3-D Water Vapor Tomography in Wuhan from GPS, BDS and GLONASS Observations
"> Figure 1
<p>The principle of GNSS tropospheric water vapor tomography.</p> "> Figure 2
<p>Average water vapor density and SD from radiosonde station 57,494 from 2004 to 2013.</p> "> Figure 3
<p>The geographic distribution of GNSS stations and radiosonde.</p> "> Figure 4
<p>Effective SWV signals and the percentage of voxels crossed by signals of different GNSS tomography systems in each tomography window from UTC 6:00 to 18:00 on DOY 171, 2014. (<b>a</b>) The number of validated GNSS tomography signals; and (<b>b</b>) the percentage of voxels crossed by the GNSS signals.</p> "> Figure 5
<p>(<b>a</b>–<b>g</b>) represent profiles from different combined multi-GNSS systems, radiosonde, and ECMWF at WHCD station at UTC 12:00 from DOY 170 to 176, 2014.</p> "> Figure 6
<p>RMS (<b>a</b>) and relative error (<b>b</b>) at different heights of tomography results.</p> "> Figure 7
<p>Linear regression of water vapor density from GNSS tomography and ECMWF. (<b>a</b>–<b>d</b>) represent the regression results of GPS-only, GPS + GLONASS, GPS + GLONASS + BDS, respectively.</p> "> Figure 8
<p>Comparison of PWV time series at the radiosonde station derived from GNSS tomographic results, raw <span class="html-italic">PWV</span> estimated in the triple-system, ECMWF, and radiosonde.</p> "> Figure 9
<p>Residual distributions of different combined-GNSS tomography results.</p> "> Figure 10
<p>The percentage of empty voxels with different combined GNSS in different layers.</p> ">
Abstract
:1. Introduction
2. GNSS Observations and Methods
2.1. GNSS Tropospheric Estimation
2.2. Tomographic observation model
3. Results and Analysis
3.1. Comparison of GNSS Tomographic Results
3.2. Tomographic Profile Validation
3.3. Water Vapor Density Evaluation
3.4. PWV Validation
3.5. Tomographic Residual Comparison
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Flores, A.; Ruffini, G.; Rius, A. 4D tropospheric tomography using GPS slant wet delays. Ann. Geophys. 2000, 18, 223–234. [Google Scholar] [CrossRef]
- Jin, S.; Li, Z.; Cho, J. Integrated water vapor field and multiscale variations over China from GPS measurements. J. Appl. Meteorol. Climatol. 2008, 47, 3008–3015. [Google Scholar] [CrossRef]
- Jin, S.; Luo, O.F.; Gleason, S. Characterization of diurnal cycles in ZTD from a decade of global GPS observations. J. Geod. 2009, 83, 537–545. [Google Scholar] [CrossRef]
- Jin, S.; Luo, O.F. Variability and climatology of PWV from global 13-year GPS observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1918–1924. [Google Scholar]
- Jin, S.; Cardellach, E.; Xie, F. GNSS Remote Sensing: Theory, Methods and Applications; Springer Netherlands: Berlin, Germany, 2014; pp. 48–60. ISBN 978-94-007-7482-7. (eBook). [Google Scholar]
- Guo, J.; Yang, F.; Shi, J.; Xu, C. An Optimal Weighting Method of Global Positioning System (GPS) Troposphere Tomography. IEEE J. Sel. Top. Appl. Earth Observ. 2016, 9, 5880–5887. [Google Scholar] [CrossRef]
- Sá, A.; Bento, F.; Fernandes, R.; Crocker, P. Tomographic determination of the spatial Distribution of Water Vapor using GNSS observations. ALEGG 2016. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, Q. Maximally Using GPS Observation for Water Vapor Tomography. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7185–7196. [Google Scholar] [CrossRef]
- Guerova, G.; Jones, J.; Dousa, J.; Dick, G.; de Haan, S.; Pottiaux, E.; Bock, O.; Pacione, R.; Elgered, G.; Vedel, H.; et al. Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmos. Meas. Tech. 2016, 9, 5385–5406. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z. Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model. J. Geod. 2014, 88, 691–703. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, Q. A novel, optimized approach of voxel division for water vapor tomography. Meteorol. Atmos. Phys. 2017, 129, 57–70. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z. Assessing the performance of troposphere tomographic modeling using multi-source water vapor data during Hong Kong’s rainy season from May to October 2013. Atmos. Meas. Tech. 2016, 9, 5249–5263. [Google Scholar] [CrossRef]
- Ye, S.; Xia, P.; Cai, C. Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data. Ann. Geophys. 2016, 34, 789–799. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Dai, Z.; Ke, F.; Cao, Y.; Wang, F.; Song, L. Tropospheric wet refractivity tomography based on the BeiDou satellite system. Adv. Atmos. Sci. 2014, 31, 355–362. [Google Scholar] [CrossRef]
- Benevides, P.; Nico, G.; Catalão, J.; Miranda, P.M. Analysis of Galileo and GPS Integration for GNSS Tomography. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1936–1943. [Google Scholar] [CrossRef]
- Rohm, W. The ground GNSS tomography–unconstrained approach. Adv. Space Res. 2013, 51, 501–513. [Google Scholar] [CrossRef]
- Davis, J.L.; Elgered, G.; Niell, A.E.; Kuehn, C.E. Ground-based measurement of gradients in the “wet” radio refractivity of air. Radio Sci. 1993, 28, 1003–1018. [Google Scholar] [CrossRef]
- Bender, M.; Dick, G.; Ge, M.; Deng, Z.; Wickert, J.; Kahle, H.G.; Raabe, A.; Tetzlaff, G. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques. Adv. Space Res. 2011, 47, 1704–1720. [Google Scholar] [CrossRef]
- Jin, S.; Park, J.U. GPS ionospheric tomography: A comparison with the IRI-2001 model over South Korea. Earth Planets Space 2007, 59, 287–292. [Google Scholar] [CrossRef]
- Jin, S.; Park, J.U.; Wang, J.L.; Choi, B.K.; Park, P.H. Electron density profiles derived from ground-based GPS observations. J. Navig. 2006, 59, 395–401. [Google Scholar] [CrossRef]
- Notarpietro, R.; Cucca, M.; Gabella, M.; Venuti, G.; Perona, G. Tomographic reconstruction of wet and total refractivity fields from GNSS receiver networks. Adv. Space Res. 2011, 47, 898–912. [Google Scholar] [CrossRef]
- Cai, C.; Gao, Y.; Pan, L.; Zhu, J. Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Adv. Space Res. 2015, 56, 133–143. [Google Scholar] [CrossRef]
Station Location | Weather Conditions | |||||
---|---|---|---|---|---|---|
Station | Latitude | Longitude | Height | DOY | Weather | Wind Direction |
WHCD | 30°34′31″ | 114°1′44″ | 36.9 | 170 | light rain turns to moderate rain | north |
WHDH | 30°29′31″ | 114°24′56″ | 45.7 | 171 | overcast to cloudy | north |
WHEZ | 30°22′16″ | 114°52′13″ | 60.2 | 172 | overcast to cloudy | north |
WHHN | 30°19′8″ | 114°4′16″ | 57.4 | 173 | cloudy | north |
WHHP | 30°53′2″ | 114°22′5″ | 34.1 | 174 | cloudy | northwest |
WHKC | 30°35′34″ | 114°15′39″ | 45.9 | 175 | light rain turns to moderate rain | northeast |
WHXZ | 30°50′9″ | 114°48′13″ | 40.9 | 176 | heavy rain turns to moderate rain | east |
SYS | G | G + R | G + C | G + R + C |
---|---|---|---|---|
Mean Person correlation | 95.90% | 96.40% | 96.40% | 96.40% |
DOY | MAE | RMS | ||||||
---|---|---|---|---|---|---|---|---|
G | G + R | G + C | G + R + C | G | G + R | G + C | G + R + C | |
170 | 0.98 | 0.85 | 0.82 | 0.86 | 1.14 | 0.94 | 0.94 | 0.94 |
171 | 1.45 | 1.35 | 1.33 | 1.35 | 1.66 | 1.50 | 1.50 | 1.50 |
172 | 1.39 | 1.33 | 1.35 | 1.33 | 1.39 | 1.32 | 1.33 | 1.32 |
173 | 1.36 | 1.26 | 1.26 | 1.27 | 1.51 | 1.47 | 1.47 | 1.47 |
174 | 1.17 | 1.12 | 1.17 | 1.12 | 1.32 | 1.28 | 1.27 | 1.29 |
175 | 1.62 | 1.57 | 1.57 | 1.57 | 1.78 | 1.72 | 1.72 | 1.72 |
176 | 1.95 | 1.91 | 1.91 | 1.92 | 1.94 | 1.86 | 1.87 | 1.87 |
SYS | G | G + R | G + C | G + R + C |
---|---|---|---|---|
Bias | 0.77 | 0.74 | 0.74 | 0.75 |
MAE | 1.54 | 1.48 | 1.49 | 1.48 |
RMS | 1.82 | 1.76 | 1.77 | 1.76 |
SYS | Bias | RMS | Maximum |
---|---|---|---|
G | 5.32 | 3.06 | 10.23 |
G + R | 4.42 | 2.84 | 10.98 |
G + C | 4.58 | 2.95 | 12.86 |
G + R + C | 4.49 | 2.83 | 11.02 |
SYS | Bias | RMS | Maximum |
---|---|---|---|
G | 4.59 | 3.72 | 15.20 |
G + R | 3.66 | 3.52 | 13.07 |
G + C | 3.94 | 3.73 | 14.96 |
G + R + C | 3.68 | 3.50 | 12.84 |
DOY | MAE | RMS | ||||||
---|---|---|---|---|---|---|---|---|
G | G + R | G + C | G + R + C | G | G + R | G + C | G + R + C | |
170 | 0.97 | 0.36 | 0.33 | 0.36 | 1.45 | 0.43 | 0.44 | 0.45 |
171 | 0.94 | 0.27 | 0.27 | 0.30 | 1.30 | 0.37 | 0.40 | 0.43 |
172 | 0.79 | 0.25 | 0.23 | 0.26 | 1.06 | 0.37 | 0.34 | 0.39 |
173 | 0.69 | 0.20 | 0.18 | 0.21 | 0.99 | 0.26 | 0.25 | 0.26 |
174 | 0.77 | 0.31 | 0.30 | 0.31 | 1.09 | 0.46 | 0.45 | 0.47 |
175 | 0.75 | 0.19 | 0.20 | 0.20 | 1.05 | 0.29 | 0.32 | 0.31 |
176 | 0.68 | 0.16 | 0.17 | 0.17 | 1.00 | 0.24 | 0.24 | 0.24 |
SYS | G | G + R | G + C | G + R + C |
---|---|---|---|---|
MAE | 0.80 | 0.25 | 0.24 | 0.26 |
RMS | 1.15 | 0.37 | 0.37 | 0.39 |
SYS | G | G + R | G + C | G + R + C |
---|---|---|---|---|
5 km below | 45.30% | 40.30% | 44.10% | 39.90% |
5 km above | 12.60% | 6.30% | 10.40% | 5.80% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Jin, S. 3-D Water Vapor Tomography in Wuhan from GPS, BDS and GLONASS Observations. Remote Sens. 2018, 10, 62. https://doi.org/10.3390/rs10010062
Dong Z, Jin S. 3-D Water Vapor Tomography in Wuhan from GPS, BDS and GLONASS Observations. Remote Sensing. 2018; 10(1):62. https://doi.org/10.3390/rs10010062
Chicago/Turabian StyleDong, Zhounan, and Shuanggen Jin. 2018. "3-D Water Vapor Tomography in Wuhan from GPS, BDS and GLONASS Observations" Remote Sensing 10, no. 1: 62. https://doi.org/10.3390/rs10010062
APA StyleDong, Z., & Jin, S. (2018). 3-D Water Vapor Tomography in Wuhan from GPS, BDS and GLONASS Observations. Remote Sensing, 10(1), 62. https://doi.org/10.3390/rs10010062