SAR Image Recognition with Monogenic Scale Selection-Based Weighted Multi-task Joint Sparse Representation
"> Figure 1
<p>Monogenic signal with scale <span class="html-italic">S</span><math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>S</mi> <mo>=</mo> <mn>10</mn> <mo>)</mo> </mrow> </semantics> </math>. (<b>a</b>) original SAR image; (<b>b</b>) amplitude scale space; (<b>c</b>) phase scale space; and (<b>d</b>) orientation scale space.</p> "> Figure 2
<p>Generation of monogenic component-specific features with scale selection.</p> "> Figure 3
<p>Component-specific features with each selected scale parameter (<span class="html-italic">V</span>). The darker color of components indicates a larger global Fisher score.</p> "> Figure 4
<p>Computational time of each <span class="html-italic">V</span> on data set 2.</p> "> Figure 5
<p>Confusion matrices under SOC. Each row in the subfigures denotes the ground-truth class of the test sample. Each column in the subfigures shows the class predicted by different methods. The element in bold in the upper left corner represents the overall recognition rate. The diagonal elements except for the one in the upper left corner describe the recognition rate of each class. The rest of the elements denote the misclassification rate of each class.</p> ">
Abstract
:1. Introduction
- (1)
- We introduce a novel joint sparse representation method (WTJSR) with the components of the monogenic signal
- (2)
- We propose a scale-selection model based on a Fisher discrimination criterion to effectively use the information contained in monogenic signal and establish the adaptive weight vector due to the heterogeneity of the three component-specific features.
- (3)
- We perform comparative experiments under different conditions.
2. Related Work
2.1. SRC
2.2. MTJSRC
3. Monogenic Scale Selection-Based Weighted Multitask Joint Sparse Representation Classification
3.1. Monogenic Signal
3.2. Fisher Discrimination Criterion-Based Monogenic Scale Selection
3.3. Classification via Tri-Task Joint Sparse Representation of Monogenic Signal
Algorithm 1 Monogenic scale selection-based WTJSRC for SAR image classification. |
Input:
Identity for all test samples;
|
4. Experimental Results
4.1. Scale Parameter Experiments
4.2. SAR Image Classification under Standard Operating Conditions
4.3. SAR Image Classification under Extended Operating Conditions
5. Discussion
5.1. Scale Parameter Analysis
5.2. Analysis of the Recognition Rate under SOC
5.3. Analysis of the Recognition Rate under EOCs
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tait, P. Introduction to Radar Target Recognition; The Institution of Engineering and Technology (IET): Stevenage, UK, 2005; Volume 18. [Google Scholar]
- Dang, S.; Cui, Z.; Cao, Z.; Liu, N. SAR Target Recognition via Incremental Nonnegative Matrix Factorization. Remote Sens. 2018, 10, 374. [Google Scholar] [CrossRef]
- Felsberg, M.; Sommer, G. The monogenic signal. IEEE Trans. Signal Process. 2001, 49, 3136–3144. [Google Scholar] [CrossRef]
- Felsberg, M.; Sommer, G. The Monogenic Scale-Space: A Unifying Approach to Phase-Based Image Processing in Scale-Space. J. Math. Imag. Vis. 2004, 21, 5–26. [Google Scholar] [CrossRef]
- Felsberg, M.; Duits, R.; Florack, L. The Monogenic Scale Space on a Rectangular Domain and its Features. Int. J. Comput. Vis. 2005, 64, 187–201. [Google Scholar] [CrossRef]
- Wietzke, B.L.; Sommer, G.; Schmaltz, C.; Weickert, J. Differential geometry of monogenic signal representations. In International Workshop on Robot Vision; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4931, pp. 454–465. [Google Scholar]
- Unser, M.; Sage, D.; Ville, D.V.D. Multiresolution Monogenic Signal Analysis Using the Riesz–Laplace Wavelet Transform. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 2009, 18, 2402–2418. [Google Scholar] [CrossRef] [PubMed]
- Demarcq, G.; Mascarilla, L.; Berthier, M.; Courtellemont, P. The Color Monogenic Signal: Application to Color Edge Detection and Color Optical Flow. J. Math. Imag. Vis. 2011, 40, 269–284. [Google Scholar] [CrossRef]
- Olhede, S.C.; Ramirez, D.; Schreier, P.J. Detecting Directionality in Random Fields Using the Monogenic Signal. IEEE Trans. Inf. Theory 2014, 60, 6491–6510. [Google Scholar] [CrossRef]
- Oh, Y.H.; Ngo, A.C.L.; See, J.; Liong, S.T.; Phan, C.W.; Ling, H.C. Monogenic Riesz wavelet representation for micro-expression recognition. In Proceedings of the IEEE International Conference on Digital Signal Processing, Singapore, 21–24 July 2015; pp. 1237–1241. [Google Scholar]
- Huang, X.; Zhao, G.; Zheng, W.; Pietikainen, M. Spatiotemporal Local Monogenic Binary Patterns for Facial Expression Recognition. IEEE Signal Process. Lett. 2012, 19, 243–246. [Google Scholar] [CrossRef]
- Yuan, X.T.; Liu, X.; Yan, S. Visual classification with multitask joint sparse representation. IEEE Trans. Image Process. 2012, 21, 4349–4360. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Wang, C.; You, D.; Zhang, Y.; Wang, S.; Zhang, Y. Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2852–2865. [Google Scholar] [CrossRef]
- Wang, Q.; Gu, Y.; Tuia, D. Discriminative multiple kernel learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3912–3927. [Google Scholar] [CrossRef]
- Wright, J.; Yang, A.Y.; Sastry, S.S.; Sastry, S.S.; Ma, Y. Robust Face Recognition via Sparse Representation. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 210–227. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.B.; Yang, M.H. Fast sparse representation with prototypes. In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 3618–3625. [Google Scholar]
- Shin, Y.; Lee, S.; Woo, S.; Lee, H.N. Performance increase by using a EEG sparse representation based classification method. In Proceedings of the IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 11–14 January 2013; pp. 201–203. [Google Scholar]
- Lin, C.; Wang, B.; Zhao, X.; Pang, M. Optimizing kernel PCA using sparse representation-based classifier for mstar SAR image target recognition. Math. Probl. Eng. 2013, 2013, 847062. [Google Scholar] [CrossRef]
- Yuan, X.T.; Yan, S. Visual classification with multi-task joint sparse representation. In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 3493–3500. [Google Scholar]
- Zhang, H.; Nasrabadi, N.M.; Zhang, Y.; Huang, T.S. Multi-View Automatic Target Recognition using Joint Sparse Representation. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 2481–2497. [Google Scholar] [CrossRef]
- Dong, G.; Kuang, G.; Zhao, L.; Lu, J.; Lu, M. Joint sparse representation of monogenic components: With application to automatic target recognition in SAR imagery. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 549–552. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 267–288. [Google Scholar]
- Candes, E.J.; Romberg, J.K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 2006, 59, 1207–1223. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef]
- Samadi, S.; Çetin, M.; Masnadi-Shirazi, M.A. Sparse representation-based synthetic aperture radar imaging. IET Radar Sonar Navig. 2011, 5, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Austin, C.D.; Ertin, E.; Moses, R.L. Sparse signal methods for 3-D radar imaging. IEEE J. Sel. Top. Signal Process. 2011, 5, 408–423. [Google Scholar] [CrossRef]
- Qian, Y.; Ye, M. Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 499–515. [Google Scholar] [CrossRef]
- Yang, F.; Gao, W.; Xu, B.; Yang, J. Multi-frequency polarimetric SAR classification based on Riemannian manifold and simultaneous sparse representation. Remote Sens. 2015, 7, 8469–8488. [Google Scholar] [CrossRef]
- Song, S.; Xu, B.; Yang, J. SAR target recognition via supervised discriminative dictionary learning and sparse representation of the SAR-HOG feature. Remote Sens. 2016, 8, 683. [Google Scholar] [CrossRef]
- Cao, Z.; Xu, L.; Feng, J. Automatic target recognition with joint sparse representation of heterogeneous multi-view SAR images over a locally adaptive dictionary. Signal Process. 2016, 126, 27–34. [Google Scholar] [CrossRef]
- Wright, J.; Ma, Y.; Mairal, J.; Sapiro, G.; Huang, T.S.; Yan, S. Sparse representation for computer vision and pattern recognition. Proc. IEEE 2010, 98, 1031–1044. [Google Scholar] [CrossRef]
- Bruckstein, A.M.; Donoho, D.L.; Elad, M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 2009, 51, 34–81. [Google Scholar] [CrossRef]
- Mallat, S.G.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C.; Strauss, M.J. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Process. 2006, 86, 572–588. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Elad, M.; Figueiredo, M.A.; Ma, Y. On the role of sparse and redundant representations in image processing. Proc. IEEE 2010, 98, 972–982. [Google Scholar] [CrossRef]
- Natarajan, B.K. Sparse approximate solutions to linear systems. SIAM J. Comput. 1995, 24, 227–234. [Google Scholar] [CrossRef]
- Tropp, J.A. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 2004, 50, 2231–2242. [Google Scholar] [CrossRef]
- Gao, X.; Wang, N.; Tao, D.; Li, X. Face sketch–photo synthesis and retrieval using sparse representation. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1213–1226. [Google Scholar] [CrossRef]
- Candes, E.J.; Tao, T. Decoding by linear programming. IEEE Trans. Inf. Theory 2005, 51, 4203–4215. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, L.; Zhang, B.; Tong, X.; Du, P.; Chanussot, J. Foreword to the special issue on hyperspectral remote sensing: Theory, methods, and applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 459–465. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, L.; Shiu, S.C.K.; Zhang, D. Monogenic binary coding: An efficient local feature extraction approach to face recognition. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1738–1751. [Google Scholar] [CrossRef]
- Dong, G.; Kuang, G.; Wang, N.; Zhao, L.; Lu, J. SAR target recognition via joint sparse representation of monogenic signal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3316–3328. [Google Scholar] [CrossRef]
- O’Sullivan, J.A.; Devore, M.D.; Kedia, V.; Miller, M.I. SAR ATR performance using a conditionally Gaussian model. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 91–108. [Google Scholar] [CrossRef]
- Zhao, Q.; Principe, J.C. Support vector machines for SAR automatic target recognition. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 643–654. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Todorovic, S.; Li, J. Adaptive boosting for SAR automatic target recognition. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 112–125. [Google Scholar] [CrossRef]
- Srinivas, U.; Monga, V.; Raj, R.G. SAR Automatic Target Recognition Using Discriminative Graphical Models. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 591–606. [Google Scholar] [CrossRef]
Abbreviation | Full Name | Reference |
---|---|---|
CondGauss | conditional Gaussian model | [44] |
SVM | support vector machine | [45] |
AdaBoost | feature fusion via boosting on radial basis function net classifiers | [46] |
IGT | iterative graph thickening | [47] |
SRC | sparse representation classification | [15] |
TJSR | joint sparse representation classification of monogenic signal | [43] |
WTJSR | weighted tri-task joint sparse representation | - |
Type | Training Set () | Testing Set () |
---|---|---|
BMP2 | 195(Sn 9563) | |
233(Sn 9563) | 196(Sn 9566) | |
196(Sn c21) | ||
BTR70 | 233(Sn c71) | 196(Sn c71) |
T72 | 196(Sn 132) | |
232(Sn 132) | 195(Sn 812) | |
191(Sn s7) |
V | BMP2 (%) | BTR70 (%) | T72 (%) | Average (%) |
---|---|---|---|---|
1 | 88.08 | 98.47 | 79.73 | 86.10 |
2 | 91.99 | 99.49 | 86.60 | 90.77 |
3 | 94.21 | 99.49 | 90.21 | 93.26 |
4 | 95.74 | 100 | 91.92 | 94.72 |
5 | 96.59 | 100 | 94.50 | 96.19 |
6 | 96.25 | 100 | 95.19 | 96.34 |
7 | 96.25 | 100 | 94.67 | 96.11 |
8 | 96.25 | 100 | 93.70 | 95.70 |
9 | 94.88 | 100 | 93.70 | 95.11 |
10 | 95.25 | 100 | 93.35 | 95.12 |
Type | Training Set () | Testing Set () |
---|---|---|
BMP2 | 233(Sn 9563) | 195(Sn 9563) |
232(Sn 9566) | 196(Sn 9566) | |
233(Sn c21) | 196(Sn c21) | |
BTR70 | 233(Sn c71) | 196(Sn c71) |
T72 | 232(Sn 132) | 196(Sn 132) |
231(Sn 812) | 195(Sn 812) | |
228(Sn s7) | 191(Sn s7) | |
BTR60 | 256 | 195 |
2S1 | 299 | 274 |
BRDM2 | 298 | 274 |
D7 | 299 | 274 |
T62 | 299 | 273 |
ZIL131 | 299 | 274 |
ZSU234 | 299 | 274 |
Methods | Offline Training (s) | Testing (s) |
---|---|---|
SRC | 5.6 | 7.4 |
TJSR | 74.1 | 47.9 |
WTJSR | 130.7 | 25.4 |
Type | Serial Number | Depression Angle | Number of Images |
---|---|---|---|
2S1 | b01 | 288 | |
BRDM2 | E-71 | 287 | |
T72 | A64 | 288 | |
ZSU234 | d08 | 288 |
Type | 2S1 (%) | BRDM2 (%) | T72 (%) | ZSU234 (%) |
---|---|---|---|---|
2S1 | 97.2 | 1.4 | 4.2 | 1.4 |
BRDM2 | 4.2 | 88.9 | 1.4 | 5.6 |
T72 | 6.9 | 3.1 | 86.5 | 3.5 |
ZSU234 | 1.0 | 0 | 1.6 | 97.4 |
Total (%) | 92.6 |
BMP2 | T72 | BTR60 | T62 | Depression | |
---|---|---|---|---|---|
Train | 233(Sn 9563) | 232(Sn 132) | 256 | 299 | |
Test | 196(Sn 9566) | 195(Sn 812) | 195 | 273 | |
196(Sn c21) | 191(Sn s7) |
Type | BMP2 (%) | T72 (%) | BTR60 (%) | T62 (%) |
---|---|---|---|---|
BMP2 | 94.1 | 4.8 | 0.3 | 0.8 |
T72 | 4.4 | 74.1 | 0.8 | 20.8 |
BTR60 | 0 | 0.5 | 99.5 | 0 |
T62 | 0 | 0 | 0. | 100 |
Total (%) | 90.4 |
Method | KNN | SVM | IGT | TJSR(1) | TJSR(2) | WTJSR |
---|---|---|---|---|---|---|
EOC-1 (%) | 79 | 81 | 85 | 88 | 90 | 93 |
EOC-2 (%) | 86 | 85 | 88 | 87 | 89 | 90 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Wang, M.; Cao, Z.; Pi, Y. SAR Image Recognition with Monogenic Scale Selection-Based Weighted Multi-task Joint Sparse Representation. Remote Sens. 2018, 10, 504. https://doi.org/10.3390/rs10040504
Zhou Z, Wang M, Cao Z, Pi Y. SAR Image Recognition with Monogenic Scale Selection-Based Weighted Multi-task Joint Sparse Representation. Remote Sensing. 2018; 10(4):504. https://doi.org/10.3390/rs10040504
Chicago/Turabian StyleZhou, Zhi, Ming Wang, Zongjie Cao, and Yiming Pi. 2018. "SAR Image Recognition with Monogenic Scale Selection-Based Weighted Multi-task Joint Sparse Representation" Remote Sensing 10, no. 4: 504. https://doi.org/10.3390/rs10040504
APA StyleZhou, Z., Wang, M., Cao, Z., & Pi, Y. (2018). SAR Image Recognition with Monogenic Scale Selection-Based Weighted Multi-task Joint Sparse Representation. Remote Sensing, 10(4), 504. https://doi.org/10.3390/rs10040504