Evaluation of Semi-Analytical Algorithms to Retrieve Particulate and Dissolved Absorption Coefficients in Gulf of California Optically Complex Waters
"> Figure 1
<p>(<b>a</b>) Study area map. (<b>b</b>) Transition zone between the Upper Gulf of California (UGC) and Northern Gulf of California (NGC) bio-optical regions, indicated by the dotted line. (<b>c</b>) Station location for each cruise.</p> "> Figure 2
<p>Data of the six cruises that had in situ information on the coefficients (<b>a</b>) <span class="html-italic">a<sub>ph</sub></span>(<span class="html-italic">λ</span>) and (<b>b</b>) <span class="html-italic">a<sub>dg</sub></span>(<span class="html-italic">λ</span>) in the study zone. Black circles represent stations paired with the Generalized Inherent Optical Property (GIOP) algorithm, and red points represent stations paired with the Garver-Siegel-Maritorena (GSM) algorithm. The dotted black line represents the intermediate position of the transitional zone that separates the bio-optical regions UGC and NGC [<a href="#B29-remotesensing-10-01443" class="html-bibr">29</a>].</p> "> Figure 3
<p>Comparative analysis between in situ and satellite <span class="html-italic">a<sub>ph</sub></span>(412, 443, and 488 nm) for GIOP and GSM models, with the statistics Root Mean Square Error (RMSE), bias, <span class="html-italic">r<sub>p</sub></span>, and <span class="html-italic">χ</span><sup>2</sup>; the 1:1 line is indicated for reference. The green and blue colors correspond to the UGC and NGC regions, respectively. In the first column (<b>a</b>, <b>d</b>, <b>g</b>, <b>j</b>, <b>m</b>, <b>p</b>) the entire database was used, in the second (<b>b</b>, <b>e</b>, <b>h</b>, <b>k</b>, <b>n</b>, <b>q</b>) only data from UGC, and in the third (<b>c</b>, <b>f</b>, <b>i</b>, <b>l</b>, <b>o</b>, <b>r</b>) only data from NGC.</p> "> Figure 4
<p>Taylor diagram illustrating the relative performance of the GIOP and GSM algorithms upon reproducing the absorption coefficient <span class="html-italic">a<sub>ph</sub></span>(412, 443, and 488 nm). Diagrams represent (<b>a</b>) the entire dataset and data collected in the (<b>b</b>) UGC and (<b>c</b>) NGC. The red line represents the critical value of Pearson’s correlation coefficient and indicates the best-model performance.</p> "> Figure 5
<p>(<b>a</b>) In situ <span class="html-italic">a*<sub>ph</sub></span> (m<sup>2</sup> mgChla<span class="html-italic"><sup>−1</sup></span>) variability for all cruises analyzed in this study, including the value used in GIOP and GSM (<span class="html-italic">a*<sub>ph</sub></span> = 0.055 m<sup>2</sup> mgChl<span class="html-italic">a<sup>−1</sup></span>, dotted line). Also indicated are the frequency histograms for (<b>b</b>) UGC and (<b>c</b>) NGC.</p> "> Figure 6
<p>Relationship between in situ chlorophyll data (Chl<span class="html-italic">a</span>) and satellite chlorophyll data for the June 2008, June 2010, March 2011, August 2012, and June 2013 cruises, plotted on a logarithmic scale. The dashed line is the one-to-one line. RMSE is computed on log10-transformed data, and bias on original data.</p> "> Figure 7
<p>Comparative analysis between in situ and satellite <span class="html-italic">a<sub>dg</sub></span>(412, 443, and 448) for the GIOP and GSM algorithms, with statistics Root Mean Square Error (RMSE), bias, <span class="html-italic">r<sub>p</sub></span>, and <span class="html-italic">χ</span><sup>2</sup>. The 1:1 is indicated for reference. The green and blue colors correspond to the UGC and NGC regions, respectively. In the first column (<b>a</b>, <b>d</b>, <b>g</b>, <b>j</b>, <b>m</b>, <b>p</b>) the entire database was used, in the second (<b>b</b>, <b>e</b>, <b>h</b>, <b>k</b>, <b>n</b>, <b>q</b>) only data from UGC, and in the third (<b>c</b>, <b>f</b>, <b>i</b>, <b>l</b>, <b>o</b>, <b>r</b>) only data from NGC.</p> "> Figure 8
<p>Taylor diagram illustrating the relative performance of the algorithms GIOP and GSM in reproducing the absorption coefficient <span class="html-italic">a<sub>dg</sub></span>(412, 443, and 488 nm). Each diagram represents the analysis applied to (<b>a</b>) all of the data and by bio-optical regions (<b>b</b>) UGC and (<b>c</b>) NGC. The dotted red line represents the critical value of Pearson’s correlation coefficient.</p> "> Figure 9
<p>Average spectra of the absorption coefficient of dissolved and detrital matter (<span class="html-italic">a<sub>dg</sub></span>(<span class="html-italic">λ</span>)) calculated for each cruise in the UGC (<b>a</b>–<b>d</b>) and NGC (<b>e</b>–<b>g</b>). The pie chart inside diagrams represents the percentage contribution of detritus (<span class="html-italic">a<sub>d</sub></span>) and chromophoric dissolved organic material (CDOM) (<span class="html-italic">a<sub>g</sub></span>) to <span class="html-italic">a<sub>dg</sub></span>(<span class="html-italic">λ</span>). Open circles represent GSM <span class="html-italic">a<sub>dg</sub></span>(<span class="html-italic">λ</span>) values and black crosses represent GIOP <span class="html-italic">a<sub>dg</sub></span>(<span class="html-italic">λ</span>) values. Note: The August 2012 cruise was represented by a single station and was not included in the figure.</p> "> Figure 10
<p>(<b>a</b>) In situ <span class="html-italic">S<sub>dg</sub></span> variability for all cruises analyzed in this study, including the value used in GIOP (<span class="html-italic">S<sub>dg</sub></span> = 0.018, black dotted line) and GSM (<span class="html-italic">S<sub>dg</sub></span> = 0.02061, gray dotted line). Also indicated are the frequency histograms for (<b>b</b>) UGC and (<b>c</b>) NGC.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Data
2.3. Satellite Data
2.4. Semi-Analytical Algorithms
2.5. Algorithm Evaluation Methodology
Pearson’s Correlation Coefficient (rp)
Root Mean Square Error (RMSE)
Bias
Taylor Diagram
3. Results and Discussion
3.1. Phytoplankton Absorption Coefficient
3.2. Absorption Coefficient of Dissolved and Detrital Matter
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McClain, C.R.; Cleave, M.L.; Feldman, G.C.; Gregg, W.W.; Hooker, S.B.; Kuring, N. Science Quality SeaWiFS Data for Global Biosphere Research. Available online: https://rsg.pml.ac.uk/staff/tjsm/sea_tech.html (accessed on 18 August 2017).
- McClain, C.R.; Christian, J.R.; Signorini, S.R.; Lewis, M.R.; Asanuma, I.; Turk, D.; Dupouy-Douchement, C. Satellite ocean-color observations of the tropical Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 2533–2560. [Google Scholar] [CrossRef]
- Gregg, W.W.; Conkright, M.E.; Ginoux, P.; O’Reilly, J.E.; Casey, N.W. Ocean primary production and climate: Global decadal changes. Geophys. Res. Lett. 2003, 30, 1809. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Boss, E.; Siegel, D.A.; Shea, D.M. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 2005, 19, GB1006. [Google Scholar] [CrossRef]
- Yoder, J.; Kennelly, M. What Have We Learned About Ocean Variability from Satellite Ocean Color Imagers? Oceanography 2006, 19, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Garver, S.A.; Siegel, D.A. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea. J. Geophys. Res. Oceans 1997, 102, 18607–18625. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Carder, K.L.; Steward, R.G.; Peacock, T.G.; Davis, C.O.; Patch, J.S. An empirical algorithm for light absorption by ocean water based on color. J. Geophys. Res. Oceans 1998, 103, 27967. [Google Scholar] [CrossRef]
- Carder, K.L.; Chen, F.R.; Lee, Z.P.; Hawes, S.K.; Kamykowski, D. Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. J. Geophys. Res.Oceans 1999, 104, 5403–5421. [Google Scholar] [CrossRef]
- Morel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Oceans 2001, 106, 7163–7180. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.-P.; Darecki, M.; Carder, K.L.; Davis, C.O.; Stramski, D.; Rhea, W.J. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods. J. Geophys. Res. Oceans 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.-P.; Du, K.; Arnone, R.; Liew, S.; Penta, B. Penetration of solar radiation in the upper ocean: A numerical model for oceanic and coastal waters. J. Geophys. Res. Oceans 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Lee, Z.; Muller-Karger, E.; Carder, L.; Walsh, J.J. Ocean color reveals phase shift between marine plants and yellow substance. IEEE Geosci. Remote Sens. Lett. 2006, 3, 262–266. [Google Scholar] [CrossRef]
- Capuzzo, E.; Painting, S.J.; Forster, R.M.; Greenwood, N.; Stephens, D.T.; Mikkelsen, O.A. Variability in the sub-surface light climate at ecohydrodynamically distinct sites in the North Sea. Biogeochemistry 2013, 113, 85–103. [Google Scholar] [CrossRef]
- Haraldsson, M.; Tönnesson, K.; Tiselius, P.; Thingstad, T.; Aksnes, D. Relationship between fish and jellyfish as a function of eutrophication and water clarity. Mar. Ecol. Prog. Ser. 2012, 471, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Siegel, D.A.; Behrenfeld, M.J.; Maritorena, S.; McClain, C.R.; Antoine, D.; Bailey, S.W.; Bontempi, P.S.; Boss, E.S.; Dierssen, H.M.; Doney, S.C.; et al. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 2013, 135, 77–91. [Google Scholar] [CrossRef]
- Brewin, R.J.; Sathyendranath, S.; Müller, D.; Brockmann, C.; Deschamps, P.-Y.; Devred, E.; Doerffer, R.; Fomferra, N.; Franz, B.; Grant, M. The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms. Remote Sens. Environ. 2013, 162, 271–294. [Google Scholar] [CrossRef]
- Mitchell, B.G.; Kahru, M.; Wieland, J.; Stramska, M.; Mueller, J.L. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. Ocean Opt. Protoc. Satell. Ocean Color Sens. Valid. Revis. 2002, 3, 231–257. [Google Scholar]
- Kirk, J.T. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Lee, Z.P. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications; International Ocean-Colour Coordinating Group: Dartmouth, NS, Canada, 2006; Volume 5. [Google Scholar]
- Sathyendranath, S. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex; IOCCG Report 3; IOCCG: Dartmouth, NS, Canada, 2000; p. 3. [Google Scholar]
- Maritorena, S.; Siegel, D.A.; Peterson, A.R. Optimization of a semianalytical ocean color model for global-scale applications. Appl. Opt. 2002, 41, 2705–2714. [Google Scholar] [CrossRef] [PubMed]
- Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.; Lavender, S.J.; Lee, Z.; et al. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 2013, 52, 2019–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, H.R.; Brown, O.B.; Evans, R.H.; Brown, J.W.; Smith, R.C.; Baker, K.S.; Clark, D.K. A semianalytic radiance model of ocean color. J. Geophys. Res. Atmos. 1988, 93, 10909–10924. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Lubac, B.; Werdell, J.; Arnone, R. An Update of the Quasi-Analytical Algorithm (QAA_v5); IOCCG: Dartmouth, NS, Canada, 2009; pp. 1–9. [Google Scholar]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Appl. Opt. 1998, 37, 6329–6338. [Google Scholar] [CrossRef] [PubMed]
- Lavín, M.F.; Marinone, S.G. An overview of the physical oceanography of the Gulf of California. In Nonlinear Processes in Geophysical Fluid Dynamics; Velasco Fuentes, O.U., Sheibaum, J., Ochoa, J., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 173–204. [Google Scholar]
- Bastidas-Salamanca, M.; González-Silvera, A.; Millán-Núñez, R.; Santamaría-del-Ángel, E.; Frouin, R. Bio-Optical Characteristics of the Northern Gulf of California during June 2008. Int. J. Oceanogr. 2014, 13. [Google Scholar] [CrossRef]
- Betancur-Turizo, S.P.; González-Silvera, A.G.; Santamaría-Del-Ángel, E.; Millán-Núñez, R.; Millán-Núñez, E.; García-Nava, H.; Godínez, V.M.; Sánchez-Velasco, L. Variability in the Light Absorption Coefficient by Phytoplankton, Non-Algal Particles and Colored Dissolved Organic Matter in the Northern Gulf of California. Open J. Mar. Sci. 2018, 8, 20–37. [Google Scholar] [CrossRef]
- Argote, M.L.; Amador, A.; Lavín, M.F.; Hunter, J.R. Tidal dissipation and stratification in the Gulf of California. J. Geophys. Res. Oceans 1995, 100, 16103–16118. [Google Scholar] [CrossRef]
- Hooker, S.B.; Clementson, L.; Thomas, C.S.; Schlüter, L. The HPLC Method, Chapter 6. In The Fifth SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-5); NASA Technical Memorandum: Lanham, MD, USA, 2012; pp. 63–72. [Google Scholar]
- Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Harding, L.W., Jr.; Feldman, G.C. Approach for the long-term spatial and temporal evaluation of ocean color satellite data products in a coastal environment. SPIE 2007, 6680, 66800G. [Google Scholar]
- Maritorena, S.; Siegel, D.A. Chapter 11: The GSM semi-analytical bio-optical model. Remote Sens. Inherent Opt. Prop. Fundam. Tests Algorithms Appl. 2006, 73–79. [Google Scholar]
- Santamaría-del-Ángel, E.; Millán-Núñez, R.; González-Silvera, A.; Cajal-Medrano, R. Comparison of In Situ and Remotely-Sensed Chl-a concentrations: A Statistical Examination of the Match-up Approach. In Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation and Management; EU PRESPO Project: Wittibreut, Germany, 2010; pp. 221–238. [Google Scholar]
- Zar, H.H. Biostatistical Analysis, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Lee, Y.J.; Matrai, P.A.; Friedrichs, M.A.; Saba, V.S.; Aumont, O.; Babin, M.; Buitenhuis, E.T.; Chevallier, M.; De Mora, L.; Dessert, M. Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models. J. Geophys. Res. Oceans 2016, 121, 8635–8669. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Oceans 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, J.E.; Maritorena, S.; Siegel, D.A.; O’Brien, M.C.; Toole, D.; Mitchell, B.G.; Kahru, M.; Chavez, F.P.; Strutton, P.; Cota, G.F. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. SeaWiFS Postlaunch Calibration Valid. Anal. 2000, 3, 9–23. [Google Scholar]
- Bricaud, A.; Claustre, H.; Ras, J.; Oubelkheir, K. Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. J. Geophys. Res. Oceans 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Jeffrey, S.W.; Mantoura, R.F.C.; Wright, S.W. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods; UNESCO Publishing: Paris, France, 1997; ISBN 978-92-3-103275-2. [Google Scholar]
- Millán-Núñez, E.; Sieracki, M.E.; Millán-Núñez, R.; Lara-Lara, J.R.; Gaxiola-Castro, G.; Trees, C.C. Specific absorption coefficient and phytoplankton biomass in the southern region of the California Current. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 817–826. [Google Scholar] [CrossRef]
Cruises | Dates | Variables |
---|---|---|
June 2008 | 3–16 | aph(λ), ad(λ) |
June 2010 | 1–10 | aph(λ), ad(λ) |
March 2011 | 24 March to 1 April | aph(λ), ad(λ), aCDOM(λ) |
August 2012 | 3–10 | aph(λ), ad(λ), aCDOM(λ) |
September 2012 | 4–9 | aph(λ), ad(λ), aCDOM(λ) |
June 2013 | 11–21 | aph(λ), ad(λ), aCDOM(λ) |
Cruises | Total Stations | Julian Days | Total Days Per Cruise | Selected Level 1a Images |
---|---|---|---|---|
June 2008 | 22 | 158–164 | 6 | 11 |
June 2010 | 30 | 152–159 | 8 | 8 |
March 2011 | 27 | 84–91 | 8 | 10 |
August 2012 | 10 | 216–223 | 8 | 3 |
September 2012 | 30 | 248–253 | 6 | 6 |
June 2013 | 46 | 162–171 | 9 | 10 |
Total | 165 | 55 | 48 |
Name | Description |
---|---|
ATMFAIL | Atmospheric correction failure |
HIGLINT | High glint determined |
HILT | High (or saturating) Top of the Atmosphere (TOA radiance) |
HISATZEN | Large satellite zenith angle |
STRAYLIGHT | Stray light determined |
CLDICE | Probable cloud or ice contamination |
LOWLW | Very low water-leaving radiance |
MAXAERITER | Absorbing aerosols determined |
λ | N | SDIn situ | SDSatellite | RMSE | Bias | Least Squares | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GIOP | GIOP * | GIOP | GIOP * | GIOP | GIOP * | GIOP | GIOP * | GIOP | GIOP * | GIOP | GIOP * | ||
UGC | 412 | 11 | 11 | 0.19 | 0.19 | 0.09 | 0.13 | 2.45 | 2.34 | −0.32 | −0.26 | 0.75 | 0.69 |
443 | 11 | 11 | 0.14 | 0.14 | 0.05 | 0.05 | 1.77 | 1.57 | −0.39 | −0.19 | 0.39 | 0.31 | |
488 | 11 | 8 | 0.09 | 0.10 | 0.02 | 0.01 | 1.18 | 1.04 | −0.51 | −0.42 | 0.18 | 0.13 | |
NGC | 412 | 26 | 26 | 0.14 | 0.14 | 0.09 | 0.08 | 2.25 | 2.06 | 0.23 | 0.35 | 0.63 | 0.53 |
443 | 26 | 26 | 0.09 | 0.09 | 0.05 | 0.04 | 1.43 | 1.32 | 0.25 | 0.25 | 0.26 | 0.22 | |
488 | 26 | 26 | 0.05 | 0.05 | 0.02 | 0.02 | 0.76 | 0.72 | 0.19 | 0.02 | 0.07 | 0.06 | |
λ | GSM | GSM * | GSM | GSM * | GSM | GSM * | GSM | GSM * | GSM | GSM * | GSM | GSM * | |
UGC | 412 | 10 | 5 | 0.10 | 0.08 | 0.13 | 0.14 | 1.51 | 0.57 | −0.20 | −0.05 | 0.14 | 0.72 |
443 | 10 | 7 | 0.07 | 0.08 | 0.05 | 0.09 | 0.76 | 0.48 | −0.12 | 0.13 | 0.16 | 0.68 | |
488 | 7 | 5 | 0.05 | 0.06 | 0.01 | 0.04 | 0.54 | 0.16 | −0.35 | 0.09 | −0.25 | 0.88 | |
NGC | 412 | 22 | 17 | 0.04 | 0.04 | 0.09 | 0.10 | 1.12 | 1.02 | 0.54 | 0.41 | 0.53 | 0.59 |
443 | 22 | 18 | 0.03 | 0.03 | 0.05 | 0.06 | 0.55 | 0.67 | 0.42 | 0.60 | 0.54 | 0.67 | |
488 | 22 | 16 | 0.02 | 0.01 | 0.02 | 0.04 | 0.21 | 0.34 | 0.17 | 0.51 | 0.52 | 0.79 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betancur-Turizo, S.P.; González-Silvera, A.; Santamaría-del-Ángel, E.; Tan, J.; Frouin, R. Evaluation of Semi-Analytical Algorithms to Retrieve Particulate and Dissolved Absorption Coefficients in Gulf of California Optically Complex Waters. Remote Sens. 2018, 10, 1443. https://doi.org/10.3390/rs10091443
Betancur-Turizo SP, González-Silvera A, Santamaría-del-Ángel E, Tan J, Frouin R. Evaluation of Semi-Analytical Algorithms to Retrieve Particulate and Dissolved Absorption Coefficients in Gulf of California Optically Complex Waters. Remote Sensing. 2018; 10(9):1443. https://doi.org/10.3390/rs10091443
Chicago/Turabian StyleBetancur-Turizo, Stella Patricia, Adriana González-Silvera, Eduardo Santamaría-del-Ángel, Jing Tan, and Robert Frouin. 2018. "Evaluation of Semi-Analytical Algorithms to Retrieve Particulate and Dissolved Absorption Coefficients in Gulf of California Optically Complex Waters" Remote Sensing 10, no. 9: 1443. https://doi.org/10.3390/rs10091443
APA StyleBetancur-Turizo, S. P., González-Silvera, A., Santamaría-del-Ángel, E., Tan, J., & Frouin, R. (2018). Evaluation of Semi-Analytical Algorithms to Retrieve Particulate and Dissolved Absorption Coefficients in Gulf of California Optically Complex Waters. Remote Sensing, 10(9), 1443. https://doi.org/10.3390/rs10091443