Exploring the Sensitivity of Sampling Density in Digital Mapping of Soil Organic Carbon and Its Application in Soil Sampling
"> Figure 1
<p>Geographical location of study area in Iowa and corresponding soil and land use types. The soil type map is from the Online Web Soil Survey (official USDA soil information), whereas the land use type map was interpreted using hyperspectral images. The first sampling was executed in six random places to obtain prior knowledge about soil organic carbon (SOC). Second and third sampling were executed using grid sampling at a distance of 130 m.</p> "> Figure 2
<p>Parameters of Headwall Micro-Hyperspec airborne sensors (A- and X-Series) and corresponding remote-sensing images in study region (true color composition: bands at 660, 550 and 480 nm in RGB for A-Series; bands at 13, 54 and 26 nm in RGB for X-Series).</p> "> Figure 3
<p>Integrated soil sampling flow. (PLSR: partial least square regression; PLSRK: partial least square regression kriging; RMSE: root mean square error; RPD: ratio of standard deviation to RMSE; DSSI: density of soil sample index; CEPA: comprehensive evaluation index of prediction accuracy; RSEP: ratio of sampling efficiency to performance).</p> "> Figure 4
<p>Distribution characteristics of soil organic carbon (SOC) values. SD: standard deviation, CV: Coefficient of variation.</p> "> Figure 5
<p>Soil organic carbon (SOC) maps predicted by partial least squares regression (<b>a</b>) and partial least squares regression kriging (<b>c</b>) from airborne hyperspectral remote-sensing images and their differences (<b>b</b>).</p> "> Figure 6
<p>Evaluation indices of ordinary kriging models based on different densities of soil samples. (RANDOM: the random sampling; LHS: the Latin hypercube sampling; GRID: the grid sampling; RMSE: the root mean square error; RPD: the ratio of standard deviation to RMSE. ANOVA: Analysis of Variance).</p> "> Figure 7
<p>Evaluation indices of DSSI, CEPA and RSEP used to evaluate the performances of different soil sampling plans with different numbers of soil samples. (DSSI: density of soil samples index; CEPA: comprehensive evaluation index of the prediction accuracy; RSEP: ratio of sampling efficiency to performance; RANDOM: the random sampling; LHS: Latin hypercube sampling; GRID: grid sampling; RMSE: root mean square error).</p> "> Figure 8
<p>Spatial distribution of soil organic carbon (SOC) predicted by partial least squares regression kriging with aid of hyperspectral images (<b>j</b>, original) and predicted by ordinary kriging models of different sampling methods (RANDOM: random sampling; LHS: Latin hypercube sampling; GRID: grid sampling) with various sampling densities (<b>a</b>–<b>i</b>, x: 5.13, y: 0.57 and z: 0.16).</p> "> Figure 9
<p>Differences between original reference and estimated soil organic carbon (SOC) maps by random sampling (<b>a</b>); Latin hypercube sampling (LHS) (<b>b</b>) and grid sampling (<b>c</b>) at sampling density of 0.57. H: high level (>30%); M: median level (30–10%); L: low level (<10%).</p> "> Figure 10
<p>Histogram of error values between original reference and estimated SOC maps by random (RANDOM), Latin hypercube (LHS) and grid sampling (GRID) at sampling density of 0.57. H: high level (>30%); M: median level (30–10%); L: low level (<10%).</p> "> Figure 11
<p>Comparison of parameters of semivariograms of Gaussian (<b>a</b>); circular (<b>b</b>); spherical (<b>c</b>) and exponential (<b>d</b>) semi-variance functions of soil organic carbon (SOC) based on field soil samples (<span class="html-italic">n</span> = 180) using ordinary kriging.</p> "> Figure 12
<p>Original reference (<b>a</b>) and predicted SOC maps by ordinary kriging model (<b>b</b>) based on field soil samples (<span class="html-italic">n</span> = 180) and differences between them (<b>c</b>) and percentages of different SOC error levels in study area by the pie chart. H: high level (>30%); M: median level (30–10%); L: low level (<10%).</p> "> Figure 13
<p>The trend lines of the quadratic polynomial function between the RSEP and the sampling density in different sampling plans.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection and Analysis
2.3. Hyperspectral Images and Spectral Pre-Treatment
2.4. Ordinary Kriging (OK)
2.5. PLSR and Partial Least Regression Kriging (PLRK)
2.6. Sampling Methods
2.7. Evaluation Indices
2.8. Sampling Indices
2.9. Soil Sampling Workflow
- The hyperspectral images were obtained using the hyperspectral sensors on the helicopter, and the radiation correction of the images and the pre-processing of the spectral reflectance were executed using the PLS toolbox operated in MATLAB®. Additionally, 204 soil samples were collected from the study region to construct the relationships between the hyperspectral reflectance and SOC.
- PLSR and PLSRK were used to build the SOC prediction models, and the best soil spectral model based on R2 was used to predict SOC map of bare soil. The SOC map was used as the original referential map in the succeeding research.
- Random, LHS, and grid soil sampling were simulated with different sampling densities on the basis of the original estimated SOC map. A total of 30 soil sampling plans were simulated in this research. The evaluation dataset consisted of 200 random soil samples was extracted from the original estimated SOC map. The RMSE, R2, and RPD were used to explore the sensitivity of sampling densities and geographical locations to the accuracy of digital soil mapping. In addition, DSSI was used to evaluate the sampling density, CEPA was used to evaluate the prediction accuracy of the OK models, and RSEP was used to select a suitable soil sampling plan and an appropriate sampling density.
- The optimal soil sampling plan was executed in the study region, and the differences between the SOC maps predicted using the hyperspectral images and OK were then compared.
3. Results
3.1. Estimation of Referential SOC Map by Hyperspectral Images
3.2. Simulation of Soil Sampling Plans
3.3. Comparison of Drawing Quality of SOC Maps
3.4. Evaluation and Application
4. Discussion
4.1. Exploring the Relationships between the Sampling Densities and the Sampling Indices
4.2. The Performance, the Potential and the Limitations of the Integrated Soil Sampling Flow
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pataki, D.; Alig, R.; Fung, A.; Golubiewski, N.; Kennedy, C.; McPherson, E.; Nowak, D.; Pouyat, R.; Romero Lankao, P. Urban ecosystems and the north american carbon cycle. Glob. Change Biol. 2006, 12, 2092–2102. [Google Scholar] [CrossRef]
- Vasques, G.; Grunwald, S.; Sickman, J. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 2008, 146, 14–25. [Google Scholar] [CrossRef]
- Hartemink, A.E.; McBratney, A.; de Lourdes Mendonça-Santos, M. Digital Soil Mapping with Limited Data; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Akramkhanov, A. The Spatial Distribution of Soil Ssalinity: Detection and Prediction; Cuvillier Verlag: Göttingen, Germany, 2005; p. 118. [Google Scholar]
- Lucà, F.; Conforti, M.; Castrignanò, A.; Matteucci, G.; Buttafuoco, G. Effect of calibration set size on prediction at local scale of soil carbon by vis-nir spectroscopy. Geoderma 2017, 288, 175–183. [Google Scholar] [CrossRef]
- Yu, D.-S.; Zhang, Z.-Q.; Yang, H.; Shi, X.-Z.; Tan, M.-Z.; Sun, W.-X.; Wang, H.-J. Effect of soil sampling density on detected spatial variability of soil organic carbon in a red soil region of China. Pedosphere 2011, 21, 207–213. [Google Scholar] [CrossRef]
- Cressie, N. Spatial prediction and ordinary kriging. Math. Geol. 1988, 20, 405–421. [Google Scholar] [CrossRef]
- Dinkins, C.P. Soil Sampling Strategies; Montana State University: Bozeman, MT, USA, 2008; pp. 1–4. [Google Scholar]
- Boettinger, J.L. Digital Soil Mapping: Bridging Research, Environmental Application, and Operation; Springer: Berlin, Germany, 2010; Volume 2. [Google Scholar]
- Mickelson, J.A.; Stougaard, R.N. Assessment of soil sampling methods to estimate wild oat (avena fatua) seed bank populations. Weed Sci. 2011, 51, 226–230. [Google Scholar] [CrossRef]
- Higo, M.; Isobe, K.; Yamaguchi, M.; Torigoe, Y. Impact of a soil sampling strategy on the spatial distribution and diversity of arbuscular mycorrhizal communities at a small scale in two winter cover crop rotational systems. Ann. Microbiol. 2015, 65, 985–993. [Google Scholar] [CrossRef]
- Thompson, A.N.; Shaw, J.N.; Mask, P.L.; Touchton, J.T.; Rickman, D. Soil sampling techniques for alabama, USA grain fields. Precis. Agric. 2004, 5, 345–358. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; McBratney, A.B.; Minasny, B. Proximal Soil Sensing; Springer: Berlin, Germany, 2010; Volume 1. [Google Scholar]
- Minasny, B.; McBratney, A.B. A conditioned latin hypercube method for sampling in the presence of ancillary information. Comput. Geosci. 2006, 32, 1378–1388. [Google Scholar] [CrossRef]
- Lin, Y.; Axing, Z.; Chengzhi, Q. A soil sampling method based on representativeness grade of sampling points. Acta Pedol. Sin. 2011, 48, 938–946. [Google Scholar]
- Wang, K.; Zhang, C.; Li, W. Predictive mapping of soil total nitrogen at a regional scale: A comparison between geographically weighted regression and cokriging. Appl. Geogr. 2013, 42, 73–85. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, C.; Zhang, H.; Chen, Y.; Linderman, M.; Zhang, Q.; Liu, Y. Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology. Geoderma 2017, 285, 280–292. [Google Scholar] [CrossRef]
- Ciampalini, A.; André, F.; Garfagnoli, F.; Grandjean, G.; Lambot, S.; Chiarantini, L.; Moretti, S. Improved estimation of soil clay content by the fusion of remote hyperspectral and proximal geophysical sensing. J. Appl. Geophys. 2015, 116, 135–145. [Google Scholar] [CrossRef]
- Galvao, L.S.; Formaggio, A.R.; Couto, E.G.; Roberts, D.A. Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data. Isprs J. Photogramm. Remote Sens. 2008, 63, 259–271. [Google Scholar] [CrossRef]
- Stevens, A. Detection of carbon stock change in agricultural soils using spectroscopic techniques. Soil Sci. Soc. Am. J. 2006, 70, 844–850. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Hicks, W.S. Soil organic carbon and its fractions estimated by visible-near infrared transfer functions. Eur. J. Soil Sci. 2015, 66, 438–450. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Chen, C. Digitally mapping the information content of visible–near infrared spectra of surficial australian soils. Remote Sens. Environ. 2011, 115, 1443–1455. [Google Scholar] [CrossRef]
- Gomez, C.; Rossel, R.A.V.; McBratney, A.B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-nir spectroscopy: An Australian case study. Geoderma 2008, 146, 403–411. [Google Scholar] [CrossRef]
- Stevens, A.; Miralles, I.; Wesemael, B.V. Soil organic carbon predictions by airborne imaging spectroscopy: Comparing cross-validation and validation. Soil Sci. Soc. Am. J. 2012, 76, 2174–2183. [Google Scholar] [CrossRef]
- Denis, A.; Stevens, A.; van Wesemael, B.; Udelhoven, T.; Tychon, B. Soil organic carbon assessment by field and airborne spectrometry in bare croplands: Accounting for soil surface roughness. Geoderma 2014, 226, 94–102. [Google Scholar] [CrossRef]
- Peon, J.; Fernandez, S.; Recondo, C.; Calleja, J.F. Evaluation of the spectral characteristics of five hyperspectral and multispectral sensors for soil organic carbon estimation in burned areas. Int. J. Wildland Fire 2017, 26, 230–239. [Google Scholar] [CrossRef]
- Franceschini, M.; Demattê, J.; da Silva Terra, F.; Vicente, L.; Bartholomeus, H.; de Souza Filho, C. Prediction of soil properties using imaging spectroscopy: Considering fractional vegetation cover to improve accuracy. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 358–370. [Google Scholar] [CrossRef]
- Bartholomeus, H.; Kooistra, L.; Stevens, A.; Leeuwen, M.V.; Wesemael, B.V.; Ben-Dor, E.; Tychon, B. Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy. Int. J. Appl. Earth Observ. Geoinf. 2011, 13, 81–88. [Google Scholar] [CrossRef]
- Ouerghemmi, W.; Gomez, C.; Naceur, S.; Lagacherie, P. Semi-blind source separation for the estimation of the clay content over semi-vegetated areas using vnir/swir hyperspectral airborne data. Remote Sens. Environ. 2016, 181, 251–263. [Google Scholar] [CrossRef]
- Ouerghemmi, W.; Gomez, C.; Naceur, S.; Lagacherie, P. Applying blind source separation on hyperspectral data for clay content estimation over partially vegetated surfaces. Geoderma 2011, 163, 227–237. [Google Scholar] [CrossRef]
- Freedman, J. Iowa: Past and Present; The Rosen Publishing Group: New York, NY, USA, 2010. [Google Scholar]
- Burt, R.; Staff, S. Kellogg Soil Survey Laboratory Methods Manual; Natural Resources Conservation Services: Washington, DC, USA; National Soil Survey Center: Lincoln, NE, USA, 2014. [Google Scholar]
- ISO10694, ISO. Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis); International Organization for Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- Sokolova, O.V.; Vorozhtsov, D.L. Development of rapid method for determining the total carbon in boron carbide samples with elemental analyzer. Russ. J. Appl. Chem. 2014, 87, 1640–1643. [Google Scholar] [CrossRef]
- Shi, T.; Chen, Y.; Liu, Y.; Wu, G. Visible and near-infrared reflectance spectroscopy—An alternative for monitoring soil contamination by heavy metals. J. Hazard. Mater. 2014, 265, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Goovaerts, P. Geostatistics for Natural Resource Evaluation; Oxford University Press: Oxford, UK, 1997; p. 42. [Google Scholar]
- Gribov, A.; Krivoruchko, K. Geostatistical mapping with continuous moving neighborhood. Math. Geol. 2004, 36, 267–281. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Martens, H. Multivariate Calibration; John Wiley & Sons: Hoboken, NJ, USA, 1989. [Google Scholar]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 2000, 42, 55–61. [Google Scholar] [CrossRef]
- Gogé, F.; Gomez, C.; Jolivet, C.; Joffre, R. Which strategy is best to predict soil properties of a local site from a national vis–nir database? Geoderma 2014, 213, 1–9. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by nir spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Stafford, J.V. Precision Agriculture’07; Academic Publishers: Kolkata, India, 2007. [Google Scholar]
- Wilding, L. Spatial Variability: Its Documentation, Accommodation and Implication to Soil Surveys; PUDOC: Las Vegas, NV, USA, 1985; pp. 166–194. [Google Scholar]
- Kumar, S.; Lal, R.; Liu, D.S.; Rafiq, R. Estimating the spatial distribution of organic carbon density for the soils of Ohio, USA. J. Geogr. Sci. 2013, 23, 280–296. [Google Scholar] [CrossRef]
- Oltracarrió, R.; Baup, F.; Fabre, S.; Fieuzal, R.; Briottet, X. Improvement of soil moisture retrieval from hyperspectral vnir-swir data using clay content information: From laboratory to field experiments. Remote Sens. 2015, 7, 3184–3205. [Google Scholar] [CrossRef]
- Crepin, J.; Johnson, R.L. Soil sampling for environmental assessment. In Soil Sampling and Methods of Analysis; NIPA: Islamabad, Pakistan, 1993; pp. 5–18. [Google Scholar]
- Kumar, S.; Lal, R.; Liu, D. A geographically weighted regression kriging approach for mapping soil organic carbon stock. Geoderma 2012, 189, 627–634. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, Y.Q.; Huang, S.L.; Guo, C.X. Mapping the mean annual precipitation of China using local interpolation techniques. Theor. Appl. Climatol. 2015, 119, 171–180. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, L.; Chen, J.; Fu, P.; Gu, J.; Liao, G. Modeling of spatial distributions of farmland density and its temporal change using geographically weighted regression model. Chin. Geogr. Sci. 2013, 24, 1–14. [Google Scholar] [CrossRef]
- Ji, W.; Viscarra Rossel, R.A.; Shi, Z. Improved estimates of organic carbon using proximally sensed vis–nir spectra corrected by piecewise direct standardization. Eur. J. Soil Sci. 2015, 66, 670–678. [Google Scholar] [CrossRef]
- Conforti, M.; Matteucci, G.; Buttafuoco, G. Using laboratory vis-nir spectroscopy for monitoring some forest soil properties. J. Soils Sediments 2018, 18, 1009–1019. [Google Scholar] [CrossRef]
- Dutta, D.; Goodwell, A.E.; Kumar, P.; Garvey, J.E.; Darmody, R.G.; Berretta, D.P.; Greenberg, J.A. On the feasibility of characterizing soil properties from aviris data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5133–5147. [Google Scholar] [CrossRef]
- Zabcic, N.; Rivard, B.; Ong, C.; Mueller, A. Using airborne hyperspectral data to characterize the surface ph and mineralogy of pyrite mine tailings. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 152–162. [Google Scholar] [CrossRef]
- Paz-Kagan, T.; Zaady, E.; Salbach, C.; Schmidt, A.; Lausch, A.; Zacharias, S.; Notesco, G.; Ben-Dor, E.; Karnieli, A. Mapping the spectral soil quality index (ssqi) using airborne imaging spectroscopy. Remote Sens. 2015, 7, 15748–15781. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for automated geoscientific analyses (saga) v. 2.1.4. Geosci. Model Dev. Discuss. 2015, 8, 2271–2312. [Google Scholar] [CrossRef]
- Pearse, G.D.; Morgenroth, J.; Watt, M.S.; Dash, J.P. Optimising prediction of forest leaf area index from discrete airborne lidar. Remote Sens. Environ. 2017, 200, 220–239. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an afromontane landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Vaudour, E.; Gilliot, J.M.; Bel, L.; Lefevre, J.; Chehdi, K. Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 24–38. [Google Scholar] [CrossRef]
- Capolupo, A.; Kooistra, L.; Berendonk, C.; Boccia, L.; Suomalainen, J. Estimating plant traits of grasslands from uav-acquired hyperspectral images: A comparison of statistical approaches. ISPRS Int. J. Geo-Inf. 2015, 4, 2792–2820. [Google Scholar] [CrossRef]
- Vaudour, E.; Noirot-Cosson, P.E.; Membrive, O. Early-season mapping of crops and cultural operations using very high spatial resolution pléiades images. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 128–141. [Google Scholar] [CrossRef]
Types | Wavelengths (nm) | Spectral Resolution (nm) | The Number of Spectral Bands | Spatial Resolution (m) | |
---|---|---|---|---|---|
Micro-Hyperspec VNIR imaging spectrometers | A-Series | 380–1000 | 1.9 | 325 | 1 |
Micro-Hyperspec NIR imaging spectrometers | X-Series | 900–1700 | 12.9 | 67 | 1 |
The Sampling Methods | Grid Distances (m) | Soil Sample Numbers | Sampling Density (ha−1) | Major Range (m) | Nugget (C0) | Partial Sill (C) | Sill (C0 + C) | C0/(C + C0) (%) |
---|---|---|---|---|---|---|---|---|
Random Sampling | 1984 | 5.13 | 738.46 | 0.009 | 0.07 | 0.079 | 11.39% | |
873 | 2.26 | 610.1 | 0.012 | 0.083 | 0.095 | 12.63% | ||
477 | 1.23 | 697.79 | 0.025 | 0.058 | 0.083 | 30.12% | ||
322 | 0.83 | 605.33 | 0.009 | 0.075 | 0.084 | 10.71% | ||
222 | 0.57 | 970.57 | 0.039 | 0.034 | 0.073 | 53.42% | ||
168 | 0.43 | 257.34 | 0 | 0.077 | 0.077 | 0 | ||
128 | 0.33 | 884.24 | 0 | 0.097 | 0.097 | 0 | ||
93 | 0.24 | 380.21 | 0 | 0.105 | 0.105 | 0 | ||
78 | 0.20 | 743.88 | 0.009 | 0.041 | 0.05 | 18.00% | ||
63 | 0.16 | 891.3 | 0.01 | 0.072 | 0.082 | 12.20% | ||
LHS | 1984 | 5.13 | 630.7 | 0.011 | 0.075 | 0.086 | 12.79% | |
873 | 2.26 | 542.87 | 0.012 | 0.073 | 0.085 | 14.12% | ||
477 | 1.23 | 541.2 | 0.018 | 0.064 | 0.082 | 21.95% | ||
322 | 0.83 | 553.43 | 0.012 | 0.064 | 0.076 | 15.79% | ||
222 | 0.57 | 827.41 | 0.015 | 0.058 | 0.073 | 20.55% | ||
168 | 0.43 | 853.27 | 0.026 | 0.049 | 0.075 | 34.67% | ||
128 | 0.33 | 1091.87 | 0.04 | 0.056 | 0.096 | 41.67% | ||
93 | 0.24 | 738.46 | 0.029 | 0.057 | 0.086 | 33.72% | ||
78 | 0.20 | 509.34 | 0 | 0.14 | 0.14 | 0 | ||
63 | 0.16 | 271.72 | 0 | 0.094 | 0.094 | 0 | ||
Grid Sampling | 40 | 1984 | 5.13 | 660.21 | 0.015 | 0.074 | 0.089 | 16.85% |
60 | 873 | 2.26 | 793.38 | 0.022 | 0.068 | 0.09 | 24.44% | |
80 | 477 | 1.23 | 617.59 | 0.025 | 0.071 | 0.096 | 26.04% | |
100 | 322 | 0.83 | 971.83 | 0.03 | 0.066 | 0.096 | 31.25% | |
120 | 222 | 0.57 | 618.75 | 0.0098 | 0.078 | 0.0878 | 11.16% | |
140 | 168 | 0.43 | 756.69 | 0.021 | 0.064 | 0.085 | 24.71% | |
160 | 128 | 0.33 | 955.92 | 0.009 | 0.081 | 0.09 | 10.00% | |
180 | 93 | 0.24 | 564.77 | 0 | 0.108 | 0.108 | 0 | |
200 | 78 | 0.20 | 851.6 | 0 | 0.103 | 0.103 | 0 | |
220 | 63 | 0.16 | 520.72 | 0 | 0.123 | 0.123 | 0 |
C0 | C | Distance Parameter (a, Unit: m) | RMSE (%) | MSDR | |
---|---|---|---|---|---|
Circular | 0.07 | 0.06 | 595.54 | 0.3199 | 0.804 |
Spherical | 0.07 | 0.06 | 680.71 | 0.3203 | 0.803 |
Exponential | 0.06 | 0.08 | 879.88 | 0.3189 | 0.823 |
Gaussian | 0.08 | 0.05 | 631.62 | 0.3205 | 0.810 |
DSSI | CEPA | RSEP | |||||
---|---|---|---|---|---|---|---|
RANDOM | LHS | GRID | RANDOM | LHS | GRID | ||
Pearson’s r to Sampling density | 1.00 | −0.91 | −0.94 | −0.89 | −0.90 | −0.92 | −0.90 |
Linear function () | |||||||
a | 0.65 | −0.59 | −0.61 | −0.57 | −0.92 | −1.00 | −0.86 |
b | −0.74 | 0.67 | 0.70 | 0.65 | 0.22 | 0.29 | 0.18 |
R2 | 1.00 | 0.84 | 0.89 | 0.78 | 0.81 | 0.85 | 0.81 |
Logarithmic function () | |||||||
a | −0.89 | −0.84 | −0.87 | −0.87 | −1.00 | −0.83 | |
b | −0.43 | −0.41 | −0.42 | −1.24 | −1.34 | −1.20 | |
R2 | 0.98 | 0.88 | 0.94 | 0.38 | 0.44 | 0.39 | |
Quadratic polynomial function () | |||||||
a | 0.17 | 0.12 | 0.19 | −0.32 | −0.31 | −0.31 | |
b | −1.45 | −1.25 | −1.56 | 0.73 | 0.61 | 0.71 | |
c | 1.08 | 1.00 | 1.12 | −0.55 | −0.47 | −0.56 | |
R2 | 0.94 | 0.95 | 0.93 | 0.98 | 0.99 | 0.99 |
Labels | Number of Samples | Environment Variables | Area of Research Area | Soil Properties | R2C | R2V | Reference |
---|---|---|---|---|---|---|---|
1 | 110 | elevation, slope, cosine value of aspect, NDVI, distances from sample points to water body, soil erosion intensity, ferrous minerals index | 1260 km2 | SOM | 0.314 | 0.094 | [56] |
2 | 272 | Terrain factors (e.g., elevation, slope, and aspect); Distance factors (e.g., distance to river, residential area, and road); Land cover type, and spectral indices (NDVI and NDMI) | 153 km2 | SOCD | 0.22 | 0.312 | [17] |
3 | 3485 | Slope, elevation, mean annual air temperature (MAAT), mean annual precipitation (MAP), land use (LULC), bedrock geology, and NDVI | 1.98 × 106 km2 | SOC | None | 0.58 | [45] |
4 | 878 | DEM, slope gradient, elevation, hillshade, mean annual air temperature (MAAT), mean annual precipitation (MAP), geology and land use maps, and NDVI | 117,599 km2 | SOC | None | 0.36 | [48] |
5 | 202 | soil taxonomic units, soil parent materials, slope classes, soil texture classes, drainage classes, thickness of humiferous horizon, gravel layer, geologic units, lithologic units; slope gradient, aspect and curvature, contributing area, wetness index, the position of grid cells; Choropleth lithologic map; NDVI | 15 km2 | SOC | None | 0.36 | [57] |
6 | 320 | temperature, rainfall, land cover data, elevation, slope, curvature, aspect, TWI, NDVI | ≈650 km2 | SOC | None | 0.64 | [58] |
Labels | Samples Numbers | The Hyperspectral Sensor | Soil Properties | R2CV | R2V | Reference | |||
---|---|---|---|---|---|---|---|---|---|
Type | Wavelength | Spectral Resolution | Spatial Resolution | ||||||
1 | 238 | CASI-2 | 405–950 nm | 6 nm | 6 m | SOC | 0.85 | 0.85 | [20] |
2 | 325 | AHS-160 | 430–2540 nm | 18~90 nm | 2.6 m | SOC | 0.77 | 0.73 | [24] |
3 | 165 | AHS-160 | 430–2540 nm | 18~90 nm | 2.6 m | SOC | 0.93–0.96 | - | [25] |
4 | 89 | SpecTIR LLC | 400–2500 nm | 4.3 or 5.3 nm | 1 m | SOM | 0.60 | 0.33 | [27] |
5 | 75 | AisaFENIX | 380–2500 nm | 3.5~5.5 nm | 1 m | SOM | - | 0.61 | [55] |
AisaDUAL | 420–2450 nm | 4.5~6.3 nm | 1 m | SOM | - | 0.95 | |||
6 | 267 | AISA-Eagle | 400–1000 nm | 2.9 nm | 1 m | SOC | 0.59 | 0.29 | [59] |
7 | 89 | CASI | 407–1053 nm | 6 | 1.5 m | SOC | 0.87 | - | [26] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Linderman, M.; Shi, T.; Chen, Y.; Duan, L.; Zhang, H. Exploring the Sensitivity of Sampling Density in Digital Mapping of Soil Organic Carbon and Its Application in Soil Sampling. Remote Sens. 2018, 10, 888. https://doi.org/10.3390/rs10060888
Guo L, Linderman M, Shi T, Chen Y, Duan L, Zhang H. Exploring the Sensitivity of Sampling Density in Digital Mapping of Soil Organic Carbon and Its Application in Soil Sampling. Remote Sensing. 2018; 10(6):888. https://doi.org/10.3390/rs10060888
Chicago/Turabian StyleGuo, Long, Marc Linderman, Tiezhu Shi, Yiyun Chen, Lijun Duan, and Haitao Zhang. 2018. "Exploring the Sensitivity of Sampling Density in Digital Mapping of Soil Organic Carbon and Its Application in Soil Sampling" Remote Sensing 10, no. 6: 888. https://doi.org/10.3390/rs10060888
APA StyleGuo, L., Linderman, M., Shi, T., Chen, Y., Duan, L., & Zhang, H. (2018). Exploring the Sensitivity of Sampling Density in Digital Mapping of Soil Organic Carbon and Its Application in Soil Sampling. Remote Sensing, 10(6), 888. https://doi.org/10.3390/rs10060888