Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France
"> Figure 1
<p>Camargue study area. Colored polygons represent 921 reference plots location. The study area is limited by the cyan polygon.</p> "> Figure 2
<p>The temporal profiles of the eleven different classes which respect to the VH (<b>a</b>) and VV (<b>b</b>) polarizations.</p> "> Figure 3
<p>The average and standard deviation of the eleven different classes for VV and VH polarizations.</p> "> Figure 4
<p>RNN Unit (on the <b>left</b>) and unfolded structure (on the <b>right</b>).</p> "> Figure 5
<p>The schematic view of the RNN <span class="html-italic">LSTM</span>-based architecture. By replacing <span class="html-italic">LSTM</span> to <span class="html-italic">GRU</span> unit, we get the RNN <span class="html-italic">GRU</span>-based architecture.</p> "> Figure 6
<p>Per Class F-Measure of the different approaches.</p> "> Figure 7
<p>Confusion matrices on the SAR Sentinel-1 time series data of the different approaches: (<b>a</b>) <span class="html-italic">KNN</span>, (<b>b</b>) <span class="html-italic">RF</span>; (<b>c</b>) <span class="html-italic">SVM</span>; (<b>d</b>) <span class="html-italic">LSTM</span> and (<b>e</b>) <span class="html-italic">GRU</span>. The name of the labels: <span class="html-italic">(1) rice; (2) sunflower; (3) lawn; (4) irrigated grassland; (5) durum wheat (winter); (6) alfalfa; (7) tomato; (8) melon; (9) clover; (10) swamps;</span> and <span class="html-italic">(11) vineyard.</span></p> "> Figure 8
<p>The agricultural land cover map in Camargue using the RNN-based <span class="html-italic">GRU</span> multitemporal SAR Sentinel-1.</p> "> Figure 9
<p>A zoom version of the white-border box in the <a href="#remotesensing-10-01217-f008" class="html-fig">Figure 8</a> is provided to facilitate visualization of classification results. (<b>a</b>) reference plots; (<b>b</b>) the classical <span class="html-italic">SVM</span> result and (<b>c</b>) the RNN-based <span class="html-italic">GRU</span> result.</p> ">
Abstract
:1. Introduction
2. Study Area
2.1. Camargue Site
2.2. Ground Data
3. SAR Data and Processing
3.1. SAR Data
3.2. Pre-Processing Data
3.3. Temporal Filtering
3.4. Geocoding
4. Classical Machine Learning Approaches
4.1. K Nearest Neighbors
4.2. Random Forest
4.3. Support Vector Machine
5. Recurrent Neural Network
5.1. Long-Short Term Memory (LSTM)
5.2. Gated Recurrent Unit (GRU)
5.3. RNN-Based Time Series Classification
6. Experimental Results
6.1. Experimental Settings
6.2. Results
6.3. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buckley, C.; Carney, P. The potential to reduce the risk of diffuse pollution from agriculture while improving economic performance at farm level. Environ. Sci. Policy 2013, 25, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Polsot, A.; Speedy, A.; Kueneman, E. Good Agricultural Practices—A Working Concept. In Proceedings of the FAO Internal Workshop on Good Agricultural Practices, Rome, Italy, 27–29 October 2004; Volume 1, p. 41. [Google Scholar]
- Drusch, M.; Bello, U.D.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2 ESA Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Le Toan, T.; Ribbes, F.; Wang, L.F.; Floury, N.; Ding, K.H.; Kong, J.A.; Fujita, M.; Kurosu, T. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans. Geosci. Remote Sens. 1997, 35, 41–56. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Mouret, J.C. Etude de l’Agrosystème Rizicole en Camargue dans ses Relations avec le Milieu et le Systeme Cultural: Aspects Particuliers de la Fertilite. Ph.D. Thesis, Université des Sciences et Techniques du Languedoc, Montpellier, France, 1988. [Google Scholar]
- Delmotte, S.; Tittonell, P.; Mouret, J.C.; Hammond, R.; Lopez-Ridaura, S. On farm assessment of rice yield variability and productivity gaps between organic and conventional cropping systems under Mediterranean climate. Eur. J. Agron. 2011, 35, 223–236. [Google Scholar] [CrossRef]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sens. 2014, 6, 964–983. [Google Scholar] [CrossRef]
- Waske, B.; Braun, M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 450–457. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression With Active Learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085–4098. [Google Scholar] [CrossRef]
- Gomez-Chova, L.; Camps-Valls, G.; Munoz-Mari, J.; Calpe, J. Semisupervised Image Classification with Laplacian Support Vector Machines. IEEE Geosci. Remote Sens. Lett. 2008, 5, 336–340. [Google Scholar] [CrossRef]
- Munoz-Mari, J.; Bovolo, F.; Gomez-Chova, L.; Bruzzone, L.; Camp-Valls, G. Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3188–3197. [Google Scholar] [CrossRef] [Green Version]
- Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606–617. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved Early Crop Type Identification by Joint Use of High Temporal Resolution SAR and Optical Image Time Series. Remote Sens. 2016, 8, 362. [Google Scholar] [CrossRef]
- Flamary, R.; Fauvel, M.; Mura, M.D.; Valero, S. Analysis of Multitemporal Classification Techniques for Forecasting Image Time Series. IEEE Geosci. Remote Sens. Lett. 2015, 12, 953–957. [Google Scholar] [CrossRef]
- Ho Tong Minh, D.; Ienco, D.; Gaetano, R.; Lalande, N.; Ndikumana, E.; Osman, F.; Maurel, P. Deep Recurrent Neural Networks for Winter Vegetation Quality Mapping via Multitemporal SAR Sentinel-1. IEEE Geosci. Remote Sens. Lett. 2018, 15, 464–468. [Google Scholar] [CrossRef]
- Ienco, D.; Gaetano, R.; Dupaquier, C.; Maurel, P. Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent Neural Networks. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1685–1689. [Google Scholar] [CrossRef] [Green Version]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. LSTM can Solve Hard Long Time Lag Problems. In Proceedings of the NIPS, Denver, CO, USA, 2–5 December 1996; pp. 473–479. [Google Scholar]
- Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the EMNLP, Doha, Qatar, 25–29 October 2014; pp. 1724–1734. [Google Scholar]
- Manfron, G.; Delmotte, S.; Busetto, L.; Hossard, L.; Ranghetti, L.; Brivio, P.A.; Boschetti, M. Estimating inter-annual variability in winter wheat sowing dates from satellite time series in Camargue, France. Int. J. Appl. Earth Observ. Geoinform. 2017, 57, 190–201. [Google Scholar] [CrossRef]
- Prats-Iraola, P.; Scheiber, R.; Marotti, L.; Wollstadt, S.; Reigber, A. TOPS Interferometry With TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3179–3188. [Google Scholar] [CrossRef] [Green Version]
- Quegan, S.; Jiong Jiong, Y. Filtering of multichannel SAR images. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2373–2379. [Google Scholar] [CrossRef]
- Ho Tong Minh, D.; Ngo, Y.-N.; Baghdadi, N.; Maurel, P. TomoSAR platform: A new Irstea service as demand for SAR, Interferometry, Polarimetry and Tomography. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; pp. 1–8. [Google Scholar]
- Ho Tong Minh, D.; Ngo, Y.-N. Tomosar platform supports for Sentinel-1 tops persistent scatterers interferometry. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1680–1683. [Google Scholar]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Weinberger, K.Q.; Saul, L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009, 10, 207–244. [Google Scholar]
- Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 2014, 7, 153–168. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Abade, N.A.; Júnior, O.A.d.C.; Guimarães, R.F.; de Oliveira, S.N. Comparative analysis of MODIS time-series classification using support vector machines and methods based upon distance and similarity measures in the Brazilian Cerrado-Caatinga boundary. Remote Sens. 2015, 7, 12160–12191. [Google Scholar] [CrossRef]
- Kotsiantis, S.B.; Zaharakis, I.D.; Pintelas, P.E. Machine learning: A review of classification and combining techniques. Artif. Intell. Rev. 2006, 26, 159–190. [Google Scholar] [CrossRef]
- Soma, K.; Mori, R.; Sato, R.; Furumai, N.; Nara, S. Simultaneous Multichannel Signal Transfers via Chaos in a Recurrent Neural Network. Neural Comput. 2015, 27, 1083–1101. [Google Scholar] [CrossRef] [PubMed]
- Linzen, T.; Dupoux, E.; Goldberg, Y. Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies. TACL 2016, 4, 521–535. [Google Scholar]
- Bengio, Y.; Courville, A.C.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE TPAMI 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graves, A.; Mohamed, A.; Hinton, G.E. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM TIST 2011, 2, 27. [Google Scholar] [CrossRef]
- Chollet, F. Keras. Available online: https://github.com/fchollet/keras (accessed on 10 May 2015).
- Dauphin, Y.N.; de Vries, H.; Chung, J.; Bengio, Y. RMSProp and equilibrated adaptive learning rates for non-convex optimization. arXiv, 2015; arXiv:1502.04390. [Google Scholar]
- Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 2017, 9, 95. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Y.Q.; Chawla, N.V.; Krasser, S. SVMs modeling for highly imbalanced classification. IEEE Trans. Syst. Man Cybern. Part B 2009, 39, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Q. A novel modular neural network for imbalanced classification problems. Pattern Recognit. Lett. 2009, 30, 783–788. [Google Scholar] [CrossRef]
ID | Vegetation Class | Number of Plots | Number of Pixels | Surface Area (ha) | Area (%) |
---|---|---|---|---|---|
(1) | Rice | 284 | 23,275 | 931 | 35.2 |
(2) | Sunflower | 77 | 5541 | 222 | 8.4 |
(3) | Lawn | 27 | 5018 | 201 | 7.6 |
(4) | Irrigated grassland | 53 | 3528 | 141 | 5.3 |
(5) | Wheat | 304 | 13,057 | 522 | 19.7 |
(6) | Alfalfa | 59 | 4580 | 183 | 6.9 |
(7) | Tomato | 15 | 1362 | 55 | 2.1 |
(8) | Melon | 24 | 1978 | 79 | 2.9 |
(9) | Clover | 26 | 1918 | 77 | 2.9 |
(10) | Swamps | 19 | 2535 | 101 | 3.8 |
(11) | Vineyard | 33 | 3409 | 136 | 5.2 |
Total | 921 | 66,201 | 2648 | 100 |
Classifier | F-Measure | Accuracy | Kappa |
---|---|---|---|
KNN | 86.1 ± 0.6% | 85.6 ± 0.6% | 0.823 ± 0.009 |
RF | 87.1 ± 0.9% | 86.9 ± 1.2% | 0.833 ± 0.015 |
SVM | 87.3 ± 1.5% | 87.1 ± 1.6% | 0.837 ± 0.019 |
LSTM | 89.2 ± 1.7% | 89.1 ± 1.6% | 0.862 ± 0.020 |
GRU | 89.8 ± 1.6% | 89.6 ± 1.6% | 0.869 ± 0.019 |
ID | Class | Area (ha) | Percent |
---|---|---|---|
(1) | Rice | 10,627 | 29.3 |
(2) | Sunflower | 1676 | 4.6 |
(3) | Lawn | 3357 | 9.4 |
(4) | Irrigated grassland | 4148 | 11.5 |
(5) | Wheat | 7439 | 20.5 |
(6) | Alfalfa | 2593 | 7.2 |
(7) | Tomato | 592 | 1.6 |
(8) | Melon | 622 | 1.7 |
(9) | Clover | 884 | 2.4 |
(10) | Swamps | 2591 | 7.2 |
(11) | Vineyard | 1694 | 4.6 |
Total | 36,223 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. https://doi.org/10.3390/rs10081217
Ndikumana E, Ho Tong Minh D, Baghdadi N, Courault D, Hossard L. Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sensing. 2018; 10(8):1217. https://doi.org/10.3390/rs10081217
Chicago/Turabian StyleNdikumana, Emile, Dinh Ho Tong Minh, Nicolas Baghdadi, Dominique Courault, and Laure Hossard. 2018. "Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France" Remote Sensing 10, no. 8: 1217. https://doi.org/10.3390/rs10081217
APA StyleNdikumana, E., Ho Tong Minh, D., Baghdadi, N., Courault, D., & Hossard, L. (2018). Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sensing, 10(8), 1217. https://doi.org/10.3390/rs10081217