Synthetic Aperture Radar Image Segmentation with Reaction Diffusion Level Set Evolution Equation in an Active Contour Model
"> Figure 1
<p>Segmentation results of a simulated synthetic aperture radar (SAR) image. Its size is <math display="inline"><semantics> <mrow> <mn>512</mn> <mo>×</mo> <mn>512</mn> </mrow> </semantics></math>. (<b>a</b>) Original SAR image and initial contour. (<b>b</b>–<b>e</b>) Results from different parameters: <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0.05</mn> <mo>,</mo> <mtext> </mtext> <mn>0.1</mn> <mo>,</mo> <mtext> </mtext> <mn>0.5</mn> <mo>,</mo> <mtext> </mtext> <mn>1.0</mn> </mrow> </semantics></math>, respectively.</p> "> Figure 2
<p>Profiles of the commonly used Heaviside function and Dirac function.</p> "> Figure 3
<p>Segmentation result on an airborne SAR image. (<b>a</b>) Original image and initial contour. (<b>b</b>) Segmentation result of Equation (17). (<b>c</b>) Segmentation result of Equation (17) + reinitialization method. (<b>d</b>) Segmentation result of Equation (18).</p> "> Figure 4
<p>Comparison between the segmentation results of the two-step splitting method (TSSM) in [<a href="#B30-remotesensing-10-00906" class="html-bibr">30</a>] and the proposed method. (<b>a</b>,<b>c</b>) are the segmentation results by TSSM, and (<b>e</b>,<b>g</b>) are the corresponding final level set functions. (<b>b</b>,<b>d</b>) show the segmentation results by the proposed method, (<b>f</b>,<b>h</b>) are the corresponding final level set functions. The horizontal axis of (<b>e</b>–<b>h</b>) indicate the width and height of image (<b>a</b>,<b>c</b>), and their size are <math display="inline"><semantics> <mrow> <mn>100</mn> <mo>×</mo> <mn>100</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>500</mn> <mo>×</mo> <mn>400</mn> </mrow> </semantics></math>, respectively. The value of the vertical axis of (<b>e</b>–<b>h</b>) can be artificially set. The green solid lines represent the initial contours.</p> "> Figure 5
<p>Two different real SAR images and the corresponding change in the intensity. The abscissa axis in the right subfigure indicates the image width of the left subfigure, and the axis of ordinates in the right subfigure indicates the intensity value of each pixel along the corresponding blue strokes of the left SAR image.</p> "> Figure 6
<p>Segmentation results of the proposed method for real SAR images. Every row represents the process of curve evolution from the initial contour (in the first column) to the final contour (in the last column).</p> "> Figure 7
<p>Comparison of segmentation results with different methods. (<b>a</b>–<b>d</b>) Results from METHOD1, METHOD2, METHOD3 and our method, respectively.</p> "> Figure 8
<p>Segmentation of real SAR images. From first row to last row: original SAR images and different initial contours, the ground truth, the segmentation results of METHOD1, METHOD2, METHOD3 and our method, respectively.</p> "> Figure 9
<p>Overview of CPU (central processing unit) times for METHOD1, METHOD2, METHOD3 and our method.</p> "> Figure 10
<p>The segmentation results with the change of <math display="inline"><semantics> <mi>σ</mi> </semantics></math>. From left to right: <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>10</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>12</mn> </mrow> </semantics></math>, respectively. The red square is the initial contours.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ayed Model
2.2. The Proposed Model
Algorithm 1 Proposed algorithm for SAR image segmentation |
Input: a SAR image , initialization , parameters and ; Output: a segmentation 1: Initialization: iteration number ; ; 2: for each pixel do 3: Update local means using Equation (14); 4: Update the level set function using Equation (18); 5: if satisfies stationary condition, stop; otherwise, return to Step 2; 6: end for |
2.3. Computational Complexity Analysis
3. Results
3.1. The Effect of Proposed RD Term
3.2. Robustness to Speckle Noise
3.3. Comparison with the Existing Methods
3.3.1. Results for Simulated SAR Image
3.3.2. Results for Real SAR Image
4. Discussion
4.1. About the Choice of Parameter
4.2. About the Application Scope of the Proposed Model
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. Derivation Process from Equation (16) to Equation (17)
References
- Modava, M.; Akbarizadeh, G. Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method. Int. J. Remote Sens. 2017, 38, 355–370. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, L.; Lu, J.; Kuang, G.; Wang, N. Modified two-dimensional Otsu image segmentation algorithm and fast realisation. IET Image Process. 2012, 6, 426–433. [Google Scholar] [CrossRef]
- Singha, S.; Bellerby, T.J.; Trieschmann, O. Satellite oil spill detection using artificial neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2355–2363. [Google Scholar] [CrossRef]
- Liu, H.; Yang, S.; Gou, S.; Zhu, D.; Wang, R. Polarimetric SAR feature extraction with neighborhood preservation-based deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 1456–1466. [Google Scholar] [CrossRef]
- Gu, J.; Jiao, L.; Yang, S.; Liu, F.; Hou, B. A multi-kernel joint sparse graph for sar image segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1265–1285. [Google Scholar] [CrossRef]
- Yu, H.; Jiao, L.; Liu, F. Crim-fcho: Sar image two-stage segmentation with multifeature ensemble. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2400–2423. [Google Scholar] [CrossRef]
- Karantzalos, K.; Argialas, D. Automatic detection and tracking of oil spills in SAR imagery with level set segmentation. Int. J. Remote Sens. 2008, 29, 6281–6296. [Google Scholar] [CrossRef]
- Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1988, 1, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Caselles, V.; Kimmel, R.; Sapiro, G. Geodesic active contours. Int. J. Comput. Vis. 1997, 22, 61–79. [Google Scholar] [CrossRef]
- Kimmel, R.; Amir, A.; Bruckstein, A.M. Finding shortest paths on surfaces using level sets propagation. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 635–640. [Google Scholar] [CrossRef]
- Paragios, N.; Deriche, R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 266–280. [Google Scholar] [CrossRef] [Green Version]
- Paragios, N.; Deriche, R. Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis. 2002, 46, 223–247. [Google Scholar] [CrossRef]
- Li, C.; Xu, C.; Gui, C.; Fox, M.D. Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 2010, 19. [Google Scholar] [CrossRef]
- Samson, C.; Blancféraud, L.; Aubert, G.; Zerubia, J. A variational model for image classification and restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 460–472. [Google Scholar] [CrossRef]
- Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayed, I.B.; Vazquez, C.; Mitiche, A.; Belhadj, Z. SAR image segmentation with active contours and level sets. Int. Conf. Image Process. 2004, 4, 2717–2720. [Google Scholar] [CrossRef]
- Ayed, I.B.; Mitiche, A.; Belhadj, Z. Multiregion level-set partitioning of synthetic aperture radar images. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Kao, C.Y.; Gore, J.C.; Ding, Z. Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 2008, 17, 1940–1949. [Google Scholar] [CrossRef] [PubMed]
- Shuai, Y.; Sun, H.; Xu, G. Sar image segmentation based on level set with stationary global minimum. IEEE Geosci. Remote Sens. Lett. 2008, 5, 644–648. [Google Scholar] [CrossRef]
- Zhang, K.; Song, H.; Zhang, L. Active contours driven by local image fitting energy. Pattern Recognit. 2010, 43, 1199–1206. [Google Scholar] [CrossRef]
- Marques, R.C.P.; Medeiros, F.N.S.; Nobre, J. Sar image segmentation based on level set approach and {cal g}_a^0 model. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2046–2057. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Xia, G.S.; Yang, W.; Xue, N. SAR image segmentation via non-local active contours. Geosci. Remote Sens. Symp. 2014, 3730–3733. [Google Scholar] [CrossRef]
- Ding, K.; Xiao, L.; Weng, G. Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation. Signal Process. 2017, 134, 224–233. [Google Scholar] [CrossRef]
- Feng, J.; Cao, Z.; Pi, Y. Multiphase SAR Image Segmentation with G0-Statistical-Model-Based Active Contours. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4190–4199. [Google Scholar] [CrossRef]
- Yu, L. Convex active contour model for target detection in synthetic aperture radar images. J. Appl. Remote Sens. 2015, 9. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, X.; Xu, H.; Meng, Q. Synthetic aperture radar image segmentation based on edge-region active contour model. J. Appl. Remote Sens. 2016, 10. [Google Scholar] [CrossRef]
- Feng, H.; Hou, B.; Gong, M. Sar image despeckling based on local homogeneous-region segmentation by using pixel-relativity measurement. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2724–2737. [Google Scholar] [CrossRef]
- Xia, G.S.; Liu, G.; Yang, W.; Zhang, L. Meaningful object segmentation from sar images via a multiscale nonlocal active contour model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1860–1873. [Google Scholar] [CrossRef]
- Deledalle, C.A.; Denis, L.; Tupin, F.; Reigber, A.; Jäger, M. Nl-sar: A unified nonlocal framework for resolution-preserving (pol) (in) sar denoising. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2021–2038. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, L.; Song, H.; Zhang, D. Reinitialization-free level set evolution via reaction diffusion. IEEE Trans. Image Process. 2012, 22, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Gemez, L.; Alvarez, L.; Mazorra, L.; Frery, A.C. Classification of complex Wishart matrices with a diffusion-reaction system guided by stochastic distances. Philos. Trans. 2015, 373. [Google Scholar] [CrossRef] [PubMed]
- Turing, A.M. The chemical basis of morphogenesis. Bull. Math. Biol. 1990, 52, 153–197. [Google Scholar] [CrossRef] [PubMed]
- Galland, F.; Bertaux, N.; Réfrégier, P. Minimum description length synthetic aperture radar image segmentation. IEEE Trans. Image Process. 2003, 12, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- Sethian, J.A. Level Set Methods and Fast Marching Method; Cambridge University Press: Cambridge, UK, 1999; Volume 11, 400p. [Google Scholar]
- Li, C.; Huang, R.; Ding, Z.; Metaxas, D.N.; Gore, J.C. A level set method for image segmentation in the presence of intensity inhomogeneities with application to mri. IEEE Trans. Image Process. 2011, 20, 2007–2016. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, R.; Bruckstein, A.M. Regularized laplacian zero crossings as optimal edge integrators. Int. J. Comput. Vis. 2003, 53, 225–243. [Google Scholar] [CrossRef]
- Salazar, A.; Igual, J.; Safont, G.; Vergara, L. Image applications of agglomerative clustering using mixtures of non-Gaussian distributions. In Proceedings of the International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 7–9 December 2015; pp. 459–463. [Google Scholar]
- Zhu, S.C.; Yuille, A. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation. Int. Conf. Comput. Vis. 1996, 18, 884–900. [Google Scholar] [CrossRef]
d | CRF | |||||
---|---|---|---|---|---|---|
L (Number of Looks) | Region | DoS | METHOD1 | METHOD2 | METHOD3 | OUR |
double circle | 5.6674 | 0.4233 | - | 0.8807 | 0.8922 | |
3 | triangle | 2.7364 | 0.8607 | 0.9331 | 0.9282 | 0.9213 |
horseshoe-shaped | 10.9177 | 0.3087 | - | 0.8215 | 0.8763 | |
double circle | 3.7632 | 0.4922 | - | 0.8361 | 0.8527 | |
8 | triangle | 2.1053 | 0.8978 | 0.9427 | 0.9379 | 0.9307 |
horseshoe-shaped | 7.5239 | 0.3826 | - | 0.8533 | 0.8895 |
Image (Pixels) | Sensors | Resolution | Objects | METHOD1 | METHOD2 | METHOD3 | OUR |
---|---|---|---|---|---|---|---|
A () | RADARSAT | 8 m | River | 0.3761 | 0.2202 | 0.1430 | 0.1375 |
B () | TerraSAR | 16 m | River | 0.4028 | 0.1245 | 0.1379 | 0.0984 |
C () | ALOS PALSAR | 6.25 m | Lake | 0.5212 | 0.1754 | 0.2987 | 0.1274 |
D () | ALOS PALSAR | 6.25 m | Lake | 0.4941 | 0.1927 | 0.2063 | 0.1161 |
E () | ENVISAT ASAR | 30 m | Oil spill | 0.2716 | 0.1126 | 0.0933 | 0.0813 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wen, X.; Meng, Q.; Xu, H.; Yuan, L. Synthetic Aperture Radar Image Segmentation with Reaction Diffusion Level Set Evolution Equation in an Active Contour Model. Remote Sens. 2018, 10, 906. https://doi.org/10.3390/rs10060906
Liu J, Wen X, Meng Q, Xu H, Yuan L. Synthetic Aperture Radar Image Segmentation with Reaction Diffusion Level Set Evolution Equation in an Active Contour Model. Remote Sensing. 2018; 10(6):906. https://doi.org/10.3390/rs10060906
Chicago/Turabian StyleLiu, Jiaxing, Xianbin Wen, Qingxia Meng, Haixia Xu, and Liming Yuan. 2018. "Synthetic Aperture Radar Image Segmentation with Reaction Diffusion Level Set Evolution Equation in an Active Contour Model" Remote Sensing 10, no. 6: 906. https://doi.org/10.3390/rs10060906
APA StyleLiu, J., Wen, X., Meng, Q., Xu, H., & Yuan, L. (2018). Synthetic Aperture Radar Image Segmentation with Reaction Diffusion Level Set Evolution Equation in an Active Contour Model. Remote Sensing, 10(6), 906. https://doi.org/10.3390/rs10060906