Merging Unmanned Aerial Systems (UAS) Imagery and Echo Soundings with an Adaptive Sampling Technique for Bathymetric Surveys
"> Figure 1
<p>The location of the Finn Creek Site 21 Reservoir within KAEFS boundaries in McCain County, Central Oklahoma, USA.</p> "> Figure 2
<p>small UAS-echosounder system. (<b>A</b>) DJI Phanton 3 Pro quadcopter propelling a mini-boat carrying the single-beam echosounder across the Finn Creek Site 21 Reservoir; (<b>B</b>) DJI Phantom 3 Professional unmanned aerial system, Deeper Smart Sonar Pro+ wireless sonar, boat (top showing tablet attached in waterproof case and bottom showing attachment of sonar), and Samsung Android tablet.</p> "> Figure 3
<p>Echosounding sampling and bathymetry of Finn Creek 21 Reservoir in August of 2017. (<b>A</b>) initial (blue) and zonal adaptive (red) point sampling; (<b>B</b>) interpolated bathymetry using a nearest neighbor technique. Both figures overlay an orthophoto created from the Structure from Motion-photogrammetry.</p> "> Figure 4
<p>Spatial distribution of the clustered standard deviation (SD in m) (<b>A</b>) after the initial sampling and (<b>B</b>) after the zonal adaptive sampling.</p> "> Figure 5
<p>Skill and error metrics between the 100 co-located echosounder and field measurements. (<b>A</b>) water depth scatterplot with green line representing a perfect correspondence; (<b>B</b>) probability density functions of field measurements (red), and echosounder (blue); (<b>C</b>) box and whisker plots display the minimum, first quartile, median, third quartile and maximum value of the absolute error (AE in m), forecasting error (FE in m) and percent error (PE in %).</p> "> Figure 6
<p>Spatial variability of (<b>A</b>) AE (m) and (<b>B</b>) PE (%), between the field and echosounder measurements at 100 collocated points within the reservoir area.</p> "> Figure 7
<p>(<b>A</b>) location of checkpoint and Ground Control Points (GCPs) collected with a total station survey. The figure overlays the georeferenced orthophoto (<b>B</b>) derived Digital Elevation Model (DEM) with the Pix4DMapper Pro<sup>®</sup> software.</p> "> Figure 8
<p>Ground checkpoints vs. Structure from Motion DEM elevations at 60 co-located points within the study area. The locations are illustrated in blue in <a href="#remotesensing-10-01362-f007" class="html-fig">Figure 7</a>A. The green line represents a perfect correlation between the checkpoints and DEM.</p> "> Figure 9
<p>Bathymetry of Finn Creek 21 Reservoir using hlsmall UAS-SfM technique with a refraction index correction. The maximum detectable depth by the SfM is delineated by the red polygon.</p> "> Figure 10
<p>Bathymetry of Finn Creek 21 Reservoir combining sUAS-echosounder and sUAS-SfM.</p> "> Figure A1
<p>Schematic representation of the refraction of light at the interface between air and water, in terms of the depth (<b>A</b>) and apparent depth (<b>B</b>).</p> ">
Abstract
:1. Introduction
1.1. Introduction and Overview
1.2. Conventional and Emerging Techniques for Bathymetric Surveying
1.2.1. Total-Station Surveying
1.2.2. Terrestrial and Aerial LiDAR
1.2.3. Single- and Multi-Beam Bathymetric Systems
1.2.4. Digital Photogrammetry
1.2.5. Structure from Motion (SfM) Photogrammetry
2. Study Area
3. Data and Methods
3.1. sUAS-Echosounder System
3.1.1. Equipment
3.1.2. Preliminary and Zonal Adaptive Sampling
3.1.3. Independent Validation
3.2. sUAS-SfM System
3.2.1. Equipment and Sampling
3.2.2. SfM Post-Processing
3.2.3. DEM Accuracy Assessment
3.3. Merging Echosounder and SfM
4. Results
4.1. sUAS-Echosounder Measurements
4.2. Zonal Adaptive Sampling
4.3. Echosounder Independent Validation
4.3.1. Scatterplot and Probability Density Functions
4.3.2. Skill and Error Metrics
4.4. sUAS-SfM Accuracy
4.5. sUAS-SfM Measurements
4.6. Merged sUAS-Echosounder and SfM Measurements
5. Discussion and Future Work
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Statistical Metrics
- (1)
- Mean Absolute Error (MAE)The MAE measures the average of the error or differences between the echosounder and field measurements. The MAE is a linear metric where all the errors in the sample are weighted equally.
- (2)
- Mean Forecast Error (MFE)
- (3)
- Root Mean Square Error (RMSE)
- (4)
- Pearson correlation coefficient (R)The Pearson correlation coefficient (R) can range from −1 to 1. A value of 1 indicates a positive linear correlation between the echosounder and field measurements. A value of 0 indicates no linear correlation between echosounder and field measurements. A value of −1 indicates a negative correlation between the variables, meaning that echosounder measurements decrease while field measurements increase.
- (5)
- Mean Absolute Percent Error (MAPE)
Appendix B. Snell–Descartes Law Simplification
- Explanation of variables
- i: Angle of incidence (),
- r: Angle of refraction (),
- x: Horizontal distance from where the light crosses the boundary between two media to where the light reaches the bottom of the lake (m),
- n1: Index of refraction of air (∼1.0),
- n2: Index of refraction of water (∼1.34),
- h: Actual depth of water (m),
- ha: Apparent depth of water (m).
References
- Legleiter, C.J. Remote measurement of river morphology via fusion of LiDAR topography and spectrally based bathymetry: Measuring river morphology with LiDAR and spectral bathymetry. Earth Surf. Process. Landf. 2012, 37, 499–518. [Google Scholar] [CrossRef]
- Niethammer, U.; James, M.; Rothmund, S.; Travelletti, J.; Joswig, M. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Eng. Geol. 2012, 128, 2–11. [Google Scholar] [CrossRef]
- Passalacqua, P.; Belmont, P.; Staley, D.M.; Simley, J.D.; Arrowsmith, J.R.; Bode, C.A.; Crosby, C.; DeLong, S.B.; Glenn, N.F.; Kelly, S.A.; et al. Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review. Earth Sci. Rev. 2015, 148, 174–193. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Z.X.; You, G.J.Y.; Lee, H.Y.; Chiu, Y.J. Use of a total station to monitor post-failure sediment yields in landslide sites of the Shihmen reservoir watershed, Taiwan. Geomorphology 2012, 139–140, 438–451. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Alvarez, L.V. Turbulence, Sediment Transport, Erosion, and Sandbar Beach Failure Processes in Grand Canyon. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2015. [Google Scholar]
- Alvarez, L.V.; Schmeeckle, M.W.; Grams, P.E. A detached eddy simulation model for the study of lateral separation zones along a large canyon-bound river. J. Geophys. Res. 2017, 122, 25–49. [Google Scholar] [CrossRef]
- Moreno, H.A.; Gupta, H.V.; White, D.D.; Sampson, D.A. Modeling the distributed effects of forest thinning on the long-term water balance and streamflow extremes for a semi-arid basin in the southwestern US. Hydrol. Earth Syst. Sci. 2016, 20, 1241–1267. [Google Scholar] [CrossRef] [Green Version]
- Moreno, H.A.; Vivoni, E.R.; Gochis, D.J. Addressing uncertainty in reflectivity-rainfall relations in mountain watersheds during summer convection. Hydrol. Process. 2014, 28, 688–704. [Google Scholar] [CrossRef]
- Moreno, H.A.; Vivoni, E.R.; Gochis, D.J. Utility of Quantitative Precipitation Estimates for high resolution hydrologic forecasts in mountain watersheds of the Colorado Front Range. J. Hydrol. 2012, 438–439, 66–83. [Google Scholar] [CrossRef]
- Moreno, H.A.; Vivoni, E.R.; Gochis, D.J. Limits to Flood Forecasting in the Colorado Front Range for Two Summer Convection Periods Using Radar Nowcasting and a Distributed Hydrologic Model. J. Hydrol. 2013, 14, 1075–1097. [Google Scholar] [CrossRef]
- Alvarez, L.V.; Schmeeckle, M.W. Erosion of river sandbars by diurnal stage fluctuations in the Colorado River in the Marble and Grand Canyons: Full-scaled laboratory experiments. River Res. Appl. 2013, 29, 839–854. [Google Scholar] [CrossRef]
- Converse, Y.K.; Hawkins, C.P.; Valdez, R.A. Habitat relationships of subadult humpback chub in the Colorado River through Grand Canyon: Spatial variability and implications of flow regulation. Regul. River 1998, 14, 267–284. [Google Scholar] [CrossRef]
- Gerig, B.; Dodrill, M.J.; Pine, W.E. Habitat Selection and Movement of Adult Humpback Chub in the Colorado River in Grand Canyon, Arizona, during an Experimental Steady Flow Release. N. J. Fish. Manag. 2014, 34, 39–48. [Google Scholar] [CrossRef]
- Korman, J.; Wiele, S.M.; Torizzo, M. Modelling effects of discharge on habitat quality and dispersal of juvenile humpback chub (Gila cypha) in the Colorado River, Grand Canyon. River Res. Appl. 2004, 20, 379–400. [Google Scholar] [CrossRef]
- Orr, H.; Large, A.; Newson, M.; Walsh, C. A predictive typology for characterising hydromorphology. Geomorphology 2008, 100, 32–40. [Google Scholar] [CrossRef]
- Wilson, M.F.J.; O’Connell, B.; Brown, C.; Guinan, J.C.; Grehan, A.J. Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope. Mar. Geodesy 2007, 30, 3–35. [Google Scholar] [CrossRef] [Green Version]
- Keim, R.F.; Skaugset, A.E.; Bateman, D.S. Digital terrain modeling of small stream channels with a total-station theodolite. Adv. Water Resour. 1999, 23, 41–48. [Google Scholar] [CrossRef]
- Carbonneau, P.E.; Lane, S.N.; Bergeron, N.E. Cost-effective non-metric close-range digital photogrammetry and its application to a study of coarse gravel river beds. Int. J. Remote Sens. 2003, 24, 2837–2854. [Google Scholar] [CrossRef]
- Fryer, J.G.; Kniest, H.T. Errors in depth determination caused by waves in through-water photogrammetry. Photogramm. Rec. 1985, 11, 745–753. [Google Scholar] [CrossRef]
- Lane, S.N. The measurement of river channel morphology using digital photogrammetry. Photogramm. Rec. 2000, 16, 937–961. [Google Scholar] [CrossRef]
- Westaway, R.M.; Lane, S.N.; Hicks, D.M. Remote survey of large-scale braided, gravel-bed rivers using digital photogrammetry and image analysis. Int. J. Remote Sens. 2003, 24, 795–815. [Google Scholar] [CrossRef]
- Westaway, R.M.; Lane, S.N.; Hicks, D.M. Remote sensing of clear-water, shallow, gravel-bed rivers using digital photogrammetry. Photogramm. Eng. Remote Sens. 2001, 67, 1271–1282. [Google Scholar]
- Bailly, J.S.; Kinzel, P.J.; Allouis, T.; Feurer, D.; Le Coarer, Y. Airborne LiDAR Methods Applied to Riverine Environments. In Fluvial Remote Sensing for Science and Management; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 141–161. [Google Scholar]
- Brock, J.C.; Purkis, S.J. The Emerging Role of Lidar Remote Sensing in Coastal Research and Resource Management. J. Coast. Res. 2009, 10053, 1–5. [Google Scholar] [CrossRef]
- Kinzel, P.J.; Legleiter, C.J.; Nelson, J.M. Mapping river bathymetry with a small footprint green LiDAR: Applications and challenges. J. Am. Water Resour. Assoc. 2013, 49, 183–204. [Google Scholar] [CrossRef]
- Hilldale, R.C.; Raff, D. Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surf. Process. Landf. 2008, 33, 773–783. [Google Scholar] [CrossRef]
- McKean, J.; Nagel, D.; Tonina, D.; Bailey, P.; Wright, C.W.; Bohn, C.; Nayegandhi, A. Remote Sensing of Channels and Riparian Zones with a Narrow-Beam Aquatic-Terrestrial LIDAR. Remote Sens. 2009, 1, 1065–1096. [Google Scholar] [CrossRef] [Green Version]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef]
- Lejot, J.; Delacourt, C.; Piégay, H.; Fournier, T.; Trémélo, M.L.; Allemand, P. Very high spatial resolution imagery for channel bathymetry and topography from an unmanned mapping controlled platform. Earth Surf. Process. Landf. 2007, 32, 1705–1725. [Google Scholar] [CrossRef]
- Marcus, W.A.; Fonstad, M.A. Optical remote mapping of rivers at sub-meter resolutions and watershed extents. Earth Surf. Process. Landf. 2008, 33, 4–24. [Google Scholar] [CrossRef]
- Clapuyt, F.; Vanacker, V.; Van Oost, K. Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms. Geomorphology 2016, 260, 4–15. [Google Scholar] [CrossRef]
- Dunford, R.; Michel, K.; Gagnage, M.; Piégay, H.; Trémelo, M.L. Potential and constraints of Unmanned Aerial Vehicle technology for the characterization of Mediterranean riparian forest. Int. J. Remote Sens. 2009, 30, 4915–4935. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.; Carrivick, J.; Quincey, D. Structure from motion photogrammetry in physical geography. Prog. Phys. Geogr. 2016, 40, 247–275. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef] [Green Version]
- Woodget, A.S.; Carbonneau, P.E.; Visser, F.; Maddock, I.P. Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry: Submerged fluvial topography from UAS imagery and SfM. Earth Surf. Process. Landf. 2015, 40, 47–64. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Whitehead, K.; Brown, O.W.; Barchyn, T.E.; Moorman, B.J.; LeClair, A.; Riddell, K.; Hamilton, T. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model. Geomorphology 2013, 194, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Jaakkola, A.; Hyyppä, J.; Kukko, A.; Yu, X.; Kaartinen, H.; Lehtomäki, M.; Lin, Y. A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS J. Photogramm. Remote Sens. 2010, 65, 514–522. [Google Scholar] [CrossRef]
- Tarolli, P. High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology 2014, 216, 295–312. [Google Scholar] [CrossRef]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef] [Green Version]
- Javernick, L.; Brasington, J.; Caruso, B. Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology 2014, 213, 166–182. [Google Scholar] [CrossRef]
- Rosnell, T.; Honkavaara, E. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera. Sensors 2012, 12, 453–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoeven, G.; Doneus, M.; Briese, C.; Vermeulen, F. Mapping by matching: A computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs. J. Archaeol. Sci. 2012, 39, 2060–2070. [Google Scholar] [CrossRef]
- Vericat, D.; Brasington, J.; Wheaton, J.; Cowie, M. Accuracy assessment of aerial photographs acquired using lighter-than-air blimps: Low-cost tools for mapping river corridors. River Res. Appl. 2009, 25, 985–1000. [Google Scholar] [CrossRef]
- MacVicar, B.; Piegay, H.; Henderson, A.; Comiti, F.; Oberlin, C.; Pecorari, E. Quantifying the temporal dynamics of wood in large rivers: Field trials of wood surveying, dating, tracking, and monitoring techniques. Earth Surf. Process. Landf. 2009, 34, 2031–2046. [Google Scholar] [CrossRef]
- Smith, M.J.; Chandler, J.; Rose, J. High spatial resolution data acquisition for the geosciences: Kite aerial photography. Earth Surf. Process. Landf. 2009, 34, 155–161. [Google Scholar] [CrossRef]
- Hervouet, A.; Dunford, R.; Piégay, H.; Belletti, B.; Trémélo, M.L. Analysis of Post-flood Recruitment Patterns in Braided-Channel Rivers at Multiple Scales Based on an Image Series Collected by Unmanned Aerial Vehicles, Ultra-light Aerial Vehicles, and Satellites. GISci. Remote Sens. 2011, 48, 50–73. [Google Scholar] [CrossRef]
- Dietrich, J.T. Bathymetric Structure-from-Motion: Extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surf. Process. Landf. 2017, 42, 355–364. [Google Scholar] [CrossRef]
- Cartwright, D.S.; Clarke, J.H. Multibeam surveys of the frazer river delta, coping with an extreme refraction environment. In Proceedings of the 2002 Canadian Hydrographic Conference, Toronto, ON, Canada, 28–31 May 2002. [Google Scholar]
- Clarke, J.E.H.; Mayer, L.A.; Wells, D.E. Shallow-water imaging multibeam sonars: a new tool for investigating seafloor processes in the coastal zone and on the continental shelf. Mar. Geophys. Res. 1996, 18, 607–629. [Google Scholar] [CrossRef]
- Dinehart, R.L. Bedform movement recorded by sequential single-beam surveys in tidal rivers. J. Hydrol. 2002, 258, 25–39. [Google Scholar] [CrossRef]
- Gerlotto, F.; Soria, M.; Fréon, P. From two dimensions to three: The use of multibeam sonar for a new approach in fisheries acoustics. Can. J. Fish. Aquat. 1999, 56, 6–12. [Google Scholar] [CrossRef]
- Guerrero, M.; Lamberti, A. Flow Field and Morphology Mapping Using ADCP and Multibeam Techniques: Survey in the Po River. J. Hydraul. Res. 2011, 137, 1576–1587. [Google Scholar] [CrossRef]
- Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D. Acoustic mapping velocimetry. Water Resour. Res. 2016, 52, 4132–4150. [Google Scholar] [CrossRef] [Green Version]
- Parsons, D.R.; Best, J.L.; Orfeo, O.; Hardy, R.J.; Kostaschuk, R.; Lane, S.N. Morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling: Three dimensional alluvial dunes, Rio Parana. J. Geophys. Res 2005, 110. [Google Scholar] [CrossRef]
- Somoza, L. Seabed morphology and hydrocarbon seepage in the Gulf of Cádiz mud volcano area: Acoustic imagery, multibeam and ultra-high resolution seismic data. Mar. Geol. 2003, 195, 153–176. [Google Scholar] [CrossRef]
- Fonseca, L.; Mayer, L. Remote estimation of surficial seafloor properties through the application Angular Range Analysis to multibeam sonar data. Mar. Geophys. Res. 2007, 28, 119–126. [Google Scholar] [CrossRef]
- Dinehart, R.L.; Burau, J.R. Averaged indicators of secondary flow in repeated acoustic Doppler current profiler crossings of bends: Averaged indicators of secondary flow. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.C.; Tsai, H.W.; Law, D. Acoustic Mapping Velocimetry proof-of-concept experiment. In Proceedings of the 36th IAHR World Congress, The Hague, The Netherlands, 28 June–3 July 2015. [Google Scholar]
- Venditti, J.G.; Rennie, C.D.; Bomhof, J.; Bradley, R.W.; Little, M.; Church, M. Flow in bedrock canyons. Nature 2014, 513, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Viney, I.T.; Kirk, G.R. Remote Control and Viewing for A Total Station. Google Patents 6,034.722, 7 March 2000. [Google Scholar]
- Cross, E.; Koo, K.; Brownjohn, J.; Worden, K. Long-term monitoring and data analysis of the Tamar Bridge. Mech. Syst. Signal. Process. 2013, 35, 16–34. [Google Scholar] [CrossRef] [Green Version]
- Ehrhart, M.; Lienhart, W. Monitoring of civil engineering structures using a state-of-the-art image assisted total station. J. Appl. Geodesy 2015, 9, 174–182. [Google Scholar] [CrossRef]
- Mill, T.; Alt, A.; Liias, R. Combined 3D building surveying techniques—Terrestrial laser scanning (TLS) and total station surveying for BIM data management purposes. J. Civ. Eng. Manag. 2013, 19, S23–S32. [Google Scholar] [CrossRef]
- Psimoulis, P.A.; Stiros, S.C. Measuring Deflections of a Short-Span Railway Bridge Using a Robotic Total Station. J. Bridge Eng. 2013, 18, 182–185. [Google Scholar] [CrossRef]
- Henry, E.; Mayer, C.; Rott, H. Mapping mining-induced subsidence from space in a hard rock mine: Example of SAR interferometry application at Kiruna mine. CIM Bull. 2004, 97, 1–5. [Google Scholar]
- Hürkamp, K.; Raab, T.; Völkel, J. Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (FPXRF) analysis. Geomorphology 2009, 110, 28–36. [Google Scholar] [CrossRef]
- Nainwal, H.; Negi, B.; Chaudhary, M.; Sajwan, K.; Gaurav, A. Temporal changes in rate of recession: Evidences from Satopanth and Bhagirath Kharak glaciers, Uttarakhand, using Total Station Survey. Curr. Sci. 2008, 94, 653–660. [Google Scholar]
- Smith, M.; Vericat, D. Evaluating shallow-water bathymetry from through-water terrestrial laser scanning under a range of hydraulic and physical water quality conditions. River Res. Appl. 2014, 30, 905–924. [Google Scholar] [CrossRef]
- Chen, X.; Vierling, L.; Rowell, E.; DeFelice, T. Using lidar and effective LAI data to evaluate IKONOS and Landsat 7 ETM+ vegetation cover estimates in a ponderosa pine forest. Remote Sens. Environ. 2004, 91, 14–26. [Google Scholar] [CrossRef]
- Genç, L.; Dewitt, B.; Smith, S. Determination of wetland vegetation height with LIDAR. Turk. J. Agric. For. 2004, 28, 63–71. [Google Scholar]
- Saito, Y.; Kanoh, M.; Hatake, K.I.; Kawahara, T.D.; Nomura, A. Investigation of laser-induced fluorescence of several natural leaves for application to lidar vegetation monitoring. Appl. Opt. 1998, 37, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Hudak, A.T.; Lefsky, M.A.; Cohen, W.B.; Berterretche, M. Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sens. Environ. 2002, 82, 397–416. [Google Scholar] [CrossRef] [Green Version]
- Reutebuch, S.E.; McGaughey, R.J.; Andersen, H.E.; Carson, W.W. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Can. J. Remote Sens. 2003, 29, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Andersen, H.E.; McGaughey, R.J.; Reutebuch, S.E. Estimating forest canopy fuel parameters using LIDAR data. Remote Sens. Environ. 2005, 94, 441–449. [Google Scholar] [CrossRef]
- Clark, M.L.; Clark, D.B.; Roberts, D.A. Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sens. Environ. 2004, 91, 68–89. [Google Scholar] [CrossRef]
- Kwak, D.A.; Lee, W.K.; Lee, J.H.; Biging, G.S.; Gong, P. Detection of individual trees and estimation of tree height using LiDAR data. J. For. Res. 2007, 12, 425–434. [Google Scholar] [CrossRef]
- Chehata, N.; Guo, L.; Mallet, C. Airborne LiDAR feature selection for urban classification using random forests. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2009, 38, W8. [Google Scholar]
- Guo, L.; Chehata, N.; Mallet, C.; Boukir, S. Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. J. Photogramm. Remote Sens. 2011, 66, 56–66. [Google Scholar] [CrossRef]
- Mallet, C.; Bretar, F.; Roux, M.; Soergel, U.; Heipke, C. Relevance assessment of full-waveform lidar data for urban area classification. ISPRS J. Photogramm. Remote Sens. 2011, 66, S71–S84. [Google Scholar] [CrossRef]
- Bangen, S.G.; Wheaton, J.M.; Bouwes, N.; Bouwes, B.; Jordan, C. A methodological intercomparison of topographic survey techniques for characterizing wadeable streams and rivers. Geomorphology 2014, 206, 343–361. [Google Scholar] [CrossRef]
- Feurer, D.; Bailly, J.S.; Puech, C.; Le Coarer, Y.; Viau, A.A. Very-high-resolution mapping of river-immersed topography by remote sensing. Prog. Phys. Geogr. 2008, 32, 403–419. [Google Scholar] [CrossRef]
- Kinzel, P.J. Advanced tools for river science: EAARL and MD_SWMS. In PNMAP Special Publication: Remote Sensing Applications for Aquatic Resources Monitoring. Pacific Northwest Aquatic Monitoring Partnership; PNMAP: Bangkok, Thailand, 2009; pp. 17–26. [Google Scholar]
- Brock, J.C.; Wright, C.W.; Patterson, M.; Nayegandhi, A.; Patterson, J.; Harris, M.S.; Mosher, L. EAARL Submarine Topography: Biscayne National Park; Technical Report; US Geological Survey: Reston, VA, USA, 2006.
- Irish, J.L.; Lillycrop, W.J. Scanning laser mapping of the coastal zone: The SHOALS system. ISPRS J. Photogramm. Remote Sens. 1999, 54, 123–129. [Google Scholar] [CrossRef]
- Bonisteel, J.M.; Nayegandhi, A.; Wright, C.W.; Brock, J.C.; Nagle, D. Experimental Advanced Airborne Research LiDAR (EAARL) Data Processing Manual; Technical Report; US Geological Survey: Reston, VA, USA, 2009.
- Nayegandhi, A.; Brock, J.C.; Wright, C.W. Classifying vegetation using NASA’s Experimental Advanced Airborne Research Lidar (EAARL) at Assateague Island National Seashore. In Proceedings of the 2005 ASPRS Annual Conference, Baltimore, MA, USA, 7–11 March 2005. [Google Scholar]
- Skinner, K.D. Evaluation of LiDAR-Acquired Bathymetric and Topographic Data Accuracy in Various Hydrogeomorphic Settings in the Deadwood and South Fork Boise Rivers, West-Central Idaho, 2007; Technical Report; US Geological Survey: Reston, VA, USA, 2011.
- Wright, C.W.; Troche, R.J.; Kranenburg, C.J.; Klipp, E.S.; Fredericks, X.; Nagle, D.B. EAARL-B Submerged Topography: Barnegat Bay, New Jersey, Post-Hurricane Sandy, 2012–2013; Technical Report; US Geological Survey: Reston, VA, USA, 2014.
- Wright, C.W.; Fredericks, X.; Troche, R.J.; Klipp, E.S.; Kranenburg, C.J.; Nagle, D.B. EAARL-B Coastal Topography: Eastern New Jersey, Hurricane Sandy, 2012: First Surface; Technical Report Data Series 885; US Geological Survey: Reston, VA, USA, 2014.
- Kostylev, V.E.; Todd, B.J.; Fader, G.B.; Courtney, R.C.; Cameron, G.D.; Pickrill, R.A. Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographs. Mar. Ecol. Prog. Ser. 2001, 219, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Kaplinski, M.; Hazel, J.E., Jr.; Grams, P.E.; Kohl, K.; Buscombe, D.D.; Tusso, R.B. Channel Mapping River Miles 29–62 of the Colorado River in Grand Canyon National Park, Arizona, May 2009; Technical Report No. 2017-1030; US Geological Survey: Reston, VA, USA, 2017.
- Maxwell, S.L.; Smith, A.V. Generating River Bottom Profiles with a Dual-Frequency Identification Sonar (DIDSON). N. J. Fish. Manag. 2007, 27, 1294–1309. [Google Scholar] [CrossRef]
- Ashworth, P.J.; Best, J.L.; Roden, J.E.; Bristow, C.S.; Klaassen, G.J. Morphological evolution and dynamics of a large, sand braid-bar, Jamuna River, Bangladesh. Sedimentology 2000, 47, 533–555. [Google Scholar] [CrossRef]
- Harbor, D.J. Dynamics of bedforms in the lower Mississippi River. J. Sediment. Res. 1998, 68, 750–762. [Google Scholar] [CrossRef]
- Lewin, J.; Weir, M.J.C. Morphology and recent history of the lower Spey. Scott. Geogr. Mag. 1977, 93, 45–51. [Google Scholar] [CrossRef]
- Lewin, J.; Manton, M. Welsh floodplain studies: The nature of floodplain geometry. J. Hydrol. 1975, 25, 37–50. [Google Scholar] [CrossRef]
- Mertes, L.A. Remote sensing of riverine landscapes. Freshwater Biol. 2002, 47, 799–816. [Google Scholar] [CrossRef]
- Lapointe, M.F.; Secretan, Y.; Driscoll, S.N.; Bergeron, N.; Leclerc, M. Response of the Ha! Ha! River to the flood of July 1996 in the Saguenay region of Quebec: Large-scale avulsion in a glaciated valley. Water Resour. Res. 1998, 34, 2383–2392. [Google Scholar] [CrossRef] [Green Version]
- Lane, S.N. The reconstruction of bed material yield and supply histories in gravel-bed streams. Catena 1997, 30, 183–196. [Google Scholar] [CrossRef]
- Lane, S.N.; Richards, K.S.; Chandler, J.H. Morphological Estimation of the Time-Integrated Bed Load Transport Rate. Water Resour. Res. 1995, 31, 761–772. [Google Scholar] [CrossRef]
- Nikora, V.I.; Goring, D.G.; Biggs, B.J.F. On gravel-bed roughness characterization. Water Resour. Res. 1998, 34, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Bendig, J.; Willkomm, M.; Tilly, N.; Gnyp, M.L.; Bennertz, S.; Qiang, C.; Miao, Y.; Lenz-Wiedemann, V.I.S.; Bareth, G. Very high resolution crop surface models (CSMs) from UAV-based stereo images for rice growth monitoring in Northeast China. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2013, 40, 45–50. [Google Scholar] [CrossRef]
- Dandois, J.P.; Ellis, E.C. Remote Sensing of Vegetation Structure Using Computer Vision. Remote Sens. 2010, 2, 1157–1176. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res 2012, 117, F03017. [Google Scholar] [CrossRef]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.; Brasington, J.; Glasser, N.; Hambrey, M.; Reynolds, J. Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 344. [Google Scholar]
- Bishop, C. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: New York, NY, USA, 2006; Chapter 3; pp. 138–147. [Google Scholar]
- Gupta, H.V.; Kling, H. On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics: Technical Note. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Skeletal graphs for efficient structure from motion. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; Volume 1, p. 2. [Google Scholar]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Photo tourism: Exploring photo collections in 3D. In ACM Transactions on Graphics (TOG); ACM: New York, NY, USA, 2006; Volume 25, pp. 835–846. [Google Scholar]
- Szeliski, R. Computer Vision: Algorithms and Applications; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle adjustment—A modern synthesis. In International Workshop on Vision Algorithms; Springer: Berlin, Germany, 1999; pp. 298–372. [Google Scholar]
- Hecht, E. Optics; Pearson Education: London, UK, 2016. [Google Scholar]
Metrics | Min | 1st Quartile | Median | Mean | 3rd Quartile | Max |
---|---|---|---|---|---|---|
Preliminary Sampling (m) | 0.062 | 0.326 | 0.488 | 0.489 | 0.633 | 1.096 |
Zonal Adaptive Sampling (m) | 0.060 | 0.267 | 0.426 | 0.433 | 0.573 | 1.035 |
Relative Change (%) | −3.2 | −18.1 | −12.7 | −11.4 | −9.5 | −5.6 |
Metrics | Min | 1st Quartile | Median | Mean | 3rd Quartile | Max |
---|---|---|---|---|---|---|
Measurements | 1.04 | 2.21 | 2.7 | 2.61 | 2.95 | 3.71 |
Single-beam measurements | 1.04 | 2.25 | 2.68 | 2.59 | 2.93 | 3.72 |
Absolute Error (m) | 0.0001 | 0.006 | 0.01 | 0.03 | 0.02 | 0.73 |
Percent Error (%) | 0.005 | 0.21 | 0.43 | 1.39 | 1.16 | 23.5 |
Forecasting error (m) | −0.32 | −0.007 | 0.005 | 0.02 | 0.015 | 0.73 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez, L.V.; Moreno, H.A.; Segales, A.R.; Pham, T.G.; Pillar-Little, E.A.; Chilson, P.B. Merging Unmanned Aerial Systems (UAS) Imagery and Echo Soundings with an Adaptive Sampling Technique for Bathymetric Surveys. Remote Sens. 2018, 10, 1362. https://doi.org/10.3390/rs10091362
Alvarez LV, Moreno HA, Segales AR, Pham TG, Pillar-Little EA, Chilson PB. Merging Unmanned Aerial Systems (UAS) Imagery and Echo Soundings with an Adaptive Sampling Technique for Bathymetric Surveys. Remote Sensing. 2018; 10(9):1362. https://doi.org/10.3390/rs10091362
Chicago/Turabian StyleAlvarez, Laura V., Hernan A. Moreno, Antonio R. Segales, Tri G. Pham, Elizabeth A. Pillar-Little, and Phillip B. Chilson. 2018. "Merging Unmanned Aerial Systems (UAS) Imagery and Echo Soundings with an Adaptive Sampling Technique for Bathymetric Surveys" Remote Sensing 10, no. 9: 1362. https://doi.org/10.3390/rs10091362
APA StyleAlvarez, L. V., Moreno, H. A., Segales, A. R., Pham, T. G., Pillar-Little, E. A., & Chilson, P. B. (2018). Merging Unmanned Aerial Systems (UAS) Imagery and Echo Soundings with an Adaptive Sampling Technique for Bathymetric Surveys. Remote Sensing, 10(9), 1362. https://doi.org/10.3390/rs10091362