Estimation of Penetration Depth from Soil Effective Temperature in Microwave Radiometry
"> Figure 1
<p>(<b>a</b>) Geographical location of the Maqu network on the Tibetan Plateau. The background indicates the elevation from USGS 1 km topography and the border in black is where elevation >2500 m; (<b>b</b>) The distribution of all sites at the Maqu network and the center site (ELBARA) located in the center; (<b>c</b>) ELABRA; (<b>d</b>) the detailed soil moisture and soil temperature profile.</p> "> Figure 2
<p>(<b>a</b>) precipitation; (<b>b</b>) the time series of soil moisture and (<b>c</b>) soil temperature profiles at Maqu Network Center Station; (<b>d</b>) the installation configuration of 20 sensors.</p> "> Figure 2 Cont.
<p>(<b>a</b>) precipitation; (<b>b</b>) the time series of soil moisture and (<b>c</b>) soil temperature profiles at Maqu Network Center Station; (<b>d</b>) the installation configuration of 20 sensors.</p> "> Figure 3
<p>Penetration depth at L band (1.4 GHz). The ranges of penetration depth (in centimeters) were shown as contour lines, depending on the soil moisture and soil temperature. Mironov’s dielectric constant model was used here for calculating the real and complex parts of dielectric constants.</p> "> Figure 4
<p>The time series of the penetration depth (Blue) and correlation coefficient (Red) between the soil temperature at the penetration depth and the corresponding soil effective temperature at Maqu Center Station as computed from the soil temperature/moisture profiles between 6 August and 27 November 2016.</p> "> Figure 5
<p>Global map of the penetration depth (PD) for SMAP with (<b>a</b>) minimum at 6 a.m.; (<b>b</b>) minimum at 6 p.m.; (<b>c</b>) maximum at 6 a.m.; (<b>d</b>) maximum at 6 p.m.; (<b>e</b>) mean at 6 a.m.; (<b>f</b>) mean at 6 p.m. Data used are SMAP soil moisture passive L3 product and the corresponding soil effective temperature calculated from MERRA-2 for 2016. The SMAP soil moisture and soil effective temperature are considered as the mid-level values for each pixel vertically.</p> "> Figure 6
<p>Comparison of soil temperature at the penetration depth vs. soil effective temperature at Maqu Center Station. The absolute correlation coefficient (<math display="inline"> <semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mi>c</mi> <mi>c</mi> </mrow> <mo>|</mo> </mrow> </mrow> </semantics> </math>) divided the time series into two groups where <math display="inline"> <semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mi>c</mi> <mi>c</mi> </mrow> <mo>|</mo> </mrow> <mo>></mo> <mn>0.8</mn> </mrow> </semantics> </math> (<b>a</b>) and <math display="inline"> <semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mi>c</mi> <mi>c</mi> </mrow> <mo>|</mo> </mrow> <mo><</mo> <mn>0.8</mn> </mrow> </semantics> </math> (<b>b</b>). The bottom figure shows the daily distribution of the moment when correlation coefficient <math display="inline"> <semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mi>c</mi> <mi>c</mi> </mrow> <mo>|</mo> </mrow> <mo>></mo> <mn>0.8</mn> </mrow> </semantics> </math>.</p> "> Figure 7
<p>Comparison of soil effective temperature calculated by Wilheit’s integral scheme against soil temperature observed at Maqu Center Station: (<b>a</b>) 2.5 cm; (<b>b</b>) 10 cm; (<b>c</b>) 40 cm observation and (<b>d</b>) the penetration depth. Data are shown only when <math display="inline"> <semantics> <mrow> <mrow> <mo>|</mo> <mrow> <mi>c</mi> <mi>c</mi> </mrow> <mo>|</mo> </mrow> <mo>></mo> <mn>0.8</mn> </mrow> </semantics> </math> and the dashed line is the regression line. The period is from 6 August to 27 November 2016.</p> ">
Abstract
:1. Introduction
2. Theoretical Background
2.1. Microwave Radiative Transfer Model
2.2. Soil Effective Temperature
2.3. Penetration Depth
3. Method and Data
3.1. Predigest of Wilheit’s Scheme
3.2. Characteristic Expression of
3.3. In-Situ Data, MERRA-2 and SMAP
4. Results
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yamada, T.J.; Kanae, S.; Oki, T.; Hirabayashi, Y. The onset of the West African monsoon simulated in a high-resolution atmospheric general circulation model with reanalyzed soil moisture fields. Atmos. Sci. Lett. 2012, 13, 103–107. [Google Scholar] [CrossRef]
- Douville, H.; Chauvin, F.; Broqua, H. Influence of soil moisture on the Asian and African monsoons. Part I: Mean monsoon and daily precipitation. J. Clim. 2001, 14, 2381–2403. [Google Scholar] [CrossRef]
- Douville, H.; Conil, S.; Tyteca, S.; Voldoire, A. Soil moisture memory and West African monsoon predictability: Artefact or reality? Clim. Dyn. 2007, 28, 723–742. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.J.; Hong, J.; Lee, T.Y. Spin-up behavior of soil moisture content over East Asia in a land surface model. Meteorol. Atmos. Phys. 2012, 118, 151–161. [Google Scholar] [CrossRef]
- De Rosnay, P.; Drusch, M.; Boone, A.; Balsamo, G.; Decharme, B.; Harris, P.; Kerr, Y.; Pellarin, T.; Polcher, J.; Wigneron, J.P. AMMA land surface model intercomparison experiment coupled to the Community Microwave Emission Model: ALMIP-MEM. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Kerr, Y.H. Soil moisture from space: Where are we? Hydrogeol. J. 2006, 15, 117–120. [Google Scholar] [CrossRef]
- Dedieu, G.; Deschamps, P.Y.; Kerr, Y.H. Satellite estimation of solar irradiance at the surface of the Earth and of surface albedo using a physical model applied to meteosat data. J. Clim. Appl. Meteorol. 1987, 26, 79–87. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Dumedah, G.; Walker, J.P.; Rudiger, C. Can SMOS data be used directly on the 15-km discrete global grid? IEEE Trans. Geosci. Remote Sens. 2014, 52, 2538–2544. [Google Scholar] [CrossRef]
- Reul, N.; Tenerelli, J.; Chapron, B.; Vandemark, D.; Quilfen, Y.; Kerr, Y. SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef]
- Dente, L.; Su, Z.B.; Wen, J. Validation of SMOS soil moisture products over the Maqu and Twente regions. Sensors 2012, 12, 9965–9986. [Google Scholar] [CrossRef] [PubMed]
- Tranchant, B.; Testut, C.E.; Renault, L.; Ferry, N.; Birol, F.; Brasseur, P. Expected impact of the future SMOS and Aquarius Ocean surface salinity missions in the Mercator Ocean operational systems: New perspectives to monitor ocean circulation. Remote Sens. Environ. 2008, 112, 1476–1487. [Google Scholar] [CrossRef]
- Tranchant, B.; Testut, C.E.; Ferry, N.; Renault, L.; Obligis, E.; Boone, C.; Larnicol, G. Data assimilation of simulated SSS SMOS products in an ocean forecasting system. J. Oper. Oceanogr. 2008, 1, 19–27. [Google Scholar] [CrossRef]
- Lv, S.; Zeng, Y.; Wen, J.; Zheng, D.; Su, Z. Determination of the optimal mounting depth for calculating effective soil temperature at l-band: Maqu case. Remote Sens. 2016, 8, 476. [Google Scholar] [CrossRef]
- Lv, S.; Wen, J.; Zeng, Y.; Tian, H.; Su, Z. An improved two-layer algorithm for estimating effective soil temperature in microwave radiometry using in situ temperature and soil moisture measurements. Remote Sens. Environ. 2014, 152, 356–363. [Google Scholar] [CrossRef]
- Burke, W.J.; Schmugge, T.; Paris, J.F. Comparison of 2.8- and 21-cm microwave radiometer observations over soils with emission model calculations. J. Geophys. Res. Oceans 1979, 84, 287–294. [Google Scholar] [CrossRef]
- Rao, K.; Chandra, G.; Rao, P.N. Study on penetration depth and its dependence on frequency, soil moisture, texture and temperature in the context of microwave remote sensing. J. Indian Soc. Remote Sens. 1988, 16, 7–19. [Google Scholar] [CrossRef]
- Njoku, E.G.; Kong, J.-A. Theory for passive microwave remote-sensing of near-surface soil-moisture. J. Geophys. Res. 1977, 82, 3108–3118. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Su, Z.; de Rosnay, P.; Wen, J.; Wang, L.; Zeng, Y. Evaluation of ECMWF’s soil moisture analyses using observations on the Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 5304–5318. [Google Scholar] [CrossRef]
- Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef]
- Entekhabi, D.; Nakamura, H.; Njoku, E.G. Solving the inverse problems for soil-moisture and temperature profiles by sequential assimilation of multifrequency remotely-sensed observations. IEEE Trans. Geosci. Remote Sens. 1994, 32, 438–448. [Google Scholar] [CrossRef]
- Escorihuela, M.J.; Chanzy, A.; Wigneron, J.P.; Kerr, Y.H. Effective soil moisture sampling depth of L-band radiometry: A case study. Remote Sens. Environ. 2010, 114, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Scheeler, R.; Kuester, E.F.; Popovic, Z. Sensing depth of microwave radiation for internal body temperature measurement. IEEE Trans. Antennas Propag. 2014, 62, 1293–1303. [Google Scholar] [CrossRef]
- Zhou, F.C.; Song, X.N.; Leng, P.; Li, Z.L. An effective emission depth model for passive microwave remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1752–1760. [Google Scholar] [CrossRef]
- Nolan, M.; Fatland, D.R. Penetration depth as a DInSAR observable and proxy for soil moisture. IEEE Trans. Geosci. Remote Sens. 2003, 41, 532–537. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, L.; Zhang, T.; Hao, Z.; Chai, L.; Zhang, Z. An empirical model to estimate the microwave penetration depth of frozen soil. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 4493–4496. [Google Scholar]
- Choudhury, B.J.; Schmugge, T.J.; Mo, T. A Parameterization of Effective Soil-Temperature for Microwave Emission. J. Geophys. Res. Oceans 1982, 87, 1301–1304. [Google Scholar] [CrossRef]
- Wigneron, J.P.; Laguerre, L.; Kerr, Y.H. A simple parameterization of the L-band microwave emission from rough agricultural soils. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1697–1707. [Google Scholar] [CrossRef]
- Holmes, T.R.H.; de Rosnay, P.; de Jeu, R.; Wigneron, R.J.P.; Kerr, Y.; Calvet, J.C.; Escorihuela, M.J.; Saleh, K.; Lemaitre, F. A new parameterization of the effective temperature for L band radiometry. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing Active and Passive-Volume III: From Theory to Applications; Artech House, Inc.: Norwood, MA, USA, 1986. [Google Scholar]
- Lv, S.; Zeng, Y.; Wen, J.; Su, Z. A reappraisal of global soil effective temperature schemes. Remote Sens. Environ. 2016, 183, 144–153. [Google Scholar] [CrossRef]
- De Rosnay, P.; Wigneron, J.; Holmes, T.; Calvet, J. Parameterizations of the effective temperature for L-band radiometry. Inter-comparison and long term validation with SMOSREX field experiment. In Thermal Microwave Radiation-Applications for Remote Sensing; IET Electromagnetic Waves Series 52; Mtzler, C., Rosenkranz, P.W., Battaglia, A., Wigneron, J.P., Eds.; Christian Matzler: London, UK, 2006; Volume 573, ISBN 0-86341-573-3 and 978-086341-573-9. [Google Scholar]
- Wilheit, T.T. Radiative-transfer in a plane stratified dielectric. IEEE Trans. Geosci. Remote Sens. 1978, 16, 138–143. [Google Scholar] [CrossRef]
- Zwieback, S.; Hensley, S.; Hajnsek, I. Assessment of soil moisture effects on L-band radar interferometry. Remote Sens. Environ. 2015, 164, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Owe, M.; Van de Griend, A.A. Comparison of soil moisture penetration depths for several bare soils at two microwave frequencies and implications for remote sensing. Water Resour. Res. 1998, 34, 2319–2327. [Google Scholar] [CrossRef] [Green Version]
- Wigneron, J.P.; Chanzy, A.; de Rosnay, P.; Rudiger, C.; Calvet, J.C. Estimating the effective soil temperature at L-band as a function of soil properties. IEEE Trans. Geosci. Remote Sens. 2008, 46, 797–807. [Google Scholar] [CrossRef]
- Su, Z.; Wen, J.; Dente, L.; van der Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci. 2011, 15, 2303–2316. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, X.; van der Velde, R.; Zeng, Y.; Wen, J.; Wang, Z.; Schwank, M.; Ferrazzoli, P.; Su, Z. L-band microwave emission of soil freezesc-thaw process in the Third Pole Environment. IEEE Trans. Geosci. Remote Sens. 2017. [Google Scholar] [CrossRef]
- Wang, Q.; van der Velde, R.; Su, Z. Use of a discrete electromagnetic model for simulating Aquarius L-band active/passive observations and soil moisture retrieval. Remote Sens. Environ. 2017, 205, 434–452. [Google Scholar] [CrossRef]
- Zhao, H.; Zeng, Y.; Lv, S.; Su, Z. Analysis of soil hydraulic and thermal properties for land surface modelling over the tibetan plateau. Earth Syst. Sci. Data Discuss. 2018. [Google Scholar] [CrossRef]
- Mironov, V.L.; Dobson, M.C.; Kaupp, V.H.; Komarov, S.A.; Kleshchenko, V.N. Generalized refractive mixing dielectric model for moist soils. IEEE Trans. Geosci. Remote Sens. 2004, 42, 773–785. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- O’Neill, P.; Chan, S.; Njoku, E.; Jackson, T.; Bindlish, R. Soil Moisture Active Passive (SMAP), Algorithm Theoretical Basis Document Level 2 & 3 Soil Moisture (Passive) Data Products, Revison B; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2015. [Google Scholar]
- Entekhabi, D.; Yueh, S.; O’Neill, P.E.; Kellogg, K.H.; Allen, A.; Bindlish, R.; Brown, M.; Chan, S.; Colliander, A.; Crow, W.T. SMAP Handbook—Soil Moisture Active Passive: Mapping Soil Moisture and Freeze/Thaw from Space; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2014.
- Zeng, J.; Li, Z.; Chen, Q.; Bi, H.; Qiu, J.; Zou, P. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sens. Environ. 2015, 163, 91–110. [Google Scholar] [CrossRef]
Abbreviation | Definition | Unit | Expression |
---|---|---|---|
soil effective temperature | K | Equations (5), (6), (12) and (13) | |
brightness temperature | K | ||
soil moisture | Vol/Vol | ||
maximum soil temperature along soil temperature profile | K | ||
minimum soil temperature along soil temperature profile | K | ||
soil temperature at th layer | K | ||
weighting function for | - | Defined in [29,31,34] | |
soil thickness at th layer | m | ||
soil depth (at th layer) | m | ||
optical thickness at th layer | m | ||
optical depth at th layer (or corresponding to soil depth ) | m | ||
normalized soil temperature (at th layer) | - | ||
skin temperature | K | ||
soil temperature at deep layer that the soil temperature could be considered as constant | K | ||
Soil temperature gradient | |||
attenuation parameter | - | ||
deep enough that the soil temperature could be considered as constant | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, S.; Zeng, Y.; Wen, J.; Zhao, H.; Su, Z. Estimation of Penetration Depth from Soil Effective Temperature in Microwave Radiometry. Remote Sens. 2018, 10, 519. https://doi.org/10.3390/rs10040519
Lv S, Zeng Y, Wen J, Zhao H, Su Z. Estimation of Penetration Depth from Soil Effective Temperature in Microwave Radiometry. Remote Sensing. 2018; 10(4):519. https://doi.org/10.3390/rs10040519
Chicago/Turabian StyleLv, Shaoning, Yijian Zeng, Jun Wen, Hong Zhao, and Zhongbo Su. 2018. "Estimation of Penetration Depth from Soil Effective Temperature in Microwave Radiometry" Remote Sensing 10, no. 4: 519. https://doi.org/10.3390/rs10040519
APA StyleLv, S., Zeng, Y., Wen, J., Zhao, H., & Su, Z. (2018). Estimation of Penetration Depth from Soil Effective Temperature in Microwave Radiometry. Remote Sensing, 10(4), 519. https://doi.org/10.3390/rs10040519