Soil Moisture Data Assimilation in a Hydrological Model: A Case Study in Belgium Using Large-Scale Satellite Data
"> Figure 1
<p>Diagram of the SCHEME model. Model parameters: (1) <math display="inline"> <semantics> <msub> <mi>W</mi> <mn>0</mn> </msub> </semantics> </math>, threshold value for upper soil reservoir; (2) scr(4), seasonal runoff coefficients; (3) <math display="inline"> <semantics> <mi>μ</mi> </semantics> </math>, redirection coefficient for surface flow; (4) a, b and c, parameters describing a unit hydrograph; (5) <math display="inline"> <semantics> <msub> <mi>α</mi> <mn>1</mn> </msub> </semantics> </math> and <math display="inline"> <semantics> <msub> <mi>α</mi> <mn>2</mn> </msub> </semantics> </math>, recession coefficients of the underground reservoirs; (6) v and D, routing module parameters.</p> "> Figure 2
<p><b>Left panel:</b> The Meuse and the Scheldt River Basins, including the Demer catchment. <b>Right panel:</b> Topographic details and elevation data in meters in the Demer catchment. The small red square is the catchment outlet.</p> "> Figure 3
<p>Bias for the surface soil moisture product H07, based on data from June 2009–May 2013. The original raw data are also shown.</p> "> Figure 4
<p>Probability distribution of surface soil moisture values, based on simulation data with the SCHEME model, from January 1966–December 1995. The bins subdivide the interval formed by the whole dataset into ten equal parts.</p> "> Figure 5
<p>Probability distribution of surface soil moisture standard deviation values, based on simulation data with the SCHEME model, from January 1966–December 1995. The bins subdivide the standard deviation intervals corresponding to each soil moisture class into ten equal parts.</p> "> Figure 6
<p>Hydrological data and model output for the period June 2013–May 2014. From top to bottom: precipitation, soil moisture in the upper layer, soil moisture in the lower layer, streamflow with data assimilation only and streamflow with data assimilation and bias correction.</p> "> Figure 7
<p>Hydrological data and model output for the period June 2014–May 2015. From top to bottom: precipitation, soil moisture in the upper layer, soil moisture in the lower layer, streamflow with data assimilation only and streamflow with data assimilation and bias correction.</p> "> Figure 8
<p>Hydrological data and model output for the period June 2015–May 2016. From top to bottom: precipitation, soil moisture in the upper layer, soil moisture in the lower layer, streamflow with data assimilation only and streamflow with data assimilation and bias correction.</p> "> Figure 9
<p>Streamflow for the period 20 February 2014–6 May 2014.</p> "> Figure 10
<p>Streamflow for the period 20 September 2014–10 November 2014.</p> "> Figure 11
<p>Areal average for the lower soil layer moisture of the SCHEME model and the H-SAF product H14, over three successive years (1 June 2013–31 May 2016). The SCHEME model output is given originally as the degree of saturation (%), while H14 is in volumetric units (m<sup>3</sup>/m<sup>3</sup>). A rescaling has been applied in both time series for this comparison.</p> "> Figure 11 Cont.
<p>Areal average for the lower soil layer moisture of the SCHEME model and the H-SAF product H14, over three successive years (1 June 2013–31 May 2016). The SCHEME model output is given originally as the degree of saturation (%), while H14 is in volumetric units (m<sup>3</sup>/m<sup>3</sup>). A rescaling has been applied in both time series for this comparison.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Model Description
2.2. Assimilation Methodology
2.2.1. General Context
2.2.2. Bounded Variables
2.2.3. Non-Linear Processes
3. Study Area and Data
4. Simulations and Results
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SSM | Surface Soil Moisture |
EUMETSAT | European Organization for the Exploitation of Meteorological Satellites |
H-SAF | Satellite Application Facility on Support to Operational Hydrology and Water Management |
ASCAT | Advanced Scatterometer |
MetOp | Meteorological Operational Satellites |
EnKF | Ensemble Kalman Filter |
SSM/I | Special Sensor Microwave Imager |
TRMM-TMI | Tropical Rainfall Measuring Mission Microwave Imager |
AMSR-E | Advanced Microwave Scanning Radiometer-Earth Observing System |
NASA | National Aeronautics and Space Administration |
SMOS | Soil Moisture and Ocean Salinity |
ESA | European Space Agency |
SMAP | Soil Moisture Active Passive |
LPRM | Land Parameter Retrieval Model |
HydroAlgo | Hydrological Algorithm |
CDF | Cumulative Distribution Function |
SCHEME | SCHEldt-MEuse hydrological model |
PDM | Probability Distributed Model |
TOPMODEL | TOPography-based hydrological MODEL |
ANN | Artificial Neural Networks |
ERS | European Remote-Sensing Satellite |
IFOV | Instantaneous Field Of View |
DA | Data Assimilation |
DA-BC | Data Assimilation and Bias Correction |
A-Bias | Absolute Bias |
RMSE | Root Mean Square Error |
NSE | Nash–Sutcliffe Efficiency coefficient |
References
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]
- Albergel, C.; de Rosnay, P.; Balsamo, G.; Isaksen, L.; Muñoz-Sabater, J. Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations. J. Hydrometeorol. 2012, 13, 1442–1460. [Google Scholar] [CrossRef]
- Njoku, E.; Chan, S. Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens. Environ. 2006, 100, 190–199. [Google Scholar] [CrossRef]
- Koike, T.; Nakamura, Y.; Kaihotsu, I.; Davva, G.; Matsuura, N.; Tamagawa, K.; Fujii, H. Development of an Advanced Microwave Scanning Radiometer (AMSR-E) algorithm of soil moisture and vegetation water content. Annu. J. Hydraul. Eng. Jpn. Soc. Civ. Eng. 2004, 48, 217–222. [Google Scholar] [CrossRef]
- Kerr, Y.; Waldteufel, P.; Richaume, P.; Wigneron, J.-P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.; et al. The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active and Passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson, C. Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34, L20401. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. 2008, 113, F01002. [Google Scholar] [CrossRef]
- Santi, E.; Pettinato, S.; Paloscia, S.; Pampaloni, P.; Macelloni, G.; Brogioni, M. An algorithm for generating soil moisture and snow depth maps from microwave spaceborne radiometers: HydroAlgo. Hydrol. Earth Syst. Sci. 2012, 16, 3659–3676. [Google Scholar] [CrossRef]
- Wanders, N.; Karssenberg, D.; de Roo, A.; de Jong, S.M.; Bierkens, M.F.P. The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrol. Earth Syst. Sci. 2014, 18, 2343–2357. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Ryu, D.; Western, A.W.; Su, C.-H.; Crow, W.T.; Robertson, D.E.; Leahy, C. Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: Comparison between lumped and semi-distributed schemes. Hydrol. Earth Syst. Sci. 2015, 19, 1659–1676. [Google Scholar] [CrossRef]
- Brocca, L.; Moramarco, T.; Melone, F.; Wagner, W.; Hasenauer, S.; Hahn, S. Assimilation of Surface- and Root-Zone ASCAT Soil Moisture Products Into Rainfall-Runoff Modeling. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2542–2555. [Google Scholar] [CrossRef]
- Chen, F.; Crow, W.T.; Starks, P.J.; Moriasi, D.N. Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture. Adv. Water Resour. 2011, 34, 526–536. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Wagner, W.; Naeimi, V.; Bartalis, Z.; Hasenauer, S. Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol. Earth Syst. Sci. 2010, 14, 1881–1893. [Google Scholar] [CrossRef]
- Pauwels, V.R.N.; Hoeben, R.; Verhoest, N.E.C.; De Troch, F.P.; Troch, P.A. Improvement of TOPLATS-based discharge predictions through assimilation of ERS-based remotely sensed soil moisture values. Hydrol. Processes 2002, 16, 995–1013. [Google Scholar] [CrossRef]
- Massari, C.; Brocca, L.; Ciabatta, L.; Moramarco, T.; Gabellani, S.; Albergel, C.; De Rosnay, P.; Puca, S.; Wagner, W. The Use of H-SAF Soil Moisture Products for Operational Hydrology: Flood Modelling over Italy. Hydrology 2015, 2, 2–22. [Google Scholar] [CrossRef]
- Crow, W.; Bindlish, R.; Jackson, T. The added value of spaceborne passive microwave soil moisture retrievals for forecasting rainfall–runoff partitioning. Geophys. Res. Lett. 2005, 32, L18401. [Google Scholar] [CrossRef]
- Jackson, T.J.; Cosh, M.H.; Bindlish, R.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Goodrich, D.C.; Moran, M.S.; Du, J. Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4256–4272. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D. Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 2004, 31, L19501. [Google Scholar] [CrossRef]
- Matgen, P.; Heitz, S.; Hasenauer, S.; Hissler, C.; Brocca, L.; Hoffmann, L.; Wagner, W.; Savenije, H.H.G. On the potential of MetOp ASCAT-derived soil wetness indices as a new aperture for hydrological monitoring and prediction: A field evaluation over Luxembourg. Hydrol. Process. 2012, 26, 2346–2359. [Google Scholar]
- Alvarez-Garreton, C.; Ryu, D.; Western, A.W.; Crow, W.T.; Robertson, D.E. The impacts of assimilating satellite soil moisture into a rainfall-runoff model in a semi-arid catchment. J. Hydrol. 2014, 519, 2763–2774. [Google Scholar] [CrossRef]
- Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martínez-Fernández, J.; Llorens, P.; et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ. 2011, 115, 3390–3408. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Scipal, K.; Parinussa, R.M.; Liu, Y.Y.; Wagner, W.; de Jeu, R.A.M.; Naeimi, V. Error characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci. 2010, 14, 2605–2616. [Google Scholar] [CrossRef] [Green Version]
- Su, C.-H.; Ryu, D.; Western, A.W.; Wagner, W. De-noising of passive and active microwave satellite soil moisture time series. Geophys. Res. Lett. 2013, 40, 3624–3630. [Google Scholar] [CrossRef]
- Massari, C.; Brocca, L.; Tarpanelli, A.; Moramarco, T. Data Assimilation of Satellite Soil Moisture into Rainfall-Runoff Modelling: A Complex Recipe? Remote Sens. 2015, 7, 11403–11433. [Google Scholar] [CrossRef]
- Evensen, G. The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn. 2003, 53, 343–367. [Google Scholar] [CrossRef]
- Burgers, G.; van Leeuwen, P.J.; Evensen, G. Analysis Scheme in the Ensemble Kalman Filter. Mon. Weather Rev. 1998, 126, 1719–1724. [Google Scholar] [CrossRef]
- Reichle, R.H.; McLaughlin, D.B.; Entekhabi, D. Hydrologic Data Assimilation with the Ensemble Kalman Filter. Mon. Weather Rev. 2002, 130, 103–114. [Google Scholar] [CrossRef]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- De Lannoy, G.J.M.; Houser, P.R.; Pauwels, V.R.N.; Verhoest, N.E.C. Assessment of model uncertainty for soil moisture through ensemble verification. J. Geophys. Res. 2006, 111, 1–18. [Google Scholar] [CrossRef]
- Ryu, D.; Crow, W.T.; Zhan, X.; Jackson, T.J. Correcting Unintended Perturbation Biases in Hydrologic Data Assimilation. J. Hydrometeorol. 2009, 10, 734–750. [Google Scholar] [CrossRef]
- De Lannoy, G.J.M.; Reichle, R.H.; Houser, P.R.; Pauwels, V.R.N.; Verhoest, N.E.C. Correcting for forecast bias in soil moisture assimilation with the Ensemble Kalman filter. Water Resour. Res. 2007, 43, W09410. [Google Scholar] [CrossRef]
- Turner, M.R.J.; Walker, J.P.; Oke, P.R. Ensemble member generation for sequential data assimilation. Remote Sens. Environ. 2008, 112, 1421–1433. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Borgeaud, M.; Rott, H. A study of vegetation cover effects on ERS scatterometer data. IEEE Trans. Geosci. Remote Sens. 1999, 37, 938–948. [Google Scholar] [CrossRef]
- Albergel, C.; Rüdiger, C.; Carrer, D.; Calvet, J.-C.; Fritz, N.; Naeimi, V.; Bartalis, Z.; Hasenauer, S. An evaluation of ASCAT surface soil moisture products with in situ observations in Southwestern France. Hydrol. Earth Syst. Sci. 2009, 13, 115–124. [Google Scholar] [CrossRef]
- Brocca, L.; Crow, W.T.; Ciabatta, L.; Massari, C.; de Rosnay, P.; Enenkel, M.; Hahn, S.; Amarnath, G.; Camici, S.; Tarpanelli, A.; et al. A Review of the Applications of ASCAT Soil Moisture Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2285–2306. [Google Scholar] [CrossRef]
- Paulik, C.; Dorigo, W.; Wagner, W.; Kidd, R. Validation of the ASCAT Soil Water Index using in situ data from the International Soil Moisture Network. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 1–18. [Google Scholar] [CrossRef]
- Bultot, F.; Dupriez, G. Conceptual hydrological model for an average-sized catchment area. J. Hydrol. 1976, 29, 251–292. [Google Scholar] [CrossRef]
- Gellens, D.; Roulin, E. Streamflow response of Belgian catchments to IPCC climate change scenarios. J. Hydrol. 1998, 210, 242–258. [Google Scholar] [CrossRef]
- Bultot, F.; Coppens, A.; Dupriez, G.; Gellens, D.; Meulenberghs, F. Repercussions of a CO2 doubling on the water cycle and on the water balance—A case study for Belgium. J. Hydrol. 1988, 99, 319–347. [Google Scholar] [CrossRef]
- Bultot, F.; Gellens, D.; Spreafico, M.; Schädler, B. Repercussions of a CO2 doubling on the water balance—A case study in Switzerland. J. Hydrol. 1992, 137, 199–208. [Google Scholar] [CrossRef]
- Gellens, D.; Barbieux, K.; Schädler, B.; Roulin, E.; Aschwanden, H.; Gellens-Meulenberghs, F. Snow Cover Modelling as a Tool for Climate Change Assessment in a Swiss Alpine Catchment. Hydrol. Res. 2000, 31, 73–88. [Google Scholar]
- Roulin, E.; Vannitsem, S. Skill of medium-range hydrological ensemble predictions. J. Hydrometeorol. 2005, 6, 729–744. [Google Scholar] [CrossRef]
- Van den Bergh, J.; Roulin, E. Postprocessing of Medium Range Hydrological Ensemble Forecasts Making Use of Reforecasts. Hydrology 2016, 3, 21. [Google Scholar] [CrossRef]
- Naden, P.S. Spatial variability in flood estimation for large catchments: The exploitation of channel network structure. Hydrol. Sci. J. 1992, 37, 53–71. [Google Scholar] [CrossRef]
- Moore, R.J. The PDM rainfall-runoff model. Hydrol. Earth Syst. Sci. 2007, 11, 483–499. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimisation method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Goodman, P.; Harrell, F.E. Neural Networks: Advantages and Limitations for Statistical Modeling. In Proceedings of the Biometrics Section, Joint Statistical Meeting, American Statistical Association, Alexandria, VA, USA, 8–10 August 1998. [Google Scholar]
- European Communities (EC). Soil Map of the European Communities at 1:1,000,000; EC: Luxembourg, 1985; p. 124. [Google Scholar]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Chapman & Hall, Inc.: New York, NY, USA, 1993; ISBN 0412042312. [Google Scholar]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; John Wiley: New York, NY, USA, 1994; Volume 1, ISBN 0471584959. [Google Scholar]
- Paris Anguela, T.; Zribi, M.; Hasenauer, S.; Habets, F.; Loumagne, C. Analysis of surface and root-zone soil moisture dynamics with ERS scatterometer and the hydrometeorological model SAFRAN-ISBA-MODCOU at Grand Morin watershed (France). Hydrol. Earth Syst. Sci. 2008, 12, 1415–1424. [Google Scholar] [CrossRef] [Green Version]
- Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An Improved Soil Moisture Retrieval Algorithm for ERS and METOP Scatterometer Observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1999–2013. [Google Scholar] [CrossRef]
- De Rosnay, P.; Drusch, M.; Vasiljevic, D.; Balsamo, G.; Albergel, C.; Isaksen, L. A simplified Extended Kalman Filter for the global operational soil moisture analysis at ECMWF. Q. J. R. Meteorol. Soc. 2013, 139, 1199–1213. [Google Scholar] [CrossRef]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Pappenberger, F.; de Rosnay, P.; et al. ERA-Interim/Land: A Global Land-Surface Reanalysis Based on ERA-Interim Meteorological Forcing; ERA Report Series; ECMWF: Reading, UK, 2012; Volume 13, pp. 1–25. [Google Scholar]
Bias | A-Bias | RMSE | R | NSE | |
---|---|---|---|---|---|
Reference simulation | −0.077 | 0.130 | 0.176 | 0.938 | 0.848 |
Ensemble mean DA | 0.062 | 0.111 | 0.171 | 0.943 | 0.856 |
Ensemble mean DA-BC | −0.039 | 0.114 | 0.159 | 0.946 | 0.876 |
Bias | A-Bias | RMSE | R | NSE | |
---|---|---|---|---|---|
Reference simulation | |||||
Annual | −0.094 | 0.116 | 0.138 | 0.940 | 0.769 |
Summer 2013 | −0.074 | 0.087 | 0.107 | 0.817 | 0.359 |
Autumn 2013 | −0.075 | 0.096 | 0.119 | 0.958 | 0.856 |
Winter 2013–2014 | −0.101 | 0.147 | 0.170 | 0.946 | 0.763 |
Spring 2014 | −0.126 | 0.136 | 0.147 | 0.706 | −1.310 |
Ensemble mean DA | |||||
Annual | 0.017 | 0.068 | 0.105 | 0.952 | 0.866 |
Summer 2013 | −0.020 | 0.059 | 0.090 | 0.788 | 0.539 |
Autumn 2013 | 0.017 | 0.062 | 0.077 | 0.971 | 0.939 |
Winter 2013–2014 | 0.056 | 0.087 | 0.141 | 0.959 | 0.836 |
Spring 2014 | 0.019 | 0.065 | 0.099 | 0.764 | −0.060 |
Ensemble mean DA-BC | |||||
Annual | −0.068 | 0.099 | 0.121 | 0.947 | 0.821 |
Summer 2013 | −0.075 | 0.089 | 0.109 | 0.808 | 0.332 |
Autumn 2013 | −0.053 | 0.078 | 0.094 | 0.968 | 0.909 |
Winter 2013–2014 | −0.043 | 0.117 | 0.150 | 0.945 | 0.816 |
Spring 2014 | −0.100 | 0.111 | 0.125 | 0.721 | −0.672 |
Bias | A-Bias | RMSE | R | NSE | |
---|---|---|---|---|---|
Reference simulation | |||||
Annual | −0.052 | 0.133 | 0.192 | 0.927 | 0.831 |
Summer 2014 | 0.001 | 0.165 | 0.239 | 0.930 | 0.739 |
Autumn 2014 | −0.043 | 0.091 | 0.126 | 0.758 | 0.508 |
Winter 2014–2015 | −0.054 | 0.158 | 0.215 | 0.926 | 0.840 |
Spring 2015 | −0.109 | 0.119 | 0.167 | 0.928 | 0.729 |
Ensemble mean DA | |||||
Annual | 0.102 | 0.149 | 0.224 | 0.920 | 0.770 |
Summer 2014 | 0.189 | 0.208 | 0.326 | 0.935 | 0.512 |
Autumn 2014 | 0.145 | 0.156 | 0.185 | 0.786 | −0.056 |
Winter 2014–2015 | 0.035 | 0.146 | 0.212 | 0.929 | 0.846 |
Spring 2015 | 0.038 | 0.085 | 0.121 | 0.935 | 0.857 |
Ensemble mean DA-BC | |||||
Annual | −0.005 | 0.125 | 0.189 | 0.930 | 0.837 |
Summer 2014 | 0.036 | 0.170 | 0.252 | 0.932 | 0.707 |
Autumn 2014 | 0.007 | 0.079 | 0.111 | 0.791 | 0.623 |
Winter 2014–2015 | 0.007 | 0.153 | 0.216 | 0.925 | 0.839 |
Spring 2015 | −0.073 | 0.097 | 0.141 | 0.927 | 0.806 |
Bias | A-Bias | RMSE | R | NSE | |
---|---|---|---|---|---|
Reference simulation | |||||
Annual | −0.084 | 0.141 | 0.193 | 0.944 | 0.867 |
Summer 2015 | −0.043 | 0.125 | 0.160 | 0.777 | 0.461 |
Autumn 2015 | −0.074 | 0.094 | 0.125 | 0.886 | 0.667 |
Winter 2015–2016 | −0.195 | 0.221 | 0.272 | 0.950 | 0.802 |
Spring 2016 | −0.019 | 0.125 | 0.184 | 0.909 | 0.773 |
Ensemble mean DA | |||||
Annual | 0.065 | 0.116 | 0.164 | 0.959 | 0.904 |
Summer 2015 | 0.083 | 0.099 | 0.166 | 0.826 | 0.413 |
Autumn 2015 | 0.038 | 0.081 | 0.113 | 0.881 | 0.729 |
Winter 2015–2016 | 0.006 | 0.137 | 0.177 | 0.958 | 0.917 |
Spring 2016 | 0.140 | 0.151 | 0.190 | 0.949 | 0.758 |
Ensemble mean DA-BC | |||||
Annual | −0.045 | 0.118 | 0.160 | 0.957 | 0.909 |
Summer 2015 | −0.035 | 0.116 | 0.154 | 0.780 | 0.498 |
Autumn 2015 | −0.059 | 0.089 | 0.117 | 0.889 | 0.711 |
Winter 2015–2016 | −0.103 | 0.169 | 0.210 | 0.956 | 0.883 |
Spring 2016 | 0.021 | 0.096 | 0.143 | 0.939 | 0.862 |
Bias | A-Bias | RMSE | R | NSE | |
---|---|---|---|---|---|
Ensemble mean DA | Y+ | Y+ | N | N | N |
Ensemble mean DA-BC | Y+ | Y+ | Y+ | N | Y+ |
Bias | A-Bias | RMSE | R | NSE | |
---|---|---|---|---|---|
Ensemble mean DA | |||||
Annual | Y+ | Y+ | Y+ | N | Y+ |
Summer 2013 | Y+ | Y+ | N | N | N |
Autumn 2013 | Y+ | Y+ | Y+ | N | N |
Winter 2013–2014 | Y+ | Y+ | N | N | N |
Spring 2014 | Y+ | Y+ | Y+ | N | Y+ |
Ensemble mean DA-BC | |||||
Annual | Y+ | Y+ | Y+ | N | N |
Summer 2013 | N | N | N | N | N |
Autumn 2013 | Y+ | Y+ | Y+ | N | N |
Winter 2013–2014 | Y+ | Y+ | N | N | N |
Spring 2014 | Y+ | Y+ | Y+ | N | N |
Bias | A-Bias | RMSE | R | NSE | |
---|---|---|---|---|---|
Ensemble mean DA | |||||
Annual | Y- | N | Y- | N | Y- |
Summer 2014 | Y- | N | N | N | Y- |
Autumn 2014 | Y- | Y- | Y- | N | Y- |
Winter 2014–2015 | Y+ | N | N | N | N |
Spring 2015 | Y+ | Y+ | Y+ | N | Y+ |
Ensemble mean DA-BC | |||||
Annual | Y+ | N | N | N | N |
Summer 2014 | N | N | N | N | N |
Autumn 2014 | Y+ | N | N | N | N |
Winter 2014–2015 | Y+ | N | N | N | N |
Spring 2015 | Y+ | N | N | N | N |
Bias | A-Bias | RMSE | R | NSE | |
---|---|---|---|---|---|
Ensemble mean DA | |||||
Annual | Y+ | Y+ | Y+ | Y+ | Y+ |
Summer 2015 | Y- | N | N | N | N |
Autumn 2015 | Y+ | N | N | N | N |
Winter 2015–2016 | Y+ | Y+ | Y+ | N | Y+ |
Spring 2016 | Y- | Y- | N | N | N |
Ensemble mean DA-BC | |||||
Annual | Y+ | Y+ | Y+ | N | Y+ |
Summer 2015 | N | N | N | N | N |
Autumn 2015 | N | N | N | N | N |
Winter 2015–2016 | Y+ | Y+ | Y+ | N | Y+ |
Spring 2016 | Y0 | Y+ | Y+ | N | N |
Ref. Simulation | Ens. Mean DA | Ens. Mean DA-BC | |
---|---|---|---|
Bias | −0.141 | −0.010 | −0.105 |
A-Bias | 0.141 | 0.044 | 0.106 |
RMSE | 0.150 | 0.056 | 0.114 |
R | 0.871 | 0.881 | 0.892 |
NSE | −1.364 | 0.660 | −0.382 |
Ref. Simulation | Ens. Mean DA | Ens. Mean DA-BC | |
---|---|---|---|
Bias | −0.024 | 0.184 | 0.024 |
A-Bias | 0.070 | 0.184 | 0.067 |
RMSE | 0.085 | 0.205 | 0.082 |
R | 0.801 | 0.827 | 0.825 |
NSE | 0.607 | −1.277 | 0.636 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baguis, P.; Roulin, E. Soil Moisture Data Assimilation in a Hydrological Model: A Case Study in Belgium Using Large-Scale Satellite Data. Remote Sens. 2017, 9, 820. https://doi.org/10.3390/rs9080820
Baguis P, Roulin E. Soil Moisture Data Assimilation in a Hydrological Model: A Case Study in Belgium Using Large-Scale Satellite Data. Remote Sensing. 2017; 9(8):820. https://doi.org/10.3390/rs9080820
Chicago/Turabian StyleBaguis, Pierre, and Emmanuel Roulin. 2017. "Soil Moisture Data Assimilation in a Hydrological Model: A Case Study in Belgium Using Large-Scale Satellite Data" Remote Sensing 9, no. 8: 820. https://doi.org/10.3390/rs9080820
APA StyleBaguis, P., & Roulin, E. (2017). Soil Moisture Data Assimilation in a Hydrological Model: A Case Study in Belgium Using Large-Scale Satellite Data. Remote Sensing, 9(8), 820. https://doi.org/10.3390/rs9080820