3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images
<p>Comparison of two-dimensional (2D) and three-dimensional (3D) convolution. The image patches of the same area are captured in May, June, July, September and October. In (<b>a</b>) 2D convolution, ⊗2 indicates 2D convolution operator where no relations exist between extracted features (in different color) in temporal direction; ⊕ is sum operator where all features are collapsed. In (<b>b</b>) 3D convolution, ⊗3 indicates 3D convolution operator with length 3 in temporal direction. The operator is executed three times sequentially (in red, green and blue arrows) through temporal direction. The features pointed by the same-color arrows then contain temporal information, and output map is also a 3D tensor.</p> "> Figure 2
<p>3D convolution strategy for multi-temporal multi-spectral image input in this study. A 3D feature map is obtained after 3D convolution on spatio-temporal images and accumulating over different spectral bands (denoted by different border colors).</p> "> Figure 3
<p>The network structure of 3D convolutional neural network (CNN) for multi-temporal crop classification.</p> "> Figure 4
<p>The network structure of 2D CNN for multi-temporal crop classification.</p> "> Figure 5
<p>GF2 images captured in (<b>a</b>) 2015 and (<b>b</b>) 2016, respectively. Black pixels in the shape files are lack of label information.</p> "> Figure 6
<p>The GF1 testing data.</p> "> Figure 7
<p>Test accuracy (red line), training loss (blue line), and test loss (green line) with optimal parameters. The test accuracy of 3D CNN shows 0.7%, 1.7% and 2.2% higher than that of 2D CNN in GF2-2015, GF2-2016 and GF1 data, respectively. (<b>a</b>) 3D CNN for GF2 2015 data; (<b>b</b>) 2D CNN for GF2 2015 data; (<b>c</b>) 3D CNN for GF2 2016 data; (<b>d</b>) 2D CNN for GF2 2016 data; (<b>e</b>) 3D CNN for GF1 data; and, (<b>f</b>) 2D CNN for GF1 data.</p> "> Figure 7 Cont.
<p>Test accuracy (red line), training loss (blue line), and test loss (green line) with optimal parameters. The test accuracy of 3D CNN shows 0.7%, 1.7% and 2.2% higher than that of 2D CNN in GF2-2015, GF2-2016 and GF1 data, respectively. (<b>a</b>) 3D CNN for GF2 2015 data; (<b>b</b>) 2D CNN for GF2 2015 data; (<b>c</b>) 3D CNN for GF2 2016 data; (<b>d</b>) 2D CNN for GF2 2016 data; (<b>e</b>) 3D CNN for GF1 data; and, (<b>f</b>) 2D CNN for GF1 data.</p> "> Figure 8
<p>Comparison of test accuracy among 2D CNN, 3D CNN, SVM, KNN, and PCA with NDVI and original data respectively. (<b>a</b>) Concatenated temporal image patches as input; (<b>b</b>) Concatenated NDVI maps of different periods as input.</p> "> Figure 9
<p>Pixelwise classification results of different methods on GF2 2015 data. (<b>a</b>) reference; (<b>b</b>) 2D CNN; (<b>c</b>) 3D CNN; (<b>d</b>) SVM; (<b>e</b>) KNN; and, (<b>f</b>) PCA + KNN.</p> "> Figure 10
<p>Pixelwise classification results of different methods on GF2 2016 data. (<b>a</b>) reference; (<b>b</b>) 2D CNN; (<b>c</b>) 3D CNN; (<b>d</b>) SVM; (<b>e</b>) KNN; and, (<b>f</b>) PCA + KNN.</p> "> Figure 11
<p>Hyper-pixel inputs.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. 3D Convolution for Multi-Temporal Multi-Spectral Images
2.2. 3D CNN Structure for Spatio-Temporal Images
2.3. An Active Learning Framework of CNN
3. Results and Analysis
3.1. Data
3.2. Parameter Tuning of 3D CNN
3.3. Comparison to 2D CNN and Empirical Methods
3.4. Pixelwise Classification Results and Analysis
3.5. Active Learning Strategy for CNN
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens. Environ. 2007, 108, 2903–2910. [Google Scholar] [CrossRef]
- Mathur, A.; Foody, G.M. Crop classification by support vector machine with intelligently selected training data for an operational application. Int. J. Remote Sens. 2008, 29, 2227–2240. [Google Scholar] [CrossRef]
- Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Blanzieri, E.; Melgani, F. Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1804–1811. [Google Scholar] [CrossRef]
- Murthy, C.; Raju, P.; Badrinath, K. Classification of wheat crop with multi-temporal images: Performance of maximum likelihood and artificial neural networks. Int. J. Remote Sens. 2003, 24, 4871–4890. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Conrad, C.; Colditz, R.; Dech, S.; Klein, D.; Vlek, P.G. Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems. Int. J. Remote Sens. 2011, 32, 8763–8778. [Google Scholar] [CrossRef]
- Sexton, J.O.; Urban, D.L.; Donohue, M.J.; Song, C. Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record. Remote Sens. Environ. 2013, 128, 246–258. [Google Scholar] [CrossRef]
- Simonneaux, V.; Duchemin, B.; Helson, D.; Er-Raki, S.; Olioso, A.; Chehbouni, A.G. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco. Int. J. Remote Sens. 2008, 29, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Conrad, C.; Fritsch, S.; Zeidler, J.; Rücker, G.; Dech, S. Per-field irrigated crop classification in arid Central Asia using SPOT and ASTER data. Remote Sens. 2010, 2, 1035–1056. [Google Scholar] [CrossRef] [Green Version]
- Löw, F.; Michel, U.; Dech, S.; Conrad, C. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines. ISPRS J. Photogramm. Remote Sens. 2013, 85, 102–119. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Accurate mapping of forest types using dense seasonal Landsat time-series. ISPRS J. Photogramm. Remote Sens. 2014, 96, 1–11. [Google Scholar] [CrossRef]
- Guerschman, J.; Paruelo, J.; Bella, C.D.; Giallorenzi, M.; Pacin, F. Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data. Int. J. Remote Sens. 2003, 24, 3381–3402. [Google Scholar] [CrossRef]
- Esch, T.; Metz, A.; Marconcini, M.; Keil, M. Combined use of multi-seasonal high and medium resolution satellite imagery for parcel-related mapping of cropland and grassland. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 230–237. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L. Crop classification by forward neural network with adaptive chaotic particle swarm optimization. Sensors 2011, 11, 4721–4743. [Google Scholar] [CrossRef] [PubMed]
- Mcnairn, H.; Shang, J.; Jiao, X.; Champagne, C. The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3981–3992. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Xiang, K.; Liu, Y. Classification of remote sensing agricultural image by using artificial neural network. In Proceedings of the 2009 International Workshop on Intelligent Systems and Applications, Wuhan, China, 23–24 May 2009; pp. 1–4. [Google Scholar]
- Tatsumi, K.; Yamashiki, Y.; Torres, M.C.; Taipe, C.R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 2015, 115, 171–179. [Google Scholar] [CrossRef]
- Omkar, S.N.; Senthilnath, J.; Mudigere, D.; Kumar, M.M. Crop classification using biologically-inspired techniques with high resolution satellite image. J. Indian Soc. Remote Sens. 2008, 36, 175–182. [Google Scholar] [CrossRef]
- Gallego, J.; Kravchenko, A.; Kussul, N.; Skakun, S.; Shelestov, A.; Grypych, Y. Efficiency assessment of different approaches to crop classification based on satellite and ground observations. J. Autom. Inf. Sci. 2012, 44, 67–80. [Google Scholar] [CrossRef]
- Siachalou, S.; Mallinis, G.; Tsakiristrati, M. A hidden markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data. Remote Sens. 2015, 7, 3633–3650. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Cireşan, D.C.; Meier, U.; Gambardella, L.M.; Schmidhuber, J. Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 2010, 22, 3207–3220. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Mobahi, H.; Collobert, R.; Weston, J. Deep learning from temporal coherence in video. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 737–744. [Google Scholar]
- Meszlényi, R.; Buza, K.; Vidnyánszky, Z. Resting state fMRI functional connectivity-based classification using a convolutional neural network architecture. Front. Neuroinform. arXiv 2017, arXiv:1707.06682. [Google Scholar]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3D convolutional networks. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4489–4497. [Google Scholar]
- Maturana, D.; Scherer, S. 3D convolutional neural networks for landing zone detection from lidar. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 3471–3478. [Google Scholar]
- Li, Y.; Zhang, H.; Shen, Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef]
- Tong, S.; Koller, D. Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2001, 2, 45–66. [Google Scholar]
- Dahl, G.E.; Sainath, T.N.; Hinton, G.E. Improving deep neural networks for LVCSR using rectified linear units and dropout. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013; pp. 8609–8613. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. Available online: http://adsabs.harvard.edu/abs/2014arXiv1409.1556S (accessed on 5 January 2018).
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Bernstein, L.S.; Adlergolden, S.M.; Sundberg, R.L.; Levine, R.Y.; Perkins, T.C.; Berk, A.; Ratkowski, A.J.; Felde, G.; Hoke, M.L. Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. Proc. SPIE 2005, 5806, 668–678. [Google Scholar]
- Jolie, I. Principal Component Analysis; Springer: New York, NY, USA, 1986. [Google Scholar]
- Liu, M.-Y.; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy rate superpixel segmentation. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011; pp. 2097–2104. [Google Scholar]
0. | prepare original sample set {N0} |
1. | train 2D/3D CNN model Lk with current sample {Nk} |
2. | label all the unknown pixels with the CNN model Lk |
3. | select n salient samples for each crop type according to Equation (4) and check manually |
4. | move the samples to sample set {Nk+1} and repeat step 1~4 until required accuracy met or to a given max loop count kmax |
FIXED | 8 × 8, 3 L, A | 333, 3 L, A | 8 × 8, 333, A | 8 × 8, 333, 3 L | 8 × 8, 333, 3 L, A | |||
---|---|---|---|---|---|---|---|---|
TUNING | 133 | 355 | 16 × 16 | 32 × 32 | 2 L | 4 L | M | - |
2015 | 0.921 | 0.945 | 0.927 | 0.916 | 0.934 | 0.931 | 0.934 | 0.947 |
2016 | 0.951 | 0.985 | 0.980 | 0.968 | 0.974 | 0.961 | 0.973 | 0.989 |
GF1 | 0.789 | 0.794 | 0.755 | 0.733 | 0.783 | 0.756 | 0.774 | 0.794 |
GF2 2015 | |||||||||||
3D CNN | 2D CNN | ||||||||||
Class | Corn | Tree | Rice | Sorghum | Corn | Tree | Rice | Sorghum | |||
Corn | 0.944 | 0.014 | 0.018 | 0.024 | Corn | 0.916 | 0.018 | 0.022 | 0.044 | ||
Tree | 0.032 | 0.938 | 0.012 | 0.018 | Tree | 0.056 | 0.904 | 0.012 | 0.028 | ||
Rice | 0.01 | 0.038 | 0.946 | 0.006 | Rice | 0.010 | 0.032 | 0.942 | 0.016 | ||
Sorg | 0.014 | 0.038 | 0.006 | 0.942 | Sorg | 0.034 | 0.038 | 0.006 | 0.922 | ||
GF2 2016 | |||||||||||
3D CNN | 2D CNN | ||||||||||
Class | Nursery | Corn | Rice | Soybean | Tree | Nursery | Corn | Rice | Soybean | Tree | |
Nurs | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | Nurs | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Corn | 0.000 | 0.983 | 0.016 | 0.000 | 0.000 | Corn | 0.000 | 0.966 | 0.034 | 0.000 | 0.000 |
Rice | 0.006 | 0.009 | 0.971 | 0.013 | 0.000 | Rice | 0.007 | 0.016 | 0.970 | 0.013 | 0.000 |
Soyb | 0.000 | 0.000 | 0.003 | 0.996 | 0.000 | Soyb | 0.000 | 0.003 | 0.006 | 0.990 | 0.000 |
Tree | 0.000 | 0.003 | 0.000 | 0.000 | 0.997 | Tree | 0.000 | 0.010 | 0.000 | 0.000 | 0.990 |
GF2 2015 | |||||
Methods | 2D CNN | 3D CNN | SVM | KNN | PCA + KNN |
OA | 0.935 | 0.939 | 0.932 | 0.927 | 0.9277 |
Kappa | 0.896 | 0.902 | 0.890 | 0.882 | 0.8827 |
GF2 2016 | |||||
Methods | 2D CNN | 3D CNN | SVM | KNN | PCA + KNN |
OA | 0.900 | 0.959 | 0.906 | 0.698 | 0.663 |
Kappa | 0.820 | 0.924 | 0.830 | 0.510 | 0.462 |
3D CNN | 2D CNN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Class | Nursery | Corn | Rice | Soybean | Tree | Nursery | Corn | Rice | Soybean | Tree | |
nurs | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | nurs | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
corn | 0.00 | 0.98 | 0.02 | 0.00 | 0.00 | corn | 0.00 | 0.96 | 0.02 | 0.01 | 0.00 |
rice | 0.01 | 0.02 | 0.95 | 0.02 | 0.00 | rice | 0.01 | 0.12 | 0.86 | 0.02 | 0.00 |
Soyb | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | Soyb | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 |
tree | 0.00 | 0.01 | 0.00 | 0.01 | 0.98 | tree | 0.00 | 0.01 | 0.00 | 0.00 | 0.99 |
New | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | 1500 | 2000 | 2500 | 3000 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AL (rule 4) | 0.83 | 0.85 | 0.86 | 0.90 | 0.91 | 0.92 | 0.94 | - | - | - | - | - | - | - |
RA | 0.81 | 0.82 | 0.84 | 0.85 | 0.85 | 0.86 | 0.87 | 0.87 | 0.87 | 0.88 | 0.90 | 0.92 | 0.93 | 0.93 |
CNN + SVM | 0.82 | 0.83 | 0.85 | 0.89 | 0.91 | 0.92 | 0.93 | - | - | - | - | - | - | - |
Data | Spatio-Spectral 3D CNN | 2D CNN | Spatio-Temporal 3D CNN |
---|---|---|---|
GF1 | 0.760 | 0.772 | 0.794 |
Data | Original | Original + NDVI |
---|---|---|
GF1 | 0.772 | 0.770 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, S.; Zhang, C.; Xu, A.; Shi, Y.; Duan, Y. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images. Remote Sens. 2018, 10, 75. https://doi.org/10.3390/rs10010075
Ji S, Zhang C, Xu A, Shi Y, Duan Y. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images. Remote Sensing. 2018; 10(1):75. https://doi.org/10.3390/rs10010075
Chicago/Turabian StyleJi, Shunping, Chi Zhang, Anjian Xu, Yun Shi, and Yulin Duan. 2018. "3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images" Remote Sensing 10, no. 1: 75. https://doi.org/10.3390/rs10010075
APA StyleJi, S., Zhang, C., Xu, A., Shi, Y., & Duan, Y. (2018). 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images. Remote Sensing, 10(1), 75. https://doi.org/10.3390/rs10010075