Model Selection for Parametric Surfaces Approximating 3D Point Clouds for Deformation Analysis
"> Figure 1
<p>Sketch map of the experimental design concerning the locations of the instruments and relevant targets in side view (<b>upper</b>) and top view (<b>bottom</b>) [<a href="#B16-remotesensing-10-00634" class="html-bibr">16</a>].</p> "> Figure 2
<p>Reflectance image generated by reflectivity values of TLS data [<a href="#B16-remotesensing-10-00634" class="html-bibr">16</a>].</p> "> Figure 3
<p>Extracted Arc-shape object and the target segments in our numerical example (within the red boundary) shown by the software CloudCompare.</p> "> Figure 4
<p>Histogram of the sampled log-likelihood ratio <math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> under the polynomial (<b>left</b>) and B-spline (<b>right</b>) surface model, approximated by a Gaussian density functions (in red).</p> "> Figure 5
<p>Statistic values of Vuong’s test in comparison with critics.</p> "> Figure 6
<p>Side-view (<b>a</b>) and top-view (<b>b</b>) of approximated B-spline surface (<math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>18</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>18</mn> </mrow> </semantics></math>) with the original measurements (blue points).</p> "> Figure 7
<p>Polynomial (<b>a</b>,<b>c</b>) and B-spline surface models (<b>b</b>,<b>d</b>) in terms of differences of the 1st and 13th epochs in Segment I.</p> "> Figure 8
<p>Deformation of segment I reflected by block means of the point cloud differences based on the 1st and 13th epochs.</p> "> Figure 9
<p>Deformation of Segment I between 1st and 13th epochs reflected by various approaches.</p> "> Figure 10
<p>Polynomial (<b>a</b>,<b>c</b>) and B-spline surface models (<b>b</b>,<b>d</b>) in reflecting deformation of segment II based on the 1st and 13th epochs.</p> "> Figure 11
<p>Deformation of Segment II reflected by block means of the point cloud differences based on the 1st and 13th epochs.</p> "> Figure 12
<p>AIC (<b>red</b>) and BIC (<b>green</b>) values with an increasing number of parameters.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Experiment Design
2.2. Surface Approximation
2.2.1. B-Spline Surface Approximation
- Parametrization of the measurements with s rows and t columns with respect to the u- and v-direction.
- Determination of the knot vectors and in the u- and v-direction.
- Estimation of the control points by means of a linear Gauss–Markov model.
2.2.2. Polynomial Surface Approximation
2.2.3. Parameter Number of Competing Models
2.3. Model Selection Method
2.3.1. Simulation-Based Version of Cox’s Test
- with certain expectation and standard deviation if the polynomial model is true, and
- with certain expectation and standard deviation if the B-spline model is true.
- the polynomial model is true;
- the B-spline model is true—
- reject if , and
- reject if
- The polynomial model is rejected and the B-spline model is not rejected in the case of
- The B-spline model is rejected and the polynomial model is not rejected in the case of
- Both the polynomial and the B-spline models are rejected in the case of
- Neither the polynomial nor the B-spline model is rejected in the case of
2.3.2. Vuong’s Non-Nested Hypothesis Test
- : the polynomial and B-spline models are equally close to the truth;
- : the polynomial model is better since it is closer to the truth than the B-spline model is;
- : the B-spline model is better since it is closer to the truth than the Polynomial model.
- The polynomial and B-spline models are equally close to the truth in case of
- The polynomial model is better since it is closer to the truth than B-spline model in case of
- The B-spline model is better since it is closer to the truth than Polynomial model in case of
2.4. Deformation Analysis
3. Results
3.1. Evaluation of Competing Polynomial and B-Spline Models
3.2. Evaluation of Competing B-Spline Models with Various Parameters
3.3. Performance in Deformation Analysis
3.3.1. Deformation of Segment I
3.3.2. Deformation of Segment II
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AIC | Akaike information criterion |
BIC | Bayesian information criterion |
KLIC | Kullback-Leibler information criterion |
MSS | multi-sensor-system |
RMSD | root-mean-square deviation |
TLS | terrestrial laser scanning |
Appendix A
Pair | Competing Models | Cox’s Test | Vuong’s Test | |||||
---|---|---|---|---|---|---|---|---|
Polynomial | B-Spline | Rejected | Rejected | Preferred | ||||
1 | −96.88 | polynomial | −6.31 | no | −14.92 | B-spline | ||
2 | −82.69 | polynomial | −5.30 | no | −14.59 | B-spline | ||
3 | −210.65 | polynomial | −17.54 | no | −13.99 | B-spline | ||
4 | −324.26 | polynomial | −19.77 | no | −13.37 | B-spline | ||
5 | −306.37 | polynomial | −31.21 | no | −12.58 | B-spline | ||
6 | −323.49 | polynomial | −28.37 | no | −12.75 | B-spline | ||
7 | −338.20 | polynomial | −33.64 | no | −13.23 | B-spline | ||
8 | −359.43 | polynomial | −38.19 | no | −11.79 | B-spline | ||
9 | −325.74 | polynomial | −42.33 | no | −10.44 | B-spline | ||
10 | −341.49 | polynomial | −41.76 | no | −9.68 | B-spline | ||
11 | −294.75 | polynomial | −48.19 | no | −11.53 | B-spline | ||
12 | −333.69 | polynomial | −50.22 | no | −10.59 | B-spline | ||
13 | −279.57 | polynomial | −46.54 | no | −11.23 | B-spline | ||
14 | −318.33 | polynomial | −51.20 | no | −10.02 | B-spline | ||
15 | −317.28 | polynomial | −52.92 | no | −9.90 | B-spline | ||
16 | −275.54 | polynomial | −59.22 | no | −7.43 | B-spline | ||
17 | −276.37 | polynomial | −52.10 | no | −8.55 | B-spline | ||
18 | −313.79 | polynomial | −66.44 | no | −9.12 | B-spline | ||
19 | −262.48 | polynomial | −54.70 | no | −7.99 | B-spline | ||
20 | −270.20 | polynomial | −56.54 | no | −10.10 | B-spline | ||
21 | −285.65 | polynomial | −49.27 | no | −6.99 | B-spline | ||
22 | −268.69 | polynomial | −68.30 | no | −10.59 | B-spline | ||
23 | −267.04 | polynomial | −62.88 | no | v8.99 | B-spline | ||
24 | −241.21 | polynomial | −67.39 | no | −9.54 | B-spline | ||
25 | −268.29 | polynomial | −68.11 | no | −8.99 | B-spline | ||
26 | −280.65 | polynomial | −75.17 | no | −8.70 | B-spline | ||
27 | −217.72 | polynomial | −69.20 | no | −6.99 | B-spline | ||
28 | −258.19 | polynomial | −84.32 | no | −7.37 | B-spline | ||
29 | −227.56 | polynomial | −80.89 | no | −8.67 | B-spline | ||
30 | −240.33 | polynomial | −82.54 | no | −9.77 | B-spline | ||
31 | −232.69 | polynomial | −72.30 | no | −7.59 | B-spline | ||
32 | −236.65 | polynomial | −70.33 | no | −8.99 | B-spline | ||
33 | −213.58 | polynomial | −72.86 | no | −9.28 | B-spline | ||
34 | −199.14 | polynomial | −70.94 | no | −5.00 | B-spline | ||
35 | −192.05 | polynomial | −84.49 | no | −3.14 | B-spline | ||
36 | −180.07 | polynomial | −80.21 | no | −0.36 | no |
Pair | B-Spline Model I | B-Spline Model II | Vuong’s Test | |||
---|---|---|---|---|---|---|
, | , | Preferred | ||||
1 | 9 | 25 | −20.46 | model 2 | ||
2 | 16 | 36 | −12.84 | model 2 | ||
3 | 25 | 49 | −23.72 | model 2 | ||
4 | 36 | 64 | −25.30 | model 2 | ||
5 | 79 | 81 | −21.23 | model 2 | ||
6 | 64 | 100 | −20.32 | model 2 | ||
7 | 81 | 121 | −12.28 | model 2 | ||
8 | 100 | 144 | −20.03 | model 2 | ||
9 | 121 | 169 | −8.31 | model 2 | ||
10 | 144 | 196 | −2.30 | model 2 | ||
11 | 169 | 225 | −7.92 | model 2 | ||
12 | 196 | 256 | −4.11 | model 2 | ||
13 | 225 | 289 | −0.57 | no | ||
14 | 256 | 324 | −6.57 | model 2 | ||
15 | 289 | 361 | −4.06 | model 2 | ||
16 | 324 | 400 | −3.89 | model 2 | ||
17 | 361 | 441 | −4.15 | model 2 | ||
18 | 400 | 484 | 3.02 | model 1 | ||
19 | 441 | 529 | 9.09 | model 1 | ||
20 | 484 | 576 | 0.41 | no | ||
21 | 529 | 625 | 3.21 | model 1 | ||
22 | 576 | 676 | 9.23 | model 1 | ||
23 | 625 | 729 | 1.97 | model 1 | ||
24 | 676 | 784 | 10.03 | model 1 | ||
25 | 729 | 841 | 16.27 | model 1 | ||
26 | 784 | 900 | 4.23 | model 1 | ||
27 | 841 | 961 | 12.7 | model 1 | ||
28 | 900 | 1024 | 11.81 | model 1 | ||
29 | 961 | 1089 | 10.33 | model 1 | ||
30 | 1024 | 1156 | 18.17 | model 1 | ||
31 | 1089 | 1225 | 14.05 | model 1 | ||
32 | 1156 | 1296 | 18.83 | model 1 | ||
33 | 1225 | 1369 | 24.62 | model 1 | ||
34 | 1296 | 1444 | 22.86 | model 1 | ||
35 | 1369 | 1521 | 24.40 | model 1 | ||
36 | 1444 | 1600 | 22.14 | model 1 | ||
37 | 1521 | 1681 | 24.68 | model 1 | ||
38 | 1600 | 1764 | 24.86 | model 1 | ||
39 | 1681 | 1849 | 27.61 | model 1 |
References
- Han, J.Y.; Guo, J.; Jiang, Y.S. Monitoring tunnel profile by means of multi-epoch dispersed 3D LiDAR point clouds. Tunn. Undergr. Space Technol. 2013, 33, 186–192. [Google Scholar] [CrossRef]
- Mukupa, W.; Roberts, G.W.; Hancock, C.M.; Al-Manasir, K. A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Surv. Rev. 2017, 49, 99–116. [Google Scholar] [CrossRef]
- Gordon, S.J.; Lichti, D.D. Modeling terrestrial laser scanner data for precise structural deformation measurement. J. Surv. Eng. 2007, 133, 72–80. [Google Scholar] [CrossRef]
- Lovas, T.; Barsi, A.; Detrekoi, A.; Dunai, L.; Csak, Z.; Polgar, A.; Berenyi, A.; Kibedy, Z.; Szocs, K. Terrestrial laser scanning in deformation measurements of structures. Int. Arch. Photogramm. Remote Sens. 2008, 37, 527–531. [Google Scholar]
- Monserrat, O.; Crosetto, M. Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J. Photogramm. Remote Sens. 2008, 63, 142–154. [Google Scholar] [CrossRef]
- Tsakiri, M.; Lichti, D.; Pfeifer, N. Terrestrial laser scanning for deformation monitoring. In Proceedings of the 12th FIG Symposium, Baden, Germany, 22–24 May 2006. [Google Scholar]
- Lane, S.N.; Westaway, R.M.; Murray Hicks, D. Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surf. Process. Landf. 2003, 28, 249–271. [Google Scholar] [CrossRef]
- Barnhart, T.B.; Crosby, B.T. Comparing Two Methods of Surface Change Detection on an Evolving Thermokarst Using High-Temporal-Frequency Terrestrial Laser Scanning, Selawik River, Alaska. Remote Sens. 2013, 5, 2813–2837. [Google Scholar] [CrossRef]
- Yang, H.; Xu, X.; Neumann, I. Deformation behavior analysis of composite structures under monotonic loads based on terrestrial laser scanning technology. Compos. Struct. 2018, 183, 594–599. [Google Scholar] [CrossRef]
- Ingensand, H.; Ioannidis, C.; Valani, A.; Georgopoulos, A.; Tsiligiris, E. 3D model Generation for Deformation Analysis using Laser Scanning data of a Cooling Tower. In Proceedings of the 12th FIG Symposium, Baden, Germany, 22–24 May 2006. [Google Scholar]
- Van Gosliga, R.; Lindenbergh, R.; Pfeifer, N. Deformation analysis of a bored tunnel by means of terrestrial laser scanning. In Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Dresden, Germany, 25–27 September 2006. [Google Scholar]
- Vezočnik, R.; Ambrožič, T.; Sterle, O.; Bilban, G.; Pfeifer, N.; Stopar, B. Use of terrestrial laser scanning technology for long term high precision deformation monitoring. Sensors 2009, 9, 9873–9895. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Tang, S.; Song, X.; Lei, Y.; Zang, H.; Lou, M.; Zhuang, C. Precise Measurement of Stem Diameter by Simulating the Path of Diameter Tape from Terrestrial Laser Scanning Data. Remote Sens. 2016, 8, 717. [Google Scholar] [CrossRef]
- Lindenbergh, R.; Uchanski, L.; Bucksch, A.; Van Gosliga, R. Structural monitoring of tunnels using terrestrial laser scanning. Rep. Geod. 2009, 87, 231–238. [Google Scholar]
- Girardeau-Montaut, D.; Roux, M.; Marc, R.; Thibault, G. Change detection on points cloud data acquired with a ground laser scanner. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2005, 36, 30–35. [Google Scholar]
- Yang, H.; Omidalizarandi, M.; Xu, X.; Neumann, I. Terrestrial laser scanning technology for deformation monitoring and surface modeling of arch structures. Compos. Struct. 2017, 169, 173–179. [Google Scholar] [CrossRef]
- Bureick, J.; Alkhatib, H.; Neumann, I. Robust Spatial Approximation of Laser Scanner Point Clouds by Means of Free-form Curve Approaches in Deformation Analysis. J. Appl. Geod. 2016, 10, 27–35. [Google Scholar] [CrossRef]
- Harmening, C.; Neuner, H. A constraint-based parameterization technique for B-spline surfaces. J. Appl. Geod. 2015, 9, 143–161. [Google Scholar] [CrossRef]
- Zhao, X.; Alkhatib, H.; Kargoll, B.; Neumann, I. Statistical evaluation of the influence of the uncertainty budget on B-spline curve approximation. J. Appl. Geod. 2017, 11, 215–230. [Google Scholar] [CrossRef]
- Wunderlich, T.; Niemeier, W.; Wujanz, D.; Holst, C.; Neitzel, F.; Kuhlmann, H. Areal deformation analysis from TLS point clouds—The challenge. Allgemeine Vermessungs Nachrichten 2016, 123, 340–351. [Google Scholar]
- Harmening, C.; Neuner, H. Choosing the Optimal Number of B-spline Control Points (Part 1: Methodology and Approximation of Curves). J. Appl. Geod. 2016, 10, 139–157. [Google Scholar] [CrossRef]
- Harmening, C.; Neuner, H. Choosing the optimal number of B-spline control points (Part 2: Approximation of surfaces and applications). J. Appl. Geod. 2017, 11, 43–52. [Google Scholar] [CrossRef]
- Cox, D.R. Tests of Separate Families of Hypotheses. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1961. [Google Scholar]
- Williams, D.A. Discrimination between Regression Models to Determine the Pattern of Enzyme Synthesis in Synchronous Cell Cultures. Biometrics 1970, 26, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.H. Likelihood ratio tests for model selection and non-nested hypotheses. Econ. J. Econom. Soc. 1989, 8, 307–333. [Google Scholar] [CrossRef]
- Hexagon Metrology. Leica Absolute Tracker AT960 Brochure. Available online: http://www.hexagonmi.com/products/laser-tracker-systems/leica-absolute-tracker-at960loren (accessed on 19 April 2018).
- Meierhold, N.; Spehr, M.; Schilling, A.; Gumhold, S.; Maas, H. Automatic feature matching between digital images and 2D representations of a 3D laser scanner point cloud. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 446–451. [Google Scholar]
- Bureick, J.; Neuner, H.; Harmening, C.; Neumann, I. Curve and Surface Approximation of 3D Point Clouds. Allgemeine Vermessungs-Nachrichten 2016, 123, 315–327. [Google Scholar]
- Piegl, L.; Tiller, W. The NURBS Book; Springer Science & Business Media: Berlin, Germany, 1997. [Google Scholar]
- Koch, K. Fitting Free-Form Surfaces to Laserscan Data by NURBS. Allgemeine Vermessungs-Nachrichten 2009, 116, 134–140. [Google Scholar]
- Koch, K. Parameter Estimation and Hypothesis Testing in Linear Models; Springer: Berlin, Germany, 1999. [Google Scholar]
- Paffenholz, J.A.; Vennegeerts, H.; Kutterer, H. High frequency terrestrial laser scans for monitoring kinematic processes. In Proceedings of the INGEO 2008—4th International Conference on Engineering Surveying, Bratislava, Slovakia, 23–24 October 2008. [Google Scholar]
- Lewis, F.; Butler, A.; Gilbert, L. A unified approach to model selection using the likelihood ratio test. Methods Ecol. Evol. 2011, 2, 155–162. [Google Scholar] [CrossRef]
- Clarke, K.A. A simple distribution-free test for nonnested model selection. Polit. Anal. 2007, 15, 347–363. [Google Scholar] [CrossRef]
Pairs | Polynomial Model | B-Spline Model | ||
---|---|---|---|---|
Degree | n, m | |||
I | 2nd | 6 | n = 1, m = 2 | 6 |
II | 3rd | 10 | n = 2, m = 2 | 9 |
III | 4th | 15 | n = 3, m = 3 | 16 |
Pair | Cox’s Test | Vuong’s Test | ||||
---|---|---|---|---|---|---|
Rejected | Rejected | Preferred | ||||
I | −39.93 | polynomial | −23.44 | no | −29.95 | B-spline |
II | −0.68 | no | 1.44 | no | 0.19 | no |
III | −14.85 | polynomial | −1.21 | no | 0.37 | no |
Pair | Competing Models | Cox’s Test | Vuong’s Test | |||||
---|---|---|---|---|---|---|---|---|
Polynomial | B-Spline | Rejected | Rejected | Preferred | ||||
32 | −236.65 | polynomial | −70.33 | no | −8.99 | B-spline | ||
33 | −213.58 | polynomial | −72.86 | no | −9.28 | B-spline | ||
34 | −199.14 | polynomial | −70.94 | no | −5.00 | B-spline | ||
35 | −192.05 | polynomial | −84.49 | no | −3.14 | B-spline | ||
36 | −180.07 | polynomial | −80.21 | no | −0.36 | no |
Pair | Cox’s Test | Vuong’s Test | ||||
---|---|---|---|---|---|---|
Rejected | Rejected | Preferred | ||||
I | −3.96 | polynomial | 4.46 | B-spline | 5.95 | polynomial |
II | −1.58 | no | 5.89 | B-spline | 7.43 | polynomial |
III | 0.87 | no | 10.65 | B-spline | 11.31 | polynomial |
Pair | B-Spline Model I | B-Spline Model II | Vuong’s Test | |||
---|---|---|---|---|---|---|
, | , | Preferred | ||||
13 | 225 | 289 | −0.57 | no | ||
14 | 256 | 324 | −6.57 | model 2 | ||
15 | 289 | 361 | −4.06 | model 2 | ||
16 | 324 | 400 | −3.89 | model 2 | ||
17 | 361 | 441 | −4.15 | model 2 | ||
18 | 400 | 484 | 3.02 | model 1 | ||
19 | 441 | 529 | 9.09 | model 1 | ||
20 | 484 | 576 | 0.41 | no |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Kargoll, B.; Omidalizarandi, M.; Xu, X.; Alkhatib, H. Model Selection for Parametric Surfaces Approximating 3D Point Clouds for Deformation Analysis. Remote Sens. 2018, 10, 634. https://doi.org/10.3390/rs10040634
Zhao X, Kargoll B, Omidalizarandi M, Xu X, Alkhatib H. Model Selection for Parametric Surfaces Approximating 3D Point Clouds for Deformation Analysis. Remote Sensing. 2018; 10(4):634. https://doi.org/10.3390/rs10040634
Chicago/Turabian StyleZhao, Xin, Boris Kargoll, Mohammad Omidalizarandi, Xiangyang Xu, and Hamza Alkhatib. 2018. "Model Selection for Parametric Surfaces Approximating 3D Point Clouds for Deformation Analysis" Remote Sensing 10, no. 4: 634. https://doi.org/10.3390/rs10040634
APA StyleZhao, X., Kargoll, B., Omidalizarandi, M., Xu, X., & Alkhatib, H. (2018). Model Selection for Parametric Surfaces Approximating 3D Point Clouds for Deformation Analysis. Remote Sensing, 10(4), 634. https://doi.org/10.3390/rs10040634