Comparing Three Different Ground Based Laser Scanning Methods for Tree Stem Detection
"> Figure 1
<p>In-house-built backpack laser scanner.</p> "> Figure 2
<p>Location and orientation of the vertical and horizontal laser frames and body frame.</p> "> Figure 3
<p>(<b>a</b>) Detected trees by HLS (green circle) and ground reference tree data (red circles). The size of the circle represents the DBH and the coordinate system is EUREF89 UTM zone 32. (<b>b</b>) HLS data used to extract trees.</p> "> Figure 4
<p>(<b>a</b>) Understory vegetation in May 2017. (<b>b</b>) Understory vegetation in July 2017 at the same location as (<b>a</b>).</p> "> Scheme 1
<p>Flowchart describing each step in the proposed method.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reference Data Collection
2.3. TLS Data Collection
2.4. HLS Data Collection
2.5. BPLS Data Collection
BPLS Data Processing
- laser frame (, defined by each laser scanner
- body frame (), defined by the IMU: x-axis: in speed direction; z-axis: down
- local geodetic frame (g), same origo as the body frame: x-axis: north; y-axis: east; z-axis: down
- mapping frame (m), defined by the mapping grid: x-axis: east; y-axis: north; z-axis: up
2.6. Evaluation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vauhkonen, J.; Maltamo, M.; McRoberts, R.E.; Næsset, E. Introduction to forestry applications of airborne laser scanning. In Forestry Applications of Airborne Laser Scanning; Springer: Berlin, Germany, 2014; pp. 1–16. [Google Scholar]
- Næsset, E. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand. J. For. Res. 2004, 19, 164–179. [Google Scholar] [CrossRef]
- Gjertsen, A.K. Accuracy of forest mapping based on Landsat TM data and a kNN-based method. Remote Sens. Environ. 2007, 110, 420–430. [Google Scholar] [CrossRef]
- Breidenbach, J.; Næsset, E.; Lien, V.; Gobakken, T.; Solberg, S. Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sens. Environ. 2010, 114, 911–924. [Google Scholar] [CrossRef]
- Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F.; et al. Terrestrial laser scanning in forest inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [Google Scholar] [CrossRef]
- Liang, X.; Litkey, P.; Hyyppa, J.; Kaartinen, H.; Vastaranta, M.; Holopainen, M. Automatic Stem Mapping Using Single-Scan Terrestrial Laser Scanning. IEEE Trans. Geosci. Remote Sens. 2012, 50, 661–670. [Google Scholar] [CrossRef]
- Lindberg, E.; Holmgren, J.; Olofsson, K.; Olsson, H. Estimation of stem attributes using a combination of terrestrial and airborne laser scanning. Eur. J. For. Res. 2012, 131, 1917–1931. [Google Scholar] [CrossRef]
- Oveland, I.; Hauglin, M.; Gobakken, T.; Næsset, E.; Maalen-Johansen, I. Automatic Estimation of Tree Position and Stem Diameter Using a Moving Terrestrial Laser Scanner. Remote Sens. 2017, 9, 350. [Google Scholar] [CrossRef]
- Simonse, M.; Aschoff, T.; Spiecker, H.; Thies, M. Automatic Determination of Forest Inventory Parameters Using Terrestrial Laserscanning. Available online: http://www.natscan.uni-freiburg.de/suite/pdf/030916_1642_1.pdf (accessed on 30 March 2018).
- Strahler, A.H.; Jupp, D.L.B.; Woodcock, C.E.; Schaaf, C.B.; Yao, T.; Zhao, F.; Yang, X.; Lovell, J.; Culvenor, D.; Newnham, G.; et al. Retrieval of forest structural parameters using a ground-based lidar instrument. Can. J. Remote Sens. 2008, 34, S426–S440. [Google Scholar] [CrossRef]
- Yao, T.; Yang, X.; Zhao, F.; Wang, Z.; Zhang, Q.; Jupp, D.; Lovell, J.; Culvenor, D.; Newnham, G.; Ni-Meister, W.; et al. Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar. Remote Sens. Environ. 2011, 115, 2965–2974. [Google Scholar] [CrossRef]
- Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis, P. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sens. 2013, 5, 491–520. [Google Scholar] [CrossRef]
- Dassot, M.; Constant, T.; Fournier, M. The use of terrestrial LiDAR technology in forest science: Application fields, benefits and challenges. Ann. For. Sci. 2011, 68, 959–974. [Google Scholar] [CrossRef]
- Astrup, R.; Ducey, M.J.; Granhus, A.; Ritter, T.; von Lüpke, N. Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode. Can. J. For. Res. 2014, 44, 666–676. [Google Scholar] [CrossRef]
- Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests 2016, 7, 127. [Google Scholar] [CrossRef]
- Ryding, J.; Williams, E.; Smith, M.; Eichhorn, M. Assessing Handheld Mobile Laser Scanners for Forest Surveys. Remote Sens. 2015, 7, 1095–1111. [Google Scholar] [CrossRef]
- Forsman, M.; Holmgren, J.; Olofsson, K. Tree Stem Diameter Estimation from Mobile Laser Scanning Using Line-Wise Intensity-Based Clustering. Forests 2016, 7, 206. [Google Scholar] [CrossRef]
- Palleja, T.; Tresanchez, M.; Teixido, M.; Sanz, R.; Rosell, J.; Palacin, J. Sensitivity of tree volume measurement to trajectory errors from a terrestrial LIDAR scanner. Agric. For. Meteorol. 2010, 150, 1420–1427. [Google Scholar] [CrossRef]
- Masiero, A.; Fissore, F.; Guarnieri, A.; Piragnolo, M.; Vettore, A. Comparison of low cost photogrammetric survey with TLS and Leica Pegasus Backpack 3D models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42. [Google Scholar]
- Pierzchała, M.; Giguère, P.; Astrup, R. Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Comput. Electron. Agric. 2018, 145, 217–225. [Google Scholar] [CrossRef]
- Heinzel, J.; Huber, M.O. Tree Stem Diameter Estimation From Volumetric TLS Image Data. Remote Sens. 2017, 9, 614. [Google Scholar] [CrossRef]
- Liang, X.; Kukko, A.; Kaartinen, H.; Hyyppä, J.; Yu, X.; Jaakkola, A.; Wang, Y. Possibilities of a Personal Laser Scanning System for Forest Mapping and Ecosystem Services. Sensors 2014, 14, 1228–1248. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Hyyppä, J. Automatic Stem Mapping by Merging Several Terrestrial Laser Scans at the Feature and Decision Levels. Sensors 2013, 13, 1614. [Google Scholar] [CrossRef] [PubMed]
- Pueschel, P.; Newnham, G.; Rock, G.; Udelhoven, T.; Werner, W.; Hill, J. The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans. ISPRS J. Photogramm. Remote Sens. 2013, 77, 44–56. [Google Scholar] [CrossRef]
- Andersen, H.-E.; Clarkin, T.; Winterberger, K.; Strunk, J. An accuracy assessment of positions obtained using survey-and recreational-grade global positioning system receivers across a range of forest conditions within the Tanana Valley of interior Alaska. West. J. Appl. For. 2009, 24, 128–136. [Google Scholar]
- Kaartinen, H.; Hyyppä, J.; Vastaranta, M.; Kukko, A.; Jaakkola, A.; Yu, X.; Pyörälä, J.; Liang, X.; Liu, J.; Wang, Y.; et al. Accuracy of Kinematic Positioning Using Global Satellite Navigation Systems under Forest Canopies. Forests 2015, 6, 3218–3236. [Google Scholar] [CrossRef]
- TerraPos version 2.4.90; GNSS/INS post processing software; Terratec: Oslo, Norway; Available online: https://www.terratec.no/terrapos (accessed on 16 November 2017 ).
- Office National des Forêts. Computree version 3.0; A software platform for processing Terrestrial LiDAR data to extract forest information; Office National des Forêts: Paris, France, 2010; Available online: http://computree.onf.fr/?lang=en (accessed on 16 November 2017).
- Hackenberg, J.; Spiecker, H.; Calders, K.; Disney, M.; Raumonen, P. SimpleTree —An Efficient Open Source Tool to Build Tree Models from TLS Clouds. Forests 2015, 6, 4245. [Google Scholar] [CrossRef]
- Geoslam. GeoSlam Zeb-1; Geoslam: Ruddington, Nottinghamshire, UK; Available online: https://geoslam.com/hardware/zeb-1/ (accessed on 16 November 2017).
- Bosse, M.; Zlot, R.; Flick, P. Zebedee: Design of a spring-mounted 3-d range sensor with application to mobile mapping. IEEE Trans. Robot. 2012, 28, 1104–1119. [Google Scholar] [CrossRef]
- Giannetti, F.; Chirici, G.; Travaglini, D.; Bottalico, F.; Marchi, E.; Cambi, M. Assessment of Soil Disturbance Caused by Forest Operations by Means of Portable Laser Scanner and Soil Physical Parameters. Soil Sci. Soc. Am. J. 2017, 81, 1577–1585. [Google Scholar] [CrossRef]
- Girardeau-Montaut, D. CloudCompare version 2.8; Open source 3D point cloud processing software. Available online: http://www.danielgm.net/cc/ (accessed on 16 November 2017).
- Velodyne Lidar, PUCK, VLP16. Available online: http://velodynelidar.com/vlp-16.html (accessed on 1 October 2017).
- Anon. TerraScan User’s Guide; Terrasolid Ltd.: Helsinki, Finland, 2011. [Google Scholar]
- Hauglin, M.; Lien, V.; Næsset, E.; Gobakken, T. Geo-referencing forest field plots by co-registration of terrestrial and airborne laser scanning data. Int. J. Remote Sens. 2014, 35, 3135–3149. [Google Scholar] [CrossRef]
- Bienert, A.; Scheller, S.; Keane, E.; Mohan, F.; Nugent, C. Tree Detection and Diameter Estimations by Analysis of Forest Terrestrial Laser Scanner Point Clouds. In Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, 12–14 September 2007; pp. 50–55. [Google Scholar]
DBH (cm) | ||||
---|---|---|---|---|
Species | Number of Trees | Min | Max | Mean |
Spruce 1 | 144 | 4.0 | 60.7 | 22.3 |
Pine | 137 | 9.3 | 43.5 | 28.2 |
Silver fir | 32 | 4.1 | 81.4 | 9.4 |
Birch | 22 | 4.1 | 9.8 | 6.1 |
Description | Standard Deviation (cm) |
---|---|
GNSS points coordinates | 1 |
Plot center point coordinate | 3 |
Tree center alignment | 3 |
Distance from tree surface to tree center | 1 |
Plot ID | Angle Difference in Heading (Degrees) |
---|---|
1 | 2.0° |
2 | −9.0° |
3 | 4.9° |
4 | 7.4° |
5 | 1.1° |
6 | −6.5° |
7 | −5.2° |
Orientation Method | Mean Difference (cm) | RMSE (cm) |
---|---|---|
Magnetometer | 69.1 | 81.8 |
Reference tree position | 8.5 | 9.9 |
Method | Omission (Not Found) % | Commission (False Trees) % | Detected Trees % | Diameter at Breast Height (cm) | Positions (cm) | |||
---|---|---|---|---|---|---|---|---|
Mean Difference | RMSE | RMSE % | Mean Difference | RMSE | ||||
TLS | 37.9 | 5.4 | 61.8 | -2.0 | 6.2 | 28.6 | 69 | 82 |
HLS | 26.0 | 4.8 | 74.0 | 0.3 | 3.1 | 14.3 | 17 | 20 |
BPLS | 12.5 | 9.9 | 87.5 | 0.1 | 2.2 | 9.1 | 54 | 62 |
Method | Average DBH for Omission Trees (cm) | Number of Omission Trees with DBH < 10 cm | Number of Omission Trees with DBH > 10 cm |
---|---|---|---|
Terrestrial laser scanner | 16.9 | 67 | 60 |
Handheld laser scanner | 8.7 | 68 | 19 |
Backpack laser scanner | 7.5 | 36 | 6 |
Method | Static GNSS for Reference Points | Position Measurement of Plot Center | Position Measurement of Spheres | Laser Scanning | Total |
---|---|---|---|---|---|
Terrestrial laser scanner | 30 min | 15 min | 10 min | 55 min | |
Handheld laser scanner | 30 min | 15 min | 5 min | 24 min | 74 min |
Backpack laser scanner | 16 min | 16 min |
Reference | Method | Equipment | Mean Difference (cm) | RMSE (cm) | RMSE% |
---|---|---|---|---|---|
This study | TLS | Faro Focus 3D x130 | −2.0 | 6.2 | 28.6 |
[15] | TLS | Faro Focus 3D x120 | −1.2 | 3.7 | 13.4 |
[23] | TLS | Leica HDS6100 | 0.5* | 1.5* | 7.3* |
[24] | TLS | Faro photon 120 | −0.1** | 1.6** | - |
This study | HLS | GeoSlam ZEB1 | 0.3 | 3.1 | 14.3 |
[15] | HLS | GeoSlam ZEB1 | −0.1 | 1.1 | 4.1 |
[16] | HLS | GeoSlam ZEB1 | 0.5 | 2.9 | 23 |
This study | BPLS | Velodyne VLP 16 | 0.1 | 2.2 | 9.1 |
[8] | BPLS | Velodyne VLP 16 | 0.9 | 1.5 | 7.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oveland, I.; Hauglin, M.; Giannetti, F.; Schipper Kjørsvik, N.; Gobakken, T. Comparing Three Different Ground Based Laser Scanning Methods for Tree Stem Detection. Remote Sens. 2018, 10, 538. https://doi.org/10.3390/rs10040538
Oveland I, Hauglin M, Giannetti F, Schipper Kjørsvik N, Gobakken T. Comparing Three Different Ground Based Laser Scanning Methods for Tree Stem Detection. Remote Sensing. 2018; 10(4):538. https://doi.org/10.3390/rs10040538
Chicago/Turabian StyleOveland, Ivar, Marius Hauglin, Francesca Giannetti, Narve Schipper Kjørsvik, and Terje Gobakken. 2018. "Comparing Three Different Ground Based Laser Scanning Methods for Tree Stem Detection" Remote Sensing 10, no. 4: 538. https://doi.org/10.3390/rs10040538
APA StyleOveland, I., Hauglin, M., Giannetti, F., Schipper Kjørsvik, N., & Gobakken, T. (2018). Comparing Three Different Ground Based Laser Scanning Methods for Tree Stem Detection. Remote Sensing, 10(4), 538. https://doi.org/10.3390/rs10040538