Landsat 15-m Panchromatic-Assisted Downscaling (LPAD) of the 30-m Reflective Wavelength Bands to Sentinel-2 20-m Resolution
"> Figure 1
<p>Illustration of the 7.5 m row and column shifts that occur between the 15-m panchromatic (gray) and the 30-m reflective band (red) Landsat-8 pixels.</p> "> Figure 2
<p>40 × 33 Landsat-8 30-m image (<b>a</b>) LPAD downscaled to 15-m data (80 × 66) with (<b>b</b>) and without (<b>c</b>) considering the 15-m to 30-m Landsat-8 pixel grid shifts. The Landsat-8 image was acquired 6 November 2016 over a commercial crop field in California (centered on 34.8973°N 117.1505°W) with scene center solar zenith and azimuth of 36.5972° and 159.4612°, respectively.</p> "> Figure 3
<p>New York 256 × 256 20-m pixel true color subsets: (<b>a</b>) Sentinel-2A 20-m red, green, blue bands aggregated from the original Sentinel-2A 10-m bands; (<b>b</b>) Landsat-8 20-m red, green, blue bands nearest neighbor resampled from 30 m; (<b>c</b>) Landsat-8 20-m red, green, blue bands bilinear resampled from 30 m; and (<b>d</b>) Landsat-8 20-m red, green, blue bands cubic convolution resampled from 30 m.</p> "> Figure 3 Cont.
<p>New York 256 × 256 20-m pixel true color subsets: (<b>a</b>) Sentinel-2A 20-m red, green, blue bands aggregated from the original Sentinel-2A 10-m bands; (<b>b</b>) Landsat-8 20-m red, green, blue bands nearest neighbor resampled from 30 m; (<b>c</b>) Landsat-8 20-m red, green, blue bands bilinear resampled from 30 m; and (<b>d</b>) Landsat-8 20-m red, green, blue bands cubic convolution resampled from 30 m.</p> "> Figure 4
<p>New York city true color images showing: (<b>a</b>) Sentinel-2A 20-m image (1500 × 1500 20-m pixels) and sub-set (red box); (<b>b</b>) Sentinel-2A 256 × 256 20-m pixel sub-set; (<b>c</b>) Landsat-8 bilinear resampled to 20 m; (<b>d</b>) Landsat-8 bilinear-based LPAD 20-m data; (<b>e</b>) Landsat-8 cubic convolution resampled to 20 m; (<b>f</b>) Landsat-8 cubic convolution-based LPAD 20-m data.</p> "> Figure 5
<p>Crop field, California, true color images showing: (<b>a</b>) Sentinel-2A 20-m image (3000 × 3000 20-m pixels) and sub-set (red box); (<b>b</b>) Sentinel-2A 256 × 256 20-m pixel sub-set; (<b>c</b>) Landsat-8 bilinear resampled to 20 m; (<b>d</b>) Landsat-8 bilinear-based LPAD 20-m data; (<b>e</b>) Landsat-8 cubic convolution resampled to 20 m; (<b>f</b>) Landsat-8 cubic convolution-based LPAD 20-m data.</p> "> Figure 6
<p>Burned forest area, California, true color images showing: (<b>a</b>) Sentinel-2A 20-m image (3600 × 3600 20-m pixels) and sub-set (red box); (<b>b</b>) Sentinel-2A 256 × 256 20-m pixel sub-set; (<b>c</b>) Landsat-8 bilinear resampled to 20 m; (<b>d</b>) Landsat-8 bilinear-based LPAD 20-m data; (<b>e</b>) Landsat-8 cubic convolution resampled to 20 m; (<b>f</b>) Landsat-8 cubic convolution-based LPAD 20-m data.</p> "> Figure 7
<p>Mountain landslides, New Zealand, true color images showing: (<b>a</b>) Sentinel-2A 20-m image (1500 × 1500 20-m pixels) and sub-set (red box); (<b>b</b>) Sentinel-2A 256 × 256 20-m pixel sub-area; (<b>c</b>) Landsat-8 bilinear resampled to 20 m; (<b>d</b>) Landsat-8 bilinear-based LPAD 20-m data; (<b>e</b>) Landsat-8 cubic convolution resampled to 20 m; (<b>f</b>) Landsat-8 cubic convolution-based LPAD 20-m data.</p> "> Figure 8
<p>Tropical forest, Democratic Republic of the Congo, true color images showing: (<b>a</b>) Sentinel-2A 20-m image (1230 × 1425 20-m pixels) and sub-set (red box); (<b>b</b>) Sentinel-2A 256 × 256 20-m pixel sub-set; (<b>c</b>) Landsat-8 bilinear resampled to 20 m; (<b>d</b>) Landsat-8 bilinear-based LPAD 20-m data; (<b>e</b>) Landsat-8 cubic convolution resampled to 20 m; (<b>f</b>) Landsat-8 cubic convolution-based LPAD 20-m data. The smoke aerosols present in the Sentinel-2A image are evident in the north and west of (<b>a</b>).</p> ">
Abstract
:1. Introduction
2. Data and Study Areas
3. Landsat 15-m Panchromatic-Assisted Downscaling (LPAD)
3.1. Downscaling Landsat-8 30-m Data to 15 m Using the Panchromatic Band
3.2. Reprojection and Resampling of the Downscaled 15-m Data into Registration with the Sentinel-2A 20-m Data
4. Evaluation Methodology
5. Results
5.1. Conventional Resampling (Nearest Neighbor, Bilinear, and Cubic Convolution) Based Downscaling
5.2. LPAD Downscaling
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Becker-Reshef, I.; Killough, B.D.; Justice, C.O. Meeting earth observation requirements for global agricultural monitoring: An evaluation of the revisit capabilities of current and planned moderate resolution optical earth observing missions. Remote Sens. 2015, 7, 1482–1503. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef]
- Bontemps, S.; Arias, M.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Matton, N.; Morin, D.; Popescu, R.; et al. Building a data set over 12 globally distributed sites to support the development of agriculture monitoring applications with Sentinel-2. Remote Sens. 2015, 7, 16062–16090. [Google Scholar] [CrossRef]
- Wulder, M.A.; Hilker, T.; White, J.C.; Coops, N.C.; Masek, J.G.; Pflugmacher, D.; Crevier, Y. Virtual constellations for global terrestrial monitoring. Remote Sens. Environ. 2015, 170, 62–76. [Google Scholar] [CrossRef]
- Paul, F.; Winsvold, S.H.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier remote sensing using Sentinel-2. Part II: Mapping glacier extents and surface facies, and comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 operational land imager radiometric calibration and stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef]
- Morfitt, R.; Barsi, J.; Levy, R.; Markham, B.; Micijevic, E.; Ong, L.; Scaramuzza, P.; Vanderwerff, K. Landsat-8 Operational Land Imager (OLI) radiometric performance on-orbit. Remote Sens. 2015, 7, 2208–2237. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2 calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, Landsat, VENμS and Sentinel-2 images. Remote Sens. 2015, 7, 2668–2691. [Google Scholar] [CrossRef]
- Roy, D.P.; Zhang, H.K.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.B.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy, V. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2016, 176, 255–271. [Google Scholar] [CrossRef]
- Roy, D.P.; Li, J.; Zhang, H.K.; Yan, L.; Huang, H.; Li, Z. Examination of Sentinel-2A multi-1 spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2017, 199, 25–38. [Google Scholar] [CrossRef]
- Roy, D.P.; Li, J.; Zhang, H.K.; Yan, L. Best practices for the reprojection and resampling of Sentinel-2 Multi Spectral Instrument Level 1C data. Remote Sens. Lett. 2016, 7, 1023–1032. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P.; Zhang, H.; Li, J.; Huang, H. An automated approach for sub-pixel registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sens. 2016, 8, 520. [Google Scholar] [CrossRef]
- Storey, J.; Roy, D.P.; Masek, J.; Gascon, F.; Dwyer, J.; Choate, M. A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sens. Environ. 2016, 186, 121–122. [Google Scholar] [CrossRef]
- Mandanici, E.; Bitelli, G. Preliminary comparison of Sentinel-2 and Landsat 8 Imagery for a combined use. Remote Sens. 2016, 8, 1014. [Google Scholar] [CrossRef]
- Skakun, S.; Roger, J.C.; Vermote, E.F.; Masek, J.G.; Justice, C.O. Automatic sub-pixel co-registration of Landsat-8 Operational Land Imager and Sentinel-2A Multi-Spectral Instrument images using phase correlation and machine learning based mapping. Int. J. Digit. Earth. 2017, 23, 1–17. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Loveland, T.R.; Irons, J.R. Landsat 8: The plans, the reality, and the legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef]
- Montanaro, M.; Gerace, A.; Lunsford, A.; Reuter, D. Stray light artifacts in imagery from the Landsat 8 Thermal Infrared Sensor. Remote Sens. 2014, 6, 10435–10456. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P.; Vermote, E.; Masek, J.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens. Environ. 2012, 122, 175–184. [Google Scholar] [CrossRef]
- Storey, J.; Choate, M.; Lee, K. Landsat 8 Operational Land Imager on-orbit geometric calibration and performance. Remote Sens. 2014, 6, 11127–11152. [Google Scholar] [CrossRef]
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a strong future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- European Space Agency (ESA). Sentinel-2 User Handbook; Issue 1, Revision 2; European Space Agency (ESA): Paris, France, 2015. [Google Scholar]
- Languille, F.; Déchoz, C.; Gaudel, A.; Greslou, D.; De Lussy, F.; Trémas, T.; Poulain, V. Sentinel-2 geometric image quality commissioning: First results. Proc. SPIE 2015. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Torn, R.D.; Kustas, W.P.; Basara, J.B. A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales. J. Hydrometeorol. 2004, 5, 343–363. [Google Scholar] [CrossRef]
- Pouteau, R.; Rambal, S.; Ratte, J.P.; Gogé, F.; Joffre, R.; Winkel, T. Downscaling MODIS-derived maps using GIS and boosted regression trees: The case of frost occurrence over the arid Andean highlands of Bolivia. Remote Sens. Environ. 2011, 115, 117–129. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, B. Support vector regression-based downscaling for intercalibration of multiresolution satellite images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1114–1123. [Google Scholar] [CrossRef]
- Duveiller, G.; Cescatti, A. Spatially downscaling sun-induced chlorophyll fluorescence leads to an improved temporal correlation with gross primary productivity. Remote Sens. Environ. 2016, 182, 72–89. [Google Scholar] [CrossRef]
- Che, X.; Yang, Y.; Feng, M.; Xiao, T.; Huang, S.; Xiang, Y.; Chen, Z. Mapping extent dynamics of small lakes using downscaling MODIS surface reflectance. Remote Sens. 2017, 9, 82. [Google Scholar] [CrossRef]
- Zhang, Y.; Backer, S.D.; Scheunders, P. Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3834–3843. [Google Scholar] [CrossRef]
- Garzelli, A. A review of image fusion algorithms based on the super-resolution paradigm. Remote Sens. 2016, 8, 797. [Google Scholar] [CrossRef]
- Yang, Y.; Anderson, M.C.; Gao, F.; Hain, C.R.; Semmens, K.A.; Kustas, W.P.; Noormets, A.; Wynne, R.H.; Thomas, V.A.; Sun, G. Daily Landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion. Hydrol. Earth Syst. Sci. 2017, 21, 1017–1037. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Zhang, X.; Yang, Z.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.; Prueger, J.H. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 2017, 188, 9–25. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Thomas, C.; Ranchin, T.; Wald, L.; Chanussot, J. Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1301–1312. [Google Scholar] [CrossRef] [Green Version]
- Vivone, G.; Alparone, L.; Chanussot, J.; Dalla Mura, M.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A critical comparison among pansharpening algorithms. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2565–2586. [Google Scholar] [CrossRef]
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A. Remote Sensing Image Fusion; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Pohl, C.; Van Genderen, J.L. Review article multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens. 1998, 19, 823–854. [Google Scholar] [CrossRef]
- Zhang, H.K.; Huang, B. A new look at image fusion methods from a Bayesian perspective. Remote Sens. 2015, 7, 6828–6861. [Google Scholar] [CrossRef]
- Gillespie, A.R.; Kahle, A.B.; Walker, R.E. Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques. Remote Sens. Environ. 1987, 22, 343–365. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Computationally inexpensive Landsat 8 operational land imager (OLI) pansharpening. Remote Sens. 2016, 8, 180. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Selva, M.; Alparone, L. Bi-cubic interpolation for shift-free pan-sharpening. ISPRS J. Photogramm. Remote Sens. 2013, 86, 65–76. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.; Loveland, T.R.; Vermote, E.; Zhang, C. Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Dikshit, O.; Roy, D.P. An empirical investigation of image resampling effects upon the spectral and textural supervised classification of a high spatial resolution multispectral image. Photogramm. Eng. Remote Sens. 1996, 62, 1085–1092. [Google Scholar]
- Shlien, S. Geometric correction, registration, and resampling of Landsat imagery. Can. J. Remote Sens. 1979, 5, 74–89. [Google Scholar] [CrossRef]
- Park, S.K.; Schowengerdt, R.A. Image reconstruction by parametric cubic convolution. Comput. Vis. Graph. Image Process. 1983, 23, 258–272. [Google Scholar] [CrossRef]
- Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 1153–1160. [Google Scholar] [CrossRef]
- Garzelli, A.; Nencini, F. Hypercomplex quality assessment of multi/hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2009, 6, 662–665. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Sridhar, V. Evapotranspiration estimation and scaling effects over the Nebraska Sandhills. Great Plains Res. 2007, 17, 35–45. [Google Scholar]
- Ershadi, A.; McCabe, M.F.; Evans, J.P.; Walker, J.P. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration. Remote Sens. Environ. 2013, 131, 51–62. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Roy, D.P.; Qin, Y.; Kovalskyy, V.; Vermote, E.F.; Ju, J.; Egorov, A.; Hansen, M.C.; Kommareddy, I.; Yan, L. Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction. Remote Sens. Environ. 2014, 140, 433–449. [Google Scholar] [CrossRef]
- Wang, Q.; Blackburn, G.A.; Onojeghuo, A.O.; Dash, J.; Zhou, L.; Zhang, Y.; Atkinson, P.M. Fusion of Landsat 8 OLI and Sentinel-2 MSI Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3885–3899. [Google Scholar] [CrossRef]
- Steven, M.D.; Malthus, T.J.; Baret, F.; Xu, H.; Chopping, M.J. Intercalibration of vegetation indices from different sensor systems. Remote Sens. Environ. 2003, 88, 412–422. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar]
- Liang, S.; Fang, H.; Chen, M. Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2490–2498. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. Impacts of dust aerosol and adjacency effects on the accuracy of Landsat 8 and RapidEye surface reflectances. Remote Sens. Environ. 2017, 194, 127–145. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Huang, G. A parallel computing paradigm for pan-sharpening algorithms of remotely sensed images on a multi-core computer. Remote Sens. 2014, 6, 6039–6063. [Google Scholar] [CrossRef]
Landsat-8 | Sentinel-2 | ||||
---|---|---|---|---|---|
Band | Resolution (m) | Wavelength Range (nm) | Band | Resolution (m) | Wavelength Range (nm) |
B2 (Blue) | 30 | 452–512 | B2 | 10 | 458–523 |
B3 (Green) | 30 | 533–590 | B3 | 10 | 543–578 |
B4 (Red) | 30 | 636–673 | B4 | 10 | 650–680 |
B5 (NIR) | 30 | 851–879 | B8A | 20 | 855–875 |
B6 (SWIR-1) | 30 | 1566–1651 | B11 | 20 | 1565–1655 |
B7 (SWIR-2) | 30 | 2107–2294 | B12 | 20 | 2100–2280 |
B8 (Pan) | 15 | 503–676 | - | - | - |
Land Cover Type | Geographic Location | L8 Path/Row | S2A Tile | Acquisition Date | Acquisition Time (HH:MM:SS) |
---|---|---|---|---|---|
Urban area | New York, USA | 14/32 | 18TWL | 15 October 2016 | L8: 15:40:12.12 S2A: 15:45:19.85 |
Crop field | California, USA | 43/34 | 10SFG | 23 August 2016 | L8: 18:40:01.87 S2A: 18:57:15.69 |
Burned forest | California, USA | 41/35 | 11SLV | 26 September 2016 | L8: 18:28:10.06 S2A: 18:38:51.43 |
Mountain landslides | Kaikoura, New Zealand | 73/89 | 59GQP | 15 December 2016 | L8: 22:07:29.99 S2A: 22:25:39.46 |
Tropical forest | Makanra, Democratic Republic of the Congo | 180/58 | 34NBH | L8: 3 March 2017 S2A: 4 March 2017 | L8: 08:55:59.42 S2A: 09:10:10.15 |
Location—Major Land Cover | BL Resampler | BL-Based LPAD | CC Resampler | CC-Based LPAD |
---|---|---|---|---|
New York—urban area | 0.7770 | 0.8970 | 0.8017 | 0.8953 |
California—crop fields | 0.8826 | 0.9294 | 0.8955 | 0.9223 |
California—burned forest | 0.9025 | 0.9608 | 0.9165 | 0.9547 |
New Zealand—landslides | 0.7132 | 0.7511 | 0.7247 | 0.7474 |
Congo—tropical forest | 0.7334 | 0.7330 | 0.7431 | 0.7080 |
Location—Major Land Cover | BL Resampler | BL-Based LPAD | CC Resampler | CC-Based LPAD |
---|---|---|---|---|
New York—urban area | 0.8227 | 0.8870 | 0.8414 | 0.8787 |
California—crop fields | 0.9205 | 0.9410 | 0.9298 | 0.9333 |
California—burned forest | 0.9290 | 0.9590 | 0.9388 | 0.9505 |
New Zealand—landslides | 0.7385 | 0.7569 | 0.7465 | 0.7524 |
Congo—tropical forest | 0.7989 | 0.7955 | 0.8039 | 0.7780 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, H.K.; Roy, D.P.; Yan, L.; Huang, H.; Li, J. Landsat 15-m Panchromatic-Assisted Downscaling (LPAD) of the 30-m Reflective Wavelength Bands to Sentinel-2 20-m Resolution. Remote Sens. 2017, 9, 755. https://doi.org/10.3390/rs9070755
Li Z, Zhang HK, Roy DP, Yan L, Huang H, Li J. Landsat 15-m Panchromatic-Assisted Downscaling (LPAD) of the 30-m Reflective Wavelength Bands to Sentinel-2 20-m Resolution. Remote Sensing. 2017; 9(7):755. https://doi.org/10.3390/rs9070755
Chicago/Turabian StyleLi, Zhongbin, Hankui K. Zhang, David P. Roy, Lin Yan, Haiyan Huang, and Jian Li. 2017. "Landsat 15-m Panchromatic-Assisted Downscaling (LPAD) of the 30-m Reflective Wavelength Bands to Sentinel-2 20-m Resolution" Remote Sensing 9, no. 7: 755. https://doi.org/10.3390/rs9070755
APA StyleLi, Z., Zhang, H. K., Roy, D. P., Yan, L., Huang, H., & Li, J. (2017). Landsat 15-m Panchromatic-Assisted Downscaling (LPAD) of the 30-m Reflective Wavelength Bands to Sentinel-2 20-m Resolution. Remote Sensing, 9(7), 755. https://doi.org/10.3390/rs9070755