Variability of Microwave Scattering in a Stochastic Ensemble of Measured Rain Drops
"> Figure 1
<p>Disdrometers used to measure the Rain Drop Size Distribution (RDSD). (<b>Left</b>) Dual, orthogonal setup or autonomous disdrometers used to calculate the spatial variability of rain at hectometre resolution [<a href="#B37-remotesensing-10-00960" class="html-bibr">37</a>]. (<b>Right</b>) Calibration array of 18 disdrometers used to measure the small-scale variability of the RDSD [<a href="#B38-remotesensing-10-00960" class="html-bibr">38</a>].</p> "> Figure 2
<p>Measured RDSDs (<b>A</b>,<b>B</b>) used to build the two cases explored in this paper. Diameters are in mm. The fit is for a three-parameter gamma.</p> "> Figure 3
<p>A sample of the different randomly-generated spatial distributions of raindrops consistent with one of the measured RDSDs of <a href="#remotesensing-10-00960-f002" class="html-fig">Figure 2</a>. The diameters of the raindrops are exaggerated. Dimensions are in centimeters.</p> "> Figure 4
<p>Variability of the total extinction for an ensemble of 50 3D configurations of the (<b>A</b>,<b>B</b>) RDSDs in <a href="#remotesensing-10-00960-f002" class="html-fig">Figure 2</a>.</p> "> Figure 5
<p>Variability of the total absorption for an ensemble of 50 3D configurations of the (<b>A</b>,<b>B</b>) RDSDs in <a href="#remotesensing-10-00960-f002" class="html-fig">Figure 2</a>.</p> "> Figure 6
<p>Variability of the scattering efficiency for an ensemble of 50 3D configurations of the (<b>A</b>,<b>B</b>) RDSDs in <a href="#remotesensing-10-00960-f002" class="html-fig">Figure 2</a>.</p> "> Figure 7
<p>Variability of the asymmetry parameter for an ensemble of 50 3D configurations of the (<b>A</b>,<b>B</b>) RDSDs in <a href="#remotesensing-10-00960-f002" class="html-fig">Figure 2</a>.</p> "> Figure 8
<p>Spread of the dependence of the phase functions, <span class="html-italic">S</span><sub>11</sub> and <span class="html-italic">S</span><sub>21</sub>, on the scattering angle for all the member of the ensemble.</p> ">
Abstract
:1. Introduction
2. Data
3. Methods
4. Results and Discussion
5. Conclusions and Further Work
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
FOV | Field of Vision |
PRNG | Pseudo-random Number Generator |
RDSD | Rain Drop Size Distribution |
UCLM | University of Castilla-La Mancha |
References
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Bayissa, Y.; Tadesse, T.; Demisse, G.; Shiferaw, A. Evaluation of satellite-based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, J.; Sun, K.; Yin, J.; Chen, X. Estimation of soil moisture index using multi-temporal Sentinel-1 images over Poyang Lake ungauged zone. Remote Sens. 2018, 10, 12. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Sheffield, J.; Pan, M.; Wood, E.F. Evaluation of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ. 2015, 159, 181–193. [Google Scholar] [CrossRef]
- Ban, H.-J.; Kwon, Y.-J.; Shin, H.; Ryu, H.-S.; Hong, S. Flood Monitoring Using Satellite-Based RGB Composite Imagery and Refractive Index Retrieval in Visible and Near-Infrared Bands. Remote Sens. 2017, 9, 313. [Google Scholar] [CrossRef]
- Alahacoon, N.; Matheswaran, K.; Pani, P.; Amarnath, G. A decadal historical satellite data and rainfall trend analysis (2001-2016) for flood hazard mapping in Sri Lanka. Remote Sens. 2018, 10. [Google Scholar] [CrossRef]
- Yoshimot, S.; Amarnath, G. Applications of satellite-based rainfall estimates in flood inundation modeling-A case study in Mundeni Aru River Basin, Sri Lanka. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Marra, A.C.; Porcù, F.; Baldini, L.; Petracca, M.; Casella, D.; Dietrich, S.; Mugnai, A.; Sanò, P.; Vulpiani, G.; Panegrossi, G. Observational analysis of an exceptionally intense hailstorm over the Mediterranean area: Role of the GPM Core Observatory. Atmos. Res. 2017, 192, 72–90. [Google Scholar] [CrossRef]
- Cecil, D.J. Passive microwave brightness temperatures as proxies for hailstorms. J. Appl. Meteorol. Climatol. 2009, 48, 1281–1286. [Google Scholar] [CrossRef]
- Gabella, M.; Speirs, P.; Hamann, U.; Germann, U.; Berne, A. Measurement of precipitation in the alps using dual-polarization C-Band ground-based radars, the GPM Spaceborne Ku-Band Radar, and rain gauges. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Wah Win, K.W.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data sparse mountainous watershed in Myanmar. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, B.; Yang, S.; Huang, Y.; Dong, G.; Bai, J.; Wang, Z. Systematical estimation of GPM-based global satellite mapping of precipitation products over China. Atmos. Res. 2018, 201, 206–217. [Google Scholar] [CrossRef]
- Arvor, D.; Funatsu, B.M.; Michot, V.; Dubreui, V. Monitoring rainfall patterns in the southern amazon with PERSIANN-CDR data: Long-term characteristics and trends. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Kimani, M.W.; Hoedjes, J.C.B.; Su, Z. An assessment of satellite-derived rainfall products relative to ground observations over East Africa. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Nogueira, S.M.C.; Moreira, M.A.; Volpato, M.M.L. Evaluating precipitation estimates from Eta, TRMM and CHRIPS data in the south-southeast region of Minas Gerais state-Brazil. Remote Sens. 2018, 10. [Google Scholar] [CrossRef]
- Battaglia, A.; Ajewole, M.O.; Simmer, C. Multiple scattering effects due to hydrometeors on precipitation radar systems. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Battaglia, A.; Mroz, K.; Tanelli, S.; Tridon, F.; Kirstetter, P.-E. Multiple-scattering-induced “ghost echoes” in GPM DPR observations of a tornadic supercell. J. Appl. Meteorol. Climatol. 2016, 55, 1653–1666. [Google Scholar] [CrossRef]
- Battaglia, A.; Ajewole, M.O.; Simmer, C. Evaluation of radar multiple-scattering effects from a GPM perspective, Part II: Model results. J. Appl. Meteorol. Climatol. 2006, 45, 1648–1664. [Google Scholar] [CrossRef]
- Battaglia, A.; Ajewole, M.O.; Simmer, C. Evaluation of radar multiple scattering effects in Cloudsat configuration. Atmos. Chem. Phys. 2007, 7, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, A.; Tanelli, S.; Mroz, K.; Tridon, F. Multiple scattering in observations of the GPM dual-frequency precipitation radar: Evidence and impact on retrievals. J. Geophys. Res. 2015, 120, 4090–4101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishimaru, A.; Cheung, R.L.-T. Multiple scattering effects on wave propagation due to rain. Ann. Des Télécommunications 1980, 35, 373–379. [Google Scholar] [CrossRef]
- Battaglia, A.; Ajewole, M.O.; Simmer, C. Evaluation of radar multiple-scattering effects from a GPM perspective. Part I: Model description and validation. J. Appl. Meteorol. Climatol. 2006, 45, 1634–1647. [Google Scholar] [CrossRef]
- Battaglia, A.; Tanelli, S.; Heymsfield, G.M.; Tian, L. The dual wavelength ratio Knee: A signature of multiple scattering in airborne Ku-Ka observations. J. Appl. Meteorol. Climatol. 2014, 53, 1790–1808. [Google Scholar] [CrossRef]
- Amrullah, F.F.; Setijadi, E.; Hendrantoro, G. Computation of rain attenuation in tropical region with multiple scattering and multiple absorption effects using exponential drop size distribution. In Proceedings of the 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011. [Google Scholar]
- Ito, S.; Oguchi, T.; Iguchi, T.; Meneghini, R. Depolarization of Radar Signals due to Multiple Scattering in Rain. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1057–1062. [Google Scholar] [CrossRef]
- Korotkov, V.A.; Sukhonin, E.V. The radiometric millimeter wave sensing of atmospheric precipitation for measuring attenuation and precipitation parameters with account of the multiple scattering. Radiotekhnika i Elektron. 1998, 43, 266–270. [Google Scholar]
- Bebbington, D.H.O.; Chandra, M.; Watson, R.J. Multiple scattering effects in C-band polarimetric radar observations of intense precipitation. In Proceedings of the 29th International Conference on Radar Meteorology, Montreal, QC, Canada, 12–16 July 1999; pp. 908–909. [Google Scholar]
- Oguchi, T.; Ishida, N. Effect of Multiple Scattering on the Estimation of Rainfall Rates Using Dual-Wavelength Radar Techniques. IEEE Trans. Geosci. Remote Sens. 1994, 32, 943–946. [Google Scholar] [CrossRef]
- Waterman, P.C. Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D 1971, 3, 825–839. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Liu, L.; Mackowski, D.W. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols. J. Quant. Spectrosc. Radiat. Transf. 2013, 123, 135–144. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D. Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 309–324. [Google Scholar] [CrossRef]
- Mackowski, D.W.; Mishchenko, M.I. A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 2182–2192. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Mackowski, D.W. T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transf. 1996, 55, 535–575. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Mackowski, D.W. T-matrix method and its applications to electromagnetic scattering by particles: A current perspective. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1700–1703. [Google Scholar] [CrossRef] [Green Version]
- Mishchenko, M.I.; Martin, P.A. Peter Waterman and T-matrix methods. J. Quant. Spectrosc. Radiat. Transf. 2013, 123, 2–7. [Google Scholar] [CrossRef]
- Bi, L.; Yang, P.; Kattawar, G.W.; Mishchenko, M.I. Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles. J. Quant. Spectrosc. Radiat. Transf. 2013, 116, 169–183. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Checa, R.; De Castro, M. An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Tapiador, F.J.; Navarro, A.; Moreno, R.; Jiménez-Alcázar, A.; Marcos, C.; Tokay, A.; Durán, L.; Bodoque, J.M.; Martín, R.; Petersen, W.; et al. On the optimal measuring area for pointwise rainfall estimation: A dedicated experiment with 14 laser disdrometers. J. Hydrometeorol. 2017, 18, 753–760. [Google Scholar] [CrossRef]
- Van de Hulst, H.C. Light Scattering by Small Particles; Dover Publications: Mineola, NY, USA, 1981. [Google Scholar]
- Bohren, C.F. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Tapiador, F.J.; Haddad, Z.S.; Turk, J. A probabilistic view on raindrop size distribution modeling: A physical interpretation of rain microphysics. J. Hydrometeorol. 2014, 15, 427–443. [Google Scholar] [CrossRef]
- Marzano, F.S.; Ferrauto, G.; Roberti, L.; Di Michele, S.; Mugnai, A.; Tassa, A. Numerical Simulation of Multiple Scattering Effects due to Convective Clouds on Satellite Radar Reflectivity at 14 and 35 GHz. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 2, pp. 881–883. [Google Scholar]
- Seow, Y.-L.; Li, L.-W.; Leong, M.-S.; Kooi, P.-S.; Yeo, T.-S. An efficient TCS formula for rainfall microwave attenuation: T-matrix approach and 3-D fitting for oblate spheroidal raindrops. IEEE Trans. Antennas Propag. 1998, 46, 1176–1181. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapiador, F.J.; Moreno, R.; Navarro, A.; Jiménez, A.; Arias, E.; Cazorla, D. Variability of Microwave Scattering in a Stochastic Ensemble of Measured Rain Drops. Remote Sens. 2018, 10, 960. https://doi.org/10.3390/rs10060960
Tapiador FJ, Moreno R, Navarro A, Jiménez A, Arias E, Cazorla D. Variability of Microwave Scattering in a Stochastic Ensemble of Measured Rain Drops. Remote Sensing. 2018; 10(6):960. https://doi.org/10.3390/rs10060960
Chicago/Turabian StyleTapiador, Francisco J., Raúl Moreno, Andrés Navarro, Alfonso Jiménez, Enrique Arias, and Diego Cazorla. 2018. "Variability of Microwave Scattering in a Stochastic Ensemble of Measured Rain Drops" Remote Sensing 10, no. 6: 960. https://doi.org/10.3390/rs10060960
APA StyleTapiador, F. J., Moreno, R., Navarro, A., Jiménez, A., Arias, E., & Cazorla, D. (2018). Variability of Microwave Scattering in a Stochastic Ensemble of Measured Rain Drops. Remote Sensing, 10(6), 960. https://doi.org/10.3390/rs10060960