Estimating Live Fuel Moisture from MODIS Satellite Data for Wildfire Danger Assessment in Southern California USA
"> Figure 1
<p>16 live fuel moisture sampling sites overlaid on a Fire and Resource Assessment Program vegetation map. The colors indicate dominant vegetation species; only chamise-dominant areas (e.g., shrubland and scrubland) are shown. Two circles at La Tuna Canyon with a radius of 5 km and 10 km are also shown.</p> "> Figure 2
<p>A 10-year daily mean of (<b>a</b>) live fuel moisture and (<b>b</b>) enhanced vegetation index for the inland sites (solid line) and the coastal sites (dashed line). The <span class="html-italic">x</span>-axis represents months from November to October. Error bars are indicated by vertical bars for the inland sites only.</p> "> Figure 3
<p>10-year time series (2003–2012) of live fuel moisture (<b>a</b>,<b>c</b>) and enhanced vegetation index (<b>b</b>,<b>d</b>) at the inland sites (<b>a</b>,<b>b</b>) and the coastal sites (<b>c</b>,<b>d</b>); The arrow in (<b>a</b>) indicates the period of live fuel moisture that was less than 75% in the 2011–2012 fire season.</p> "> Figure 4
<p>10-year time series (November 2002–October 2012) of live fuel moisture (solid black) and enhanced vegetation index (dashed) with precipitation (solid gray) at (<b>a</b>) Bitter and (<b>b</b>) Schueren. The 15-day running mean is applied to each variable. Vertical dashed lines indicate beginning of each year.</p> "> Figure 5
<p>(<b>a</b>) Differences between minimum live fuel moisture and enhanced vegetation index dates for each year of the 10 years at Bitter (dark gray bar) and Schueren (light gray bar); (<b>b</b>) Same as (<b>a</b>) except differences between maximum dates.</p> "> Figure 6
<p>10-year time series of (<b>a</b>) enhanced vegetation index (EVI)-estimated live fuel moisture (solid line) and in-situ live fuel moisture (dashed line) at Schueren; (<b>b</b>) is same as (<b>a</b>), except EVI and T<sub>min</sub>-estimated live fuel moisture (solid line).</p> "> Figure 7
<p>Daily time-scale scatter plots of the in-situ LFM in <span class="html-italic">x</span>-axis with (<b>a</b>) EVI-estimated LFM and (<b>b</b>) EVI and Tmin-estimated LFM in <span class="html-italic">y</span>-axis at Schueren; (<b>c</b>) Comparison of 80% LFM dates of in-situ LFM (black), EVI-estimated LFM (light gray), and EVI and T<sub>min</sub>-estimated LFM (dark gray) at Schueren. There were no values for the EVI-estimated LFM in 2006 and 2007 since EVI-alone estimated LFM values were higher than 80% the entire wet-dry season.</p> "> Figure 8
<p>The case of the Colby Fire in January 2014: Fuel dry-up map derived from MODIS data acquired on 8 January 2014 from the satellite Aqua over the San Gabriel Mountains, CA, USA. It clearly shows adjacent cities encroaching into surrounding wildland at multiple wildland-urban interfaces because of urbanization. Red represents severe dry-up due to a ~80% decrease in LFM from a level of 140% on 25 February 2013 resulting in an LFM below 60%, the critical fire danger threshold. The ignition location is marked with the flame symbol on the east side of the fire perimeter denoted by the yellow contours. Since the LFM color map is made translucent to see the landscape features, the accurate full color bar and true LFM map are shown in <a href="#app1-remotesensing-10-00087" class="html-app">Figure S3</a> in the supporting information.</p> ">
Abstract
:1. Introduction
2. Methods and Materials
2.1. Live Fuel Moisture
2.2. Remote Sensing Data
2.3. Empirical Model
3. Results
3.1. Comparison of LFM and VIs
3.2. Empirical Model for LFM Estimation
3.3. Modified Empirical Model Using Temperature
3.4. Applying LFM Model to a Real-Life Wildfire Case
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B. Human Influence on California Fire Regimes. Ecol. Appl. 2017, 17, 1388–1402. [Google Scholar] [CrossRef]
- Mell, W.E.; Manzello, S.L.; Maranghides, A.; Butry, D.; Rehm, R.G. The wildland-urban interface fire problem—Current approaches and research needs. Int. J. Wildland Fire 2010, 19, 238–251. [Google Scholar] [CrossRef]
- Deeming, J.E.; Burgan, R.E.; Cohen, J.D. The National Fire-Danger Rating System—1978; General Technical Report INT-169; U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1977; p. 63. [Google Scholar]
- Cohen, J.D.; Deeming, J.E. The National Fire-Danger Rating System: Basic Equations; General Technical Report GTR-PSW-82; USDA Forest Service, Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1985. [Google Scholar]
- Weise, D.R.; Hartford, R.A.; Mahaffey, L. Assessing live fuel moisture for fire management applications. In Proceedings of the Fire in Ecosystem Management: Shifting the Paradigm from Suppression to Prescriptiontall Timbers Fire Ecology, Boise, ID, USA, 7–10 May 1998; Pruden, T.L., Brennan, L.A., Eds.; Tall Timbers Research Station: Tallahassee, FL, USA, 1988; Volume 20, pp. 49–55. [Google Scholar]
- Countryman, C.M.; Dean, W.H. Measuring Moisture Content in Living Chaparral: A Field User’s Manual; General Technical Report PSW-36; USDA, Forest Service Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1979. [Google Scholar]
- Dimitrakopoulos, A.; Papaioannou, K.K. Flammability assessment of Mediterranean forest fuels. Fire Technol. 2001, 37, 143–152. [Google Scholar] [CrossRef]
- Chuvieco, E.; Cocero, D.; Riaño, D.; Martin, P.; Martínez-Vega, J.; de la Riva, J.; Pérez, F. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens. Environ. 2004, 92, 322–331. [Google Scholar] [CrossRef]
- Dennison, P.E.; Moritz, M.A.; Taylor, R.S. Examining predictive models of chamise critical live fuel moisture in the Santa Monica Mountains, California. Int. J. Wildland Fire 2008, 17, 18–27. [Google Scholar] [CrossRef]
- Roberts, D.A.; Dennison, P.E.; Peterson, S.; Sweeney, S.; Rechel, J. Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Stow, D.; Niphadkar, M.; Kaiser, J. Time series of chaparral live fuel moisture maps derived from MODIS satellite data. Int. J. Wildland Fire 2006, 15, 347–360. [Google Scholar] [CrossRef]
- Peterson, S.H.; Roberts, D.A.; Dennison, P.E. Mapping live fuel moisture with MODIS data: A multiple regression approach. Remote Sens. Environ. 2008, 112, 4272–4284. [Google Scholar] [CrossRef]
- Dennison, P.E.; Roberts, D.A.; Peterson, S.H; Rechel, J. Use of Normalized Difference Water Index for monitoring live fuel moisture. Int. J. Remote Sens. 2005, 26, 1035–1042. [Google Scholar] [CrossRef]
- Bowyer, P.; Danson, F.M. Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level. Remote Sens. Environ. 2004, 92, 297–308. [Google Scholar] [CrossRef]
- Moran, M.S.; Vidal, A.; Troufleau, D.; Qi, J.; Clarke, T.R.; Pinter, P.J., Jr.; Mitchell, T.A.; Inoue, Y.; Neale, C.M.U. Combining multifrequency microwave and optical data for crop management. Remote Sens. Environ. 1997, 61, 96–109. [Google Scholar] [CrossRef]
- Foley, J.A.; Prentice, I.C.; Ramankutty, N.; Levis, S.; Pollard, D.; Sitch, S.; Haxeltine, A. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cycles 1996, 10, 603–628. [Google Scholar] [CrossRef]
- Myoung, B.; Choi, Y.S.; Hong, S.; Park, S.K. Inter- and intra-annual variability of vegetation in the Northern Hemisphere and its association with precursory meteorological factors. Glob. Biogeochem. Cycles 2013, 27, 31–42. [Google Scholar] [CrossRef]
- Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riaño, D.; Zylstra, P.; Hunt, E.R.; Danson, F.M.; Qi, Y.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Wang, D.; Morton, D.; Masek, J.; Wu, A.; Nagol, J.; Xiong, X.; Levy, R.; Vermote, E.; Wolfe, R. Impact of sensor degradation on the MODIS NDVI time series. Remote Sens. Environ. 2012, 119, 55–61. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech. 2014, 7, 4353–4365. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Band, L.E; Sun, G. Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening? Remote Sens. Environ. 2017, 191, 145–155. [Google Scholar] [CrossRef]
- Solano, R.; Didan, K.; Jacobson, A.; Huete, A. MODIS Vegetation Index User’s Guide; Vegetation Index and Phenology Lab, The University of Arizona: Tucson, AZ, USA, 2010. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Serrano, L.; Ustin, S.L.; Roberts, D.A.; Gamon, J.A.; Penuelas, J. Deriving water content of chaparral vegetation from AVIRIS data. Remote Sens. Environ. 2000, 74, 570–581. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Lyon, J.G.; Huete, A. Advances in Hyperspectral Remote Sensing of Vegetation and Agricultural Croplands. In Hyperspectral Remote Sensing of Vegetation, 1st ed.; Thenkabail, P.S., Lyon, J.G., Huete, A., Eds.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 9781439845370. [Google Scholar]
- InciWeb, Incidence Information System, Colby Fire. Available online: http://inciweb.nwcg.gov/incident/ 3766/ (accessed on 1 November 2017).
- Dennison, P.E.; Moritz, M.A. Critical live fuel moisture in chaparral ecosystems: A threshold for fire activity and its relationship to antecedent precipitation. Int. J. Wildland Fire 2009, 18, 1021–1027. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Hipps, L.; Gillies, R.R.; Yoon, J.-H. Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett. 2014, 41, 3220–3226. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Neumann, G.; Kwan, J.; Chan, S.; Kafatos, M.; Myoung, B.; Hatzopoulos, N.; Kim, S.H.; Liu, X.; Calderon, S.; et al. Enhancing Wildland Fire Decision Support and Warning Systems; A NASA Project for Wildfire Applications Using Satellite Data, Final Report; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2013. [Google Scholar]
- Schnur, M.T.; Hongjie, X.; Wang, X. Estimating root zone soil moisture at distant sites using MODIS NDVI and EVI in a semi-arid region of southwestern USA. Ecol. Inform. 2010, 5, 400–409. [Google Scholar] [CrossRef]
- Verbeek, M. A Guide to Modern Econometrics; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2004; ISBN 978-88-08-17054-5. [Google Scholar]
- Qi, Y.; Dennison, P.E.; Spencer, J.; Riaño, D. Monitoring live fuel moisture using soil moisture and remote sensing proxies. Fire Ecol. 2012, 8, 71–87. [Google Scholar] [CrossRef]
- Entekhabi, D.; Yueh, S.; O’Neill, P.E.; Kellogg, K.H.; Allen, A.; Bindlish, R.; Brown, M.; Chan, S.; Colliander, A.; Crow, W.T.; et al. SMAP Handbook, Soil Moisture Active Passive, Mapping Soil Moisture and Freeze/Thaw from Space; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2014; 180p. [Google Scholar]
Name | Site Number | Latitude | Longitude | Fire Agency |
---|---|---|---|---|
Bitter Canyon | 15 | 34.510000 | −118.594444 | LA County |
Placerita Canyon | 1 | 34.375278 | −118.438889 | LA County |
La Tuna Canyon | 19 | 34.246667 | −118.302778 | LA County |
Laurel Canyon | 20 | 34.124722 | −118.368889 | LA County |
Trippet Ranch | 5 | 34.093333 | −118.597778 | LA County |
Schueren Road | 4 | 34.078889 | −118.644722 | LA County |
Clark Motorway | 6 | 34.084444 | −118.862500 | LA County |
Peach Motorway | 2 | 34.355556 | −118.534722 | LA County |
Bouquet Canyon | 16 | 34.486111 | −118.472778 | LA County |
Glendora Ridge | 3 | 34.165278 | −117.865000 | LA County |
CircleX | 7 | 34.110833 | −118.937222 | Ventura County FD |
Laguna Ridge | 8 | 34.400000 | −119.378889 | Ventura County FD |
Los Robles | 9 | 34.171667 | −118.882222 | Ventura County FD |
Tapo Canyon | 11 | 34.306389 | −118.710278 | Ventura County FD |
Sisar Canyon | 10 | 34.447500 | −119.135278 | Ventura County FD |
Black Star | 21 | 33.754722 | −117.670833 | Orange County FD |
Site Name | Coefficient (β1) | Constant (β0) | R2 | Significance |
---|---|---|---|---|
Bitter | 477.93 | −3.98 | 0.73 | <0.001 |
Placerita | 669.43 | −49.67 | 0.76 | <0.001 |
La Tuna | 538.50 | −42.72 | 0.79 | <0.001 |
Laurel | 501.36 | −38.76 | 0.70 | <0.001 |
Trippet | 468.59 | −27.74 | 0.65 | <0.001 |
Schueren | 479.77 | −33.36 | 0.67 | <0.001 |
Clark | 475.74 | −27.73 | 0.74 | <0.001 |
Site Name | Maximum LFM | Minimum LFM | 90% LFM | ||
---|---|---|---|---|---|
Value (%) | Date (Day) | Value (%) | Date (Day) | Date (Day) | |
Bitter | −16.7 | −0.7 | 1.6 | 17.4 | 1.2 |
Placerita | −20.5 | −16.2 | 1.8 | 10.3 | −6.8 |
La Tuna | −10.7 | 1.1 | 1.0 | 28.8 | −3.1 |
Laurel | −13.5 | −3.0 | 0.5 | 26.9 | −5.5 |
Trippet | −15.3 | 5.2 | 4.2 | 22.8 | 9.2 |
Schueren | −16.7 | −6.7 | 7.0 | 42.7 | 1.5 |
Clark | −15.4 | 12.0 | 5.6 | 2.4 | −4.9 |
Site Name | Maximum LFM | Minimum LFM | 90% LFM | ||
---|---|---|---|---|---|
Value | Date | Value | Date | Date | |
Bitter | 0.84 * | 0.45 | 0.32 | 0.57 | 0.85 * |
Placerita | 0.79 * | 0.19 | 0.72 * | 0.69 * | 0.72 * |
La Tuna | 0.66 * | 0.63 * | 0.48 | 0.34 | 0.61 * |
Laurel | 0.70 * | 0.82 * | 0.42 | 0.12 | 0.78 * |
Trippet | 0.44 | 0.82 * | 0.53 | 0.42 | 0.69 * |
Schueren | 0.27 | 0.71 * | 0.63 * | −0.20 | 0.80 * |
Clark | 0.35 | 0.69 * | 0.78 * | 0.69 * | 0.87 * |
Site Name | Dates of In-Situ LFM Thresholds | |||
---|---|---|---|---|
100% | 90% | 80% | 70% | |
Bitter | 0.78 * | 0.85 * | 0.81 * | −0.03 |
Placerita | 0.64 * | 0.72 * | 0.68 * | 0.90 * |
La Tuna | 0.58 * | 0.61 * | 0.78 * | 0.60 * |
Laurel | 0.62 * | 0.78 * | 0.68 * | 0.40 |
Trippet | 0.68 * | 0.69 * | 0.80 * | 0.69 * |
Schueren | 0.67 * | 0.80 * | 0.59 * | −0.29 |
Clark | 0.91 * | 0.87 * | 0.92 * | 0.64 * |
Independent Variable | Coefficient (β1, β2) | Constant (β0) | Significance | R2 |
---|---|---|---|---|
EVI | 478.801 | −32.9543 | <0.001 | 0.68 |
EVI, Tmin | 429.641, −1.100 | 40.5482 | <0.001 | 0.73 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myoung, B.; Kim, S.H.; Nghiem, S.V.; Jia, S.; Whitney, K.; Kafatos, M.C. Estimating Live Fuel Moisture from MODIS Satellite Data for Wildfire Danger Assessment in Southern California USA. Remote Sens. 2018, 10, 87. https://doi.org/10.3390/rs10010087
Myoung B, Kim SH, Nghiem SV, Jia S, Whitney K, Kafatos MC. Estimating Live Fuel Moisture from MODIS Satellite Data for Wildfire Danger Assessment in Southern California USA. Remote Sensing. 2018; 10(1):87. https://doi.org/10.3390/rs10010087
Chicago/Turabian StyleMyoung, Boksoon, Seung Hee Kim, Son V. Nghiem, Shenyue Jia, Kristen Whitney, and Menas C. Kafatos. 2018. "Estimating Live Fuel Moisture from MODIS Satellite Data for Wildfire Danger Assessment in Southern California USA" Remote Sensing 10, no. 1: 87. https://doi.org/10.3390/rs10010087
APA StyleMyoung, B., Kim, S. H., Nghiem, S. V., Jia, S., Whitney, K., & Kafatos, M. C. (2018). Estimating Live Fuel Moisture from MODIS Satellite Data for Wildfire Danger Assessment in Southern California USA. Remote Sensing, 10(1), 87. https://doi.org/10.3390/rs10010087