Total uncertainty (root sum of squares) | 3.9–5.1 | 5.2–9.4 |
Wavelength Range (nm) | Reflectance-Based Method (SPARK-01) | Irradiance-Based Method (SPARK-01) | Wavelength Range (nm) | Reflectance-Based Method (SPARK-02) | Improved Irradiance-Based Method (SPARK-02) |
---|---|---|---|---|---|
- | - | - | 411–454 | 8.90 ± 0.75% | 7.60 ± 0.90% |
- | - | - | >456 | 8.12 ± 0.29% | 5.86 ± 0.29% |
All bands | 4.71 ± 0.34% | 4.11 ± 0.21% | All bands | 8.31 ± 0.56% | 6.28 ± 0.90% |
MODIS Band | Central Wavelength (nm) | 28 February | 7 March | ||
---|---|---|---|---|---|
Reflectance | Improved Irradiance | Reflectance | Irradiance | ||
1 | 646 | −4.41% | −5.54% | 1.18% | −1.85% |
2 | 856 | −10.35% | −8.41% | −3.57% | −3.95% |
3 | 466 | −1.24% | −4.84% | 2.37% | −4.30% |
4 | 554 | −2.56% | −5.33% | 2.39% | −2.68% |
5 | 1242 | −15.47% | −10.94% | −6.60% | −2.74% |
6 | 1629 | −13.84% | −7.48% | −5.10% | 1.65% |
7 | 2114 | −9.89% | 3.58% | −3.63% | 7.97% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, B.; Chen, Z.; Huang, Z. Vicarious Radiometric Calibration of the Hyperspectral Imaging Microsatellites SPARK-01 and -02 over Dunhuang, China. Remote Sens. 2018, 10, 120. https://doi.org/10.3390/rs10010120
Zhang H, Zhang B, Chen Z, Huang Z. Vicarious Radiometric Calibration of the Hyperspectral Imaging Microsatellites SPARK-01 and -02 over Dunhuang, China. Remote Sensing. 2018; 10(1):120. https://doi.org/10.3390/rs10010120
Chicago/Turabian StyleZhang, Hao, Bing Zhang, Zhengchao Chen, and Zhihua Huang. 2018. "Vicarious Radiometric Calibration of the Hyperspectral Imaging Microsatellites SPARK-01 and -02 over Dunhuang, China" Remote Sensing 10, no. 1: 120. https://doi.org/10.3390/rs10010120
APA StyleZhang, H., Zhang, B., Chen, Z., & Huang, Z. (2018). Vicarious Radiometric Calibration of the Hyperspectral Imaging Microsatellites SPARK-01 and -02 over Dunhuang, China. Remote Sensing, 10(1), 120. https://doi.org/10.3390/rs10010120