Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams
"> Figure 1
<p>Geographical distribution of the multi-GNSS Experiment (MGEX) network and their supported navigation satellite constellations.</p> "> Figure 2
<p>RMS (root-mean-square) values of the differences between IGS-RT orbits (CLK01, CLK81, CLK92, GFZC2, and GFZD2) and GeoForschungsZentrum (GFZ) final orbits for the four systems (i.e., Global Positioning System (GPS), Russian Global Navigation Satellite System (GLONASS), Galileo, and BDS) in the along (<b>a</b>), cross (<b>b</b>) and radial (<b>c</b>) components, respectively.</p> "> Figure 3
<p>Averaged RMS values of the differences between IGS-RT orbits and GFZ final orbits for GPS, GLONASS, Galileo, and BDS satellites in the along (<b>a</b>), cross (<b>b</b>), and radial (<b>c</b>) components, respectively.</p> "> Figure 3 Cont.
<p>Averaged RMS values of the differences between IGS-RT orbits and GFZ final orbits for GPS, GLONASS, Galileo, and BDS satellites in the along (<b>a</b>), cross (<b>b</b>), and radial (<b>c</b>) components, respectively.</p> "> Figure 4
<p>STD values of differences between IGS-RT clocks and the GFZ final clocks for each satellite from GPS (<b>a</b>), GLONASS (<b>b</b>), BDS and Galileo (<b>c</b>).</p> "> Figure 4 Cont.
<p>STD values of differences between IGS-RT clocks and the GFZ final clocks for each satellite from GPS (<b>a</b>), GLONASS (<b>b</b>), BDS and Galileo (<b>c</b>).</p> "> Figure 5
<p>The averaged STD values of the differences between the IGS-RT clocks and the reference for GPS, GLONASS, Galileo, and BDS.</p> "> Figure 6
<p>RT ZTD estimates at station ONS1 derived from the GPS-only (“GPS”, <b>a</b>), the combined GPS/GLONASS (“G/R”, <b>b</b>), and the combined GPS/GLONASS/Galileo/BDS (“G/R/E/C”, <b>c</b>) solutions in fixing coordinate (left panels) and kinematic processing (right panels) modes by employing different IGS-RT service over the first 2 h of DOY 090, 2017.</p> "> Figure 7
<p>Averaged initialization time for all stations from the GPS-only, the combined GPS/GLONASS, and the combined GPS/GLONASS/Galileo/BDS four-system solutions with different IGS-RT service in the fixing coordinate modes.</p> "> Figure 8
<p>Differences of the RT ZTD in the fixing coordinate mode, derived from the GPS-only (<b>a</b>), the combined GPS/GLONSS (<b>b</b>), and the combined GPS/GLONASS/Galileo/BDS (<b>c</b>) solutions, with the USNO final troposphere products on DOY 090, 2017 at station ONS1.</p> "> Figure 9
<p>Differences of the RT ZTD in the kinematic mode, derived from the GPS-only (<b>a</b>), the combined GPS/GLONSS (<b>b</b>), and the combined GPS/GLONASS/Galileo/BDS (<b>c</b>) solutions, with the USNO final troposphere products on DOY 090, 2017 at station ONS1.</p> "> Figure 10
<p>RMS values of the ZTD differences from the GPS-only (“G”), the combined GPS/GLONASS (“G/R”), and the combined GPS/GLONASS/Galileo/BDS (“G/R/E/C”) solutions in the fixing coordinate (<b>a</b>) and the kinematic (<b>b</b>) modes with respect to the USNO final tropospheric products at station ONS1 on DOY 092, 2017.</p> "> Figure 11
<p>Averaged RMS and STD values of the RT ZTD differences for all stations during the whole period (DOY 84-101, 2017) in both the fixing coordinate (<b>a</b>) and the kinematic modes (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Multi-GNSS ZTD Estimation in Real-Time
3. Multi-GNSS Data and Products
3.1. Multi-GNSS Orbit and Clock Products from IGS RTS
3.2. Multi-GNSS Data
4. Results and Validations
4.1. Assessment of IGS-RT Orbit and Clock Products
4.2. ZTD Validation with the Final Tropospheric Products
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Niell, A.E.; Coster, A.J.; Solheim, F.S.; Mendes, V.B.; Toor, P.C.; Langley, R.B.; Upham, C.A. Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J. Atmos. Ocean. Technol. 2001, 18, 830–850. [Google Scholar] [CrossRef]
- Teke, K.; Böhm, J.; Nilsson, T.; Schuh, H.; Steigenberger, P.; Dach, R.; Heinkelmann, R.; Willis, P.; Haas, R.; Espada, S.G.; et al. Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J. Geodesy 2011, 85, 395–413. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R. GPS meteorology: Remote sensing of atmospheric water vapor using GPS. J. Geophys. Res. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Rocken, C.; Van Hove, T.; Ware, R.H. Near real-time GPS sensing of atmospheric water vapor. Geophys. Res. Lett. 1997, 24, 3221–3224. [Google Scholar] [CrossRef]
- Fang, P.; Bevis, M.; Bock, Y.; Gutman, S.; Wolfe, D. GPS meteorology: Reducing systematic errors in geodetic estimates for zenith delay. Geophys. Res. Lett. 1998, 25, 3583–3586. [Google Scholar] [CrossRef]
- Gendt, G.; Dick, G.; Reigber, C.; Tomassini, M.; Liu, Y.; Ramatschi, M. Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J. Meteorol. Soc. Jpn. 2004, 82, 361–370. [Google Scholar] [CrossRef]
- Li, X.; Dick, G.; Ge, M.; Heise, S.; Wickert, J.; Bender, M. Real-time GPS sensing of atmospheric water vapor: Precise point positioning with orbit, clock and phase delay corrections. Geophys. Res. Lett. 2014, 41, 3615–3621. [Google Scholar] [CrossRef]
- Lu, C.; Li, X.; Nilsson, T.; Ning, T.; Heinkelmann, R.; Ge, M.; Glaser, S.; Schuh, H. Real-time retrieval of precipitable water vapor from GPS and BeiDou observations. J. Geodesy 2015, 89, 843–856. [Google Scholar] [CrossRef]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Li, X.; Ge, M.; Zhang, H.; Wickert, J. A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. J. Geodesy 2013, 87, 405–416. [Google Scholar] [CrossRef]
- Dousa, J.; Vaclavovic, P. Real-time zenith tropospheric delays in support of numerical weather prediction applications. Adv. Space Res. 2014, 53, 1347–1358. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, K.; Rohm, W.; Choy, S.; Norman, R.; Wang, C.S. Real-time retrieval of precipitable water vapor from GPS Precise Point Positioning. J. Geophys. Res. Atmos. 2014, 119, 10044–10057. [Google Scholar] [CrossRef]
- Real-Time PPP Demonstration Campaign. Available online: http://www.pecny.cz/COST/RT-TROPO/about.php (accessed on 1 April 2015).
- Montenbruck, O.; Steigenberger, P.; Khachikyan, R.; Weber, G.; Langley, R.B.; Mervart, L.; Hugentobler, U. IGS-MGEX: Preparing the ground for multi-constellation GNSS science. Inside GNSS 2014, 9, 42–49. [Google Scholar]
- Li, X.; Dick, G.; Lu, C.; Ge, M.; Nilsson, T.; Ning, T.; Wickert, J.; Schuh, H. Multi-GNSS meteorology: Real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations. IEEE Trans. Geosci. Remote Sens. 2015, 99, 1–9. [Google Scholar] [CrossRef]
- Ding, W.; Teferle, F.N.; Kazmierski, K.; Laurichesse, D.; Yuan, Y. An evaluation of real-time troposphere estimation based on GNSS Precise Point Positioning. J. Geophys. Res. Atmos. 2017, 122. [Google Scholar] [CrossRef]
- Laurichesse, D. The CNES real-time PPP with un-differenced integer ambiguity resolution demonstrator. In Proceedings of the ION GNSS 2011, Portland, OR, USA, 19–23 September 2011. [Google Scholar]
- Kouba, J. A Guide to Using International GNSS Service (IGS) Products. 2009. Available online: http://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf (accessed on 30 April 2009).
- Zhang, X.; Li, X.; Guo, F. Satellite clock estimation at 1 Hz for realtime kinematic PPP applications. GPS Solut. 2012, 15, 315–324. [Google Scholar] [CrossRef]
- Dach, R.; Schaer, S.; Hugentobler, U. Combined multi-system GNSS analysis for time and frequency transfer. In Proceedings of the European Frequency Time Forum, Braunschweig, Germany, 27–30 March 2006. [Google Scholar]
- David, A. Maximum likelihood approaches to variance component estimation and to related problems. J. Am. Stat. Assoc. 1997, 72, 320–338. [Google Scholar]
- Böhm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global mapping function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33, L07304. [Google Scholar] [CrossRef]
- Saastamoinen, J. Contributions to the theory of atmospheric refraction—Part II. Refraction corrections in satellite geodesy. Bull. Géodésique 1973, 47, 13–34. [Google Scholar] [CrossRef]
- Li, X.; Zus, F.; Lu, C.; Ning, T.; Dick, G.; Ge, M.; Wickert, J.; Schuh, H. Retrieving high-resolution tropospheric gradients from multiconstellation GNSS observations. Geophys. Res. Lett. 2015, 42, 4173–4181. [Google Scholar] [CrossRef]
- Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- GNSS Data Center. Available online: http://igs.bkg.bund.de/ntrip/download (accessed on 15 March 2008).
- Elsobeiey, M.; Al-Harbi, S. Performance of real-time precise point positioning using IGS real-time service. GPS Solut. 2016, 20, 565–571. [Google Scholar] [CrossRef]
- IGS MGEX. Available online: http://igs.org/mgex (accessed on 25 October 2012).
- Zhao, Q.; Guo, J.; Li, M.; Qu, L.; Hu, Z.; Shi, C.; Liu, J. Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J. Geodesy 2013, 5, 475–486. [Google Scholar] [CrossRef]
- Steigenberger, P.; Hugentobler, U.; Loyer, S. Galileo orbit and clock quality of the IGS Multi-GNSS Experiment. Adv. Space Res. 2015, 55, 269–281. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—Achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hauschild, A.; Steigenberger, P.; Hugentobler, U.; Teunissen, P.; Nakamura, S. Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut. 2012, 17, 211–222. [Google Scholar] [CrossRef]
- Dach, R.; Hugentobler, U.; Fridez, P.; Meindl, M. Bernese GPS Software Version 5.0; Astronomical Institute, University of Bern: Bern, Switzerland, 2007. [Google Scholar]
- Offiler, D. Product Requirements Document Version 1.0—21 December 2010; EIG EUMETNET GNSS Water Vapour Programme (EGVAP-II); Met Office: Exeter, UK, 2010. [Google Scholar]
Item | Strategies |
---|---|
Estimator | All multi-GNSS observations are processed together in one sequential least square estimator. |
Sources of satellite orbits & clocks | As shown in Table 2 |
Observations | Carrier phase and pseudorange observations; GPS + GLONASS + Galileo + BDS, about 80 navigation satellites |
Signal selection | GPS: L1/L2; GLONASS: L1/L2; Galileo: E1/E5a; BDS: B1/B2 |
Sampling rate | 5 s |
Elevation cutoff | 7° |
Weight for observations | The variance component estimation weighting method |
Satellite orbit | Fixed |
Satellite clock | Fixed |
Zenith Tropospheric delay | Initial model (ZHD estimated using Saastamoinen model based on GPT2) + random-walk process (process noise: 5 mm/h1/2) |
Tropospheric gradients | No |
Mapping function | Global Mapping Function (GMF) |
Phase-windup effect | Corrected |
Receiver clock | Estimated, white noise |
ISB and IFB | Estimated as constant, GPS as reference |
Station displacement | Solid Earth tide, pole tide, ocean tide loading, IERS Convention 2010 |
Satellite antenna phase center | Corrected using MGEX and IGS values |
Receiver antenna phase center | Corrected |
Station coordinate | Fixed to coordinates of weekly solution/kinematic estimated |
Phase ambiguities | Constant for each continuous arc, without ambiguity resolution |
IGS RTS | Reference Point | GNSS | Analysis Center |
---|---|---|---|
IGS01 | APC | GPS | SE Combination |
IGS02 | APC | GPS | KF Combination |
IGS03 | APC | GPS/GLO | KF Combination |
CLK70 | APC | GPS | GFZ |
CLK01 | APC | GPS/GLO | BKG |
CLK21 | APC | GPS/GLO | DLR/GSOC |
CLK16 | APC | GPS | WUHAN |
CLK81 | APC | GPS/GLO | GMV |
CLK92 | CM | GPS/GLO/GAL/BDS | CNES |
GFZC2 | APC | GPS/GLO/GAL/BDS | GFZ |
GFZD2 | APC | GPS/GLO/GAL/BDS | GFZ |
IGS-RT Service | TYPE | Along (cm) | Cross (cm) | Radial (cm) |
---|---|---|---|---|
CLK01 | GPS | 4.00 | 2.12 | 1.34 |
GLONASS | 9.15 | 4.30 | 2.99 | |
CLK81 | GPS | 6.46 | 3.65 | 1.83 |
GLONASS | 8.70 | 6.06 | 2.83 | |
CLK92 | GPS | 6.54 | 6.34 | 3.00 |
GLONASS | 9.69 | 7.81 | 2.99 | |
Galileo | 8.31 | 4.66 | 2.68 | |
BDS GEO | 59.79 | 43.33 | 28.97 | |
BDS IGSO | 50.22 | 24.74 | 16.58 | |
BDS MEO | 17.13 | 9.68 | 4.48 | |
GFZC2 | GPS | 15.13 | 12.92 | 5.61 |
GLONASS | 19.50 | 13.67 | 5.85 | |
Galileo | 29.56 | 13.67 | 9.44 | |
BDS GEO | 65.83 | 12.90 | 14.63 | |
BDS IGSO | 22.02 | 40.96 | 25.28 | |
BDS MEO | 34.05 | 17.23 | 7.23 | |
GFZD2 | GPS | 10.56 | 9.77 | 3.89 |
GLONASS | 13.68 | 9.57 | 4.04 | |
Galileo | 14.31 | 13.60 | 8.56 | |
BDS GEO | 60.37 | 15.70 | 14.47 | |
BDS IGSO | 24.98 | 27.54 | 10.48 | |
BDS MEO | 16.00 | 10.95 | 4.40 |
Solution | CLK01 (s) | CLK81 (s) | CLK92 (s) | GFZC2 (s) | GFZD2 (s) |
---|---|---|---|---|---|
GPS | 588 | 600 | 570 | 522 | 540 |
GPS/GLONASS | 540 | 552 | 522 | 492 | 510 |
GPS/GLONASS/Galileo/BDS | - | - | 510 | 480 | 498 |
IGS Service | Solution | Fix Coordinate Mode | Kinematic Mode | ||
---|---|---|---|---|---|
RMS | STD | RMS | STD | ||
CLK01 | G | 9.80 | 5.78 | 18.21 | 18.00 |
G/R | 8.92 | 4.83 | 14.31 | 13.66 | |
CLK81 | G | 13.61 | 12.73 | 33.50 | 32.97 |
G/R | 11.39 | 10.44 | 25.57 | 25.21 | |
CLK92 | G | 7.70 | 4.85 | 17.94 | 17.13 |
G/R | 6.18 | 3.46 | 14.64 | 13.01 | |
G/R/E/C | 6.16 | 3.45 | 14.39 | 12.70 | |
GFZC2 | G | 6.50 | 5.32 | 14.73 | 14.11 |
G/R | 5.04 | 3.94 | 13.57 | 13.45 | |
G/R/E/C | 5.06 | 3.97 | 13.74 | 12.60 | |
GFZD2 | G | 10.81 | 10.84 | 23.40 | 23.41 |
G/R | 9.67 | 9.69 | 20.40 | 21.42 | |
G/R/E/C | 9.46 | 9.48 | 20.32 | 21.32 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.; Chen, X.; Liu, G.; Dick, G.; Wickert, J.; Jiang, X.; Zheng, K.; Schuh, H. Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams. Remote Sens. 2017, 9, 1317. https://doi.org/10.3390/rs9121317
Lu C, Chen X, Liu G, Dick G, Wickert J, Jiang X, Zheng K, Schuh H. Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams. Remote Sensing. 2017; 9(12):1317. https://doi.org/10.3390/rs9121317
Chicago/Turabian StyleLu, Cuixian, Xinghan Chen, Gen Liu, Galina Dick, Jens Wickert, Xinyuan Jiang, Kai Zheng, and Harald Schuh. 2017. "Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams" Remote Sensing 9, no. 12: 1317. https://doi.org/10.3390/rs9121317
APA StyleLu, C., Chen, X., Liu, G., Dick, G., Wickert, J., Jiang, X., Zheng, K., & Schuh, H. (2017). Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams. Remote Sensing, 9(12), 1317. https://doi.org/10.3390/rs9121317