Mathematical Modeling and Accuracy Testing of WorldView-2 Level-1B Stereo Pairs without Ground Control Points
"> Figure 1
<p>Raw and level-1B image sensor geometry: (<b>a</b>) raw image; and (<b>b</b>) using a virtual scan line to generate the level-1B image with smooth ephemeris and attitude.</p> "> Figure 2
<p>Study area location and stereo pair composition (gray indicates the study area).</p> "> Figure 3
<p>Ground control points (GCPs) distribution in the test area.</p> "> Figure 4
<p>Spatial coordinate conversion process.</p> "> Figure 5
<p>Physical sensor model geolocation: (<b>a</b>) the positioning principle with a single image; and (<b>b</b>) the physical sensor model direct location process.</p> "> Figure 6
<p>WV02 satellite physical model refinement.</p> "> Figure 7
<p>WV02 satellite physical model refinement: (<b>a</b>) the deviation of atmospheric refraction from the direction of the satellite’s sight; and (<b>b</b>) an exponential function to fit the atmospheric refractive error <span class="html-italic">d</span>, where <span class="html-italic">β</span> is the mean off-nadir view angle of the satellite.</p> "> Figure 8
<p>Physical direct and reverse models.</p> "> Figure 9
<p>The physical reverse model.</p> "> Figure 10
<p>The WV02 rational polynomial coefficient (RPC) generation workflow.</p> "> Figure 11
<p>WV02 rigorous sensor model (RSM) location errors: (<b>a</b>) monolithic image; and (<b>b</b>) stereo pair’s location errors.</p> "> Figure 12
<p>WV02 rational function model (RFM) location errors: (<b>a</b>) single image; and (<b>b</b>) stereo pair.</p> "> Figure 13
<p>The difference between the RSM and RFM geolocations of the virtual checkpoints: (<b>a</b>) Correcting Characteristic Value Method (CCVM); and (<b>b</b>) Least Squares (LS) (image is 15JUL24042129, with a height plane of 3408 m).</p> ">
Abstract
:1. Introduction
- Based on the characteristics of the WV02 ISD file, we develop the precise physical model of the WV02 satellite.
- We establish a new inverse transform method from the physical model, calculate the object virtual control points, and convert them into image coordinates.
- To overcome the problem of the morbidity normal formula in the process of solving for the RPC coefficients, we iterate using the correcting characteristic value method and compare these results with the least squares results.
2. Description of the WV02 L1B Dataset and Study Area
2.1. Characteristics of the WV02 L1B Image Products
2.2. Study Area and Dataset
3. The Physical Model of WV02
3.1. Calculation Principle
3.2. Simplification of the Physical Model
3.3. Exterior Orientation (EO) Parameter Interpolation
3.3.1. Ephemeris Interpolation
3.3.2. Attitude Quaternion Interpolation
3.4. WV02 Satellite Physical Model Refinement
3.4.1. Velocity Aberration Correction
- The velocity vector at a ground point is as follows:
- Calculate the camera speed component that is orthogonal to the LOS as follows:
- The vector of the LOS after velocity aberration correction is as follows:
- The vector of the LOS after the velocity aberration correction is unitized and incorporated into the original physical model (Equation (8)), and the point coordinates are recalculated as follows:
3.4.2. Optical Path Delay Correction
3.4.3. Atmospheric Refraction Correction
4. RFM Modeling
4.1. Basic Principles
4.2. Physical Reverse Model
- We enter the virtual control point object coordinates and latitude and longitude coordinates, and transform them into WGS84 Cartesian coordinates.
- Based on the coordinates of the image’s four corners, we establish the rough correspondence between the object space and the image space by using the two-dimensional affine transformation method. We use the least squares method to calculate the transformation coefficients. We input the virtual control point object coordinates; then, we find the initial coordinates in the image space by using Equation (26).
- Based on the initial image coordinates and elevation, we use the physical model to calculate the coordinates in the object space.
- To calculate the difference between the coordinates in the object space, we use the pixel resolution to transform the difference to the image space. To update the image coordinates, we re-enter the physical model. If the result is less than a certain tolerance, we exit the process.
- We update the initial coordinates in the image space and return to Step 4. If the result is less than a certain tolerance, we exit the process.
- We output the point coordinates in the object and image spaces.
4.3. Calculation of the RPC Coefficients
4.3.1. Correcting Characteristic Value Method (CCVM)
4.3.2. RPC Coefficient Calculation Flow
5. Results
5.1. Physical Model Experiment
5.2. Rational Function Model Experiment
6. Discussion
6.1. The Influence of Elevation on the Accuracy of the Physical Model
6.2. RFM Fit Analysis
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Okamoto, A. Orientation theory of ccd line-scanner images. Int. Arch. Photogramm. Remote Sens. 1988, 27, 609–617. [Google Scholar]
- Light, D.L.; Brown, D.; Colvocoresses, A.; Doyle, F.; Davies, M.; Ellasal, A.; Junkins, J.; Manent, J.; McKenney, A.; Undrejka, R. Satellite photogrammetry. Man. Photogramm. 1980, 4, 883–977. [Google Scholar]
- Toutin, T. Review article: Geometric processing of remote sensing images: Models, algorithms and methods. Int. J. Remote Sens. 2004, 25, 1893–1924. [Google Scholar] [CrossRef]
- Giannone, F. A Rigorous Model for High Resolution Satellite Imagery Orientation. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.529.4356&rep=rep1&type=pdf (accessed on 23 June 2017).
- Crespi, M.; Giannone, F.; Poli, D. Analysis of Rigorous Orientation Models for Pushbroom Sensors. Applications with Quickbird. Available online: http://www.isprs.org/proceedings/xxxvi/part1/papers/T02-07.pdf (accessed on 23 June 2017).
- Crespi, M.; Fratarcangeli, F.; Giannone, F.; Pieralice, F. Sisar: A Rigorous Orientation Model for Synchronous and Asynchronous Pushbroom Sensors Imagery. Available online: http://www.isprs.org/proceedings/XXXVI/1-W51/paper/crespi_etal.pdf (accessed on 23 June 2017).
- Crespi, M.; Fratarcangeli, F.; Giannone, F.; Pieralice, F. A new rigorous model for high-resolution satellite imagery orientation: Application to eros a and quickbird. Int. J. Remote Sens. 2012, 33, 2321–2354. [Google Scholar] [CrossRef]
- De Venecia, K.J.; Paderes, F., Jr.; Walker, A.S. Rigorous sensor modeling and triangulation for orbview-3. In Proceedings of the ASPRS Annual Conference, Reno, NV, USA, 1–5 May 2006. [Google Scholar]
- Tao, C.V.; Yong, H. 3d reconstruction methods based on the rational function model. Photogramm. Eng. Remote Sens. 2002, 68, 705–714. [Google Scholar]
- Tao, C.V.; Hu, Y. A comprehensive study of the rational function model for photogrammetric processing. Photogramm. Eng. Remote Sens. 2001, 67, 1347–1358. [Google Scholar]
- Tao, C.V.; Hu, Y. Use of the rational function model for image rectification. Can. J. Remote Sens. 2001, 27, 593–602. [Google Scholar] [CrossRef]
- Cheng, P.; Toutin, T. Ortho rectification and dem generation from high resolution satellite data. In Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore, 5–9 November 2001; p. 9. [Google Scholar]
- Yang, X. Accuracy of rational function approximation in photogrammetry. In Proceedings of the ASPRS Annual Conference, Taipei, Taiwan, 4–8 December 2000; pp. 22–26. [Google Scholar]
- Grodecki, J.; Dial, G. Block adjustment of high-resolution satellite images described by rational polynomials. Photogramm. Eng. Remote Sens. 2003, 69, 59–68. [Google Scholar] [CrossRef]
- Dial, G.; Grodecki, J. Block adjustment with rational polynomial camera models. In Proceedings of the ASPRS 2002 Conference, Washington, DC, USA, 19–26 April 2002; pp. 22–26. [Google Scholar]
- Dial, G.; Grodecki, J. RPC Replacement Camera Models. Available online: http://128.46.154.21/jshan/proceedings/asprs2005/Files/0031.pdf (accessed on 23 June 2017).
- Hu, Y.; Tao, V.; Croitoru, A. Understanding the Rational Function Model: Methods and Applications. Available online: http://www.isprs.org/proceedings/XXXV/congress/comm4/papers/423.pdf (accessed on 23 June 2017).
- Hu, Y.; Tao, C.V. Updating solutions of the rational function model using additional control information. Photogramm. Eng. Remote Sens. 2002, 68, 715–724. [Google Scholar]
- Xuwen, Q.; Shufang, T.; Youtang, H.; Guo, Z. The algorithm for parameters of rpc model without initial value. Remote Sens. Land Resour. 2005, 4, 7–11. [Google Scholar]
- DigitalGlobe. Worldview-2 Spacecraft Information and Specifications. Available online: https://www.digitalglobe.com/resources/satellite-information (accessed on 9 March 2017).
- DigitalGlobe. Accuracy of Worldview Products. Available online: https://dg-cms-uploads-production.s3.amazonaws.com (accessed on 9 March 2017).
- Aguilar, M.A.; del Mar Saldana, M.; Aguilar, F.J. Generation and quality assessment of stereo-extracted dsm from geoeye-1 and worldview-2 imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1259–1271. [Google Scholar] [CrossRef]
- Aguilar, M.A.; del Mar Saldaña, M.; Aguilar, F.J. Assessing geometric accuracy of the orthorectification process from geoeye-1 and worldview-2 panchromatic images. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 427–435. [Google Scholar] [CrossRef]
- Shean, D.E.; Alexandrov, O.; Moratto, Z.M.; Smith, B.E.; Joughin, I.R.; Porter, C.; Morin, P. An automated, open-source pipeline for mass production of digital elevation models (dems) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens. 2016, 116, 101–117. [Google Scholar] [CrossRef]
- Updike, T.; Comp, C. Radiometric Use of Worldview-2 Imagery. Available online: https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/104/Radiometric_Use_of_WorldView-2_Imagery.pdf (accessed on 9 March 2017).
- Riazanoff, S. Spot 123-4-5 Geometry Handbook; Tech Rep. GAEL-P135-DOC-001; GAEL Consultant: Champs-sur-Marne, France, 2004. [Google Scholar]
- Boyd, J.P. Chebyshev and Fourier Spectral Methods, 2nd ed.; Courier Corporation: North Chelmsford, MA, USA, 2001; pp. 19–57. [Google Scholar]
- Barrera, T.; Hast, A.; Bengtsson, E. Incremental spherical linear interpolation. In Proceedings of the Annual Special Theme-Environmental Visualization Conference (SIGRAD), Gold Coast, Australia, 17–22 May 2004; pp. 7–10. [Google Scholar]
- Noerdlinger, P.D. Atmospheric refraction effects in earth remote sensing. ISPRS J. Photogramm. Remote Sens. 1999, 54, 360–373. [Google Scholar] [CrossRef]
- Saastamoinen, J. Contributions to the theory of atmospheric refraction. Bull. Géod. (1946–1975) 1973, 107, 13–34. [Google Scholar] [CrossRef]
- Saastamoinen, J. Introduction to practical computation of astronomical refraction. Bull. Géod. (1946–1975) 1972, 106, 383–397. [Google Scholar] [CrossRef]
- Ming, Y.; Zhiyong, W.; Chengy, W.; Bingyang, Y. Atmosphere refraction effectsin object locating for optical satellite remote sensing images. Acta Geod. Cartogr. Sin. 2015, 44, 995–1002. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Applications to nonorthogonal problems. Technometrics 1970, 12, 69–82. [Google Scholar] [CrossRef]
- Xinzhou, W.; Dingyou, L.; Qianyong, Z.; Hailan, H. The iterration by correcting characteristic value and its application in surveying data processing. J. Heilongjiang Inst. Technol. 2001, 15, 3–6. [Google Scholar]
- Greenwalt, C.R.; Shultz, M.E. Principles of Error Theory and Cartographic Applications; Aeronautical Chart And Information Center: St. Louis, MO, USA, 1962.
Product Order ID | 054471964010_01 | 054471964020_01 | ||
---|---|---|---|---|
Product Name | 15JUL10043733- | 15JUL10043857- | 15JUL24042129- | 15JUL24042233- |
Generation Time (UTC) | 10 July 2015 T07:04:36 | 10 July 2015 T07:05:08 | 24 July 2015 T06:03:26 | 24 July 2015 T06:04:03 |
Num Rows × Num Columns | 27,164 × 34,584 | 24,356 × 35,180 | 22,716 × 35,180 | 28,048 × 34,445 |
Scan Direction | Forward | Forward | Forward | Forward |
Mean Product GSD (m) | 0.516 | 0.553 | 0.649 | 0.518 |
Satellite Azimuth Angle | 350.000 | 210.500 | 40.300 | 97.400 |
In Track View Angle (°) | 16.600 | –23.000 | 27.700 | 0.600 |
Cross Track View Angle (°) | –6.500 | –8.700 | 18.800 | 17.600 |
Off Nadir View Angle (°) | 17.800 | 24.500 | 33.100 | 17.600 |
Cloud Cover (%) | 0.005 | 0.006 | 0.000 | 0.000 |
Scene Number | Number of ICPs | Mean Off Nadir View Angle (°) | RMSEX (m) | RMSEY (m) | RMSEr (m) |
---|---|---|---|---|---|
15JUL10043733- | 49 | 17.8 | 6.3 | 1.6 | 6.5 |
15JUL10043857- | 46 | 24.5 | 1.6 | 1.9 | 2.5 |
15JUL24042129- | 48 | 33.1 | 4.1 | 3.8 | 5.6 |
15JUL24042233- | 38 | 17.6 | 1.7 | 1.3 | 2.2 |
Stereo Pair | Scene Number | Mean Off Nadir View Angle (°) | ICPs Num | RMSEX (m) | RMSEY (m) | RMSEr (m) |
---|---|---|---|---|---|---|
I | 15JUL10043733 + 15JUL10043857 | 17.8 + 24.5 | 40 | 3.4 | 1.7 | 3.9 |
II | 15JUL24042233 + 15JUL24042129 | 17.6 + 33.1 | 31 | 1.4 | 2.2 | 2.6 |
Method | Correcting Characteristic Value Method (CCVM) | Least Squares(LS) | DigitalGlobe (DG) | ||||||
---|---|---|---|---|---|---|---|---|---|
Scene Number | RMSEX | RMSEY | RMSEr | RMSEX | RMSEY | RMSEr | RMSEX | RMSEY | RMSEr |
15JUL10043733- | 5.1 | 1.6 | 5.3 | 5.1 | 1.6 | 5.4 | 11.9 | 5.1 | 6.7 |
15JUL10043857- | 2.3 | 1.8 | 2.9 | 2.3 | 1.9 | 3.0 | 1.5 | 2.5 | 2.9 |
15JUL24042129- | 2.8 | 3.9 | 4.8 | 2.8 | 4.2 | 5.0 | 4.6 | 1.9 | 4.9 |
15JUL24042233- | 1.5 | 1.3 | 2.0 | 1.5 | 1.3 | 2.0 | 1.8 | 2.4 | 3.0 |
Mean | 2.9 | 2.2 | 3.8 | 2.9 | 2.3 | 3.9 | 5.0 | 3.0 | 4.4 |
Scene Number | Elevation Change Value (m) | ∆x (m) | ∆y (m) | ∆d (m) |
---|---|---|---|---|
15JUL10043733- | 1 | 0.35 | –0.06 | 0.36 |
15JUL10043857- | 1 | –0.46 | –0.27 | 0.53 |
15JUL24042129- | 1 | 0.58 | 0.48 | 0.75 |
15JUL24042233- | 1 | –0.05 | 0.34 | 0.34 |
RPC Method | CCVM | LS | ||||||
---|---|---|---|---|---|---|---|---|
Scene Number | RMSErow | RMSEcol | MAX Error in Row | MAX Error in Column | RMSErow | RMSEcol | MAX Error in Row | MAX Error in Column |
15JUL10043733 | 0.117 | 0.104 | –0.297 | –0.257 | 0.118 | 0.104 | 0.299 | 0.257 |
15JUL10043857 | 0.076 | 0.142 | –0.176 | 0.336 | 0.075 | 0.145 | 0.175 | –0.346 |
15JUL24042129 | 0.092 | 0.069 | –0.336 | 1.276 | 0.092 | 0.147 | –0.336 | 6.444 |
15JUL24042233 | 0.087 | 0.168 | –0.199 | 0.446 | 0.087 | 0.181 | –0.198 | 0.473 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, J.; Lin, X.; Xu, T. Mathematical Modeling and Accuracy Testing of WorldView-2 Level-1B Stereo Pairs without Ground Control Points. Remote Sens. 2017, 9, 737. https://doi.org/10.3390/rs9070737
Ye J, Lin X, Xu T. Mathematical Modeling and Accuracy Testing of WorldView-2 Level-1B Stereo Pairs without Ground Control Points. Remote Sensing. 2017; 9(7):737. https://doi.org/10.3390/rs9070737
Chicago/Turabian StyleYe, Jiang, Xu Lin, and Tao Xu. 2017. "Mathematical Modeling and Accuracy Testing of WorldView-2 Level-1B Stereo Pairs without Ground Control Points" Remote Sensing 9, no. 7: 737. https://doi.org/10.3390/rs9070737
APA StyleYe, J., Lin, X., & Xu, T. (2017). Mathematical Modeling and Accuracy Testing of WorldView-2 Level-1B Stereo Pairs without Ground Control Points. Remote Sensing, 9(7), 737. https://doi.org/10.3390/rs9070737