Understanding the Impact of Urbanization on Surface Urban Heat Islands—A Longitudinal Analysis of the Oasis Effect in Subtropical Desert Cities
"> Figure 1
<p>Locations of the five subtropical desert cities: Beer Sheva, Israel; Hotan, China; Jodhpur, India; Kharga, Egypt; Las Vegas, NV, USA.</p> "> Figure 2
<p>Landsat images for the five desert cities displayed in false color composite: (<b>a</b>) Beer Sheva, Israel. Image acquired on 3 December 2010; (<b>b</b>) Hotan, China. Image acquired on 22 June 2010; (<b>c</b>) Jodhpur, India. Image acquired on 28 September 2009; (<b>d</b>) Kharga, Egypt. Image acquired on 12 March 2010; (<b>e</b>) Las Vegas, NV, USA. Image acquired on 2 November 2011.</p> "> Figure 3
<p>An example buffer created around Las Vegas, NV, USA.</p> "> Figure 4
<p>Land cover/land use (LCLU) classification maps for the five desert cities (classified output maps of the images shown in <a href="#remotesensing-09-00672-f002" class="html-fig">Figure 2</a>): (<b>a</b>) Beer Sheva, Israel; (<b>b</b>) Hotan, China; (<b>c</b>) Jodhpur, India; (<b>d</b>) Kharga, Egypt; (<b>e</b>) Las Vegas, NV, USA.</p> "> Figure 5
<p>LCLU change pattern for urban and agriculture in the last two decades: (<b>a</b>) Change of urban area; (<b>b</b>) Rate of change for urban; (<b>c</b>) Change of agricultural land; (<b>d</b>) Rate of change for agriculture.</p> "> Figure 6
<p>Urban-rural difference in (<b>a</b>) LST (=SUHI) and (<b>b</b>) NDVI (=RURVD) for the five cities.</p> "> Figure 7
<p>Relationship between (<b>a</b>) SUHI and RURVD; (<b>b</b>) SUHI and logarithm of urban area; (<b>c</b>) RURVD and logarithm of population.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Processing and Analysis
3. Results
3.1. LCLU Classification Accuracy
3.2. Spatiotemporal Pattern of Urban and Agriculture
3.3. Spatiotemporal Pattern of SUHI and RURVD
3.4. Urbanization Impacts on SUHI and RURVD
4. Discussion
4.1. Urbanization Patterns of the Five Desert Cities
4.2. The Urban Heat Sink/Oasis Effect
4.3. The Oasis Effect, Greenness, City Size, and Population
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Brazel, A.; Gober, P.; Lee, S.; Grossman-Clarke, S.; Zehnder, J.; Hedquist, B.; Comparri, E. Determinants of changes in the regional urban heat island in metropolitan phoenix (Arizona, USA) between 1990 and 2004. Clim. Res. 2007, 33, 171–182. [Google Scholar] [CrossRef]
- Howard, L. The Climate of London: Deduced from Meteorological Observations Made in the Metropolis and at Various Places Around It; Longman: London, UK, 1833; Volume 2. [Google Scholar]
- Chakraborty, S.D.; Kant, Y.; Mitra, D. Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data. J. Environ. Manag. 2015, 148, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Myint, S.W.; Zheng, B. Measuring the spatial arrangement of urban vegetation and its impacts on seasonal surface temperatures. Prog. Phys. Geogr. 2015, 39, 199–219. [Google Scholar] [CrossRef]
- Feng, H.; Zhao, X.; Chen, F.; Wu, L. Using land use change trajectories to quantify the effects of urbanization on urban heat island. Adv. Space Res. 2014, 53, 463–473. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Liu, H.; Weng, Q. Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA. Environ. Monit. Assess. 2008, 144, 199–219. [Google Scholar] [CrossRef] [PubMed]
- Mallick, J.; Rahman, A.; Singh, C.K. Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time aster satellite data in highly urbanizing city, Delhi-India. Adv. Space Res. 2013, 52, 639–655. [Google Scholar] [CrossRef]
- Metz, M.; Rocchini, D.; Neteler, M. Surface temperatures at the continental scale: Tracking changes with remote sensing at unprecedented detail. Remote Sens. 2014, 6, 3822–3840. [Google Scholar] [CrossRef]
- Myint, S.W.; Brazel, A.; Okin, G.; Buyantuyev, A. Combined effects of impervious surface and vegetation cover on air temperature variations in a rapidly expanding desert city. GIS Remote Sens. 2010, 47, 301–320. [Google Scholar] [CrossRef]
- Owen, T.; Carlson, T.; Gillies, R. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int. J. Remote Sens. 1998, 19, 1663–1681. [Google Scholar] [CrossRef]
- Rao, P.K. Remote sensing of urban heat islands from an environmental satellite. Bull. Am. Meteorol. Soc. 1972, 53, 647–648. [Google Scholar]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Fan, C.; Rey, S.J.; Myint, S.W. Spatially filtered ridge regression (SFRR): A regression framework to understanding impacts of land cover patterns on urban climate. Trans. GIS 2016. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the Continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. On the statistics of urban heat island intensity. Geophys. Res. Lett. 2013, 40, 5486–5491. [Google Scholar] [CrossRef]
- Hartz, D.; Prashad, L.; Hedquist, B.; Golden, J.; Brazel, A. Linking satellite images and hand-held infrared thermography to observed neighborhood climate conditions. Remote Sens. Environ. 2006, 104, 190–200. [Google Scholar] [CrossRef]
- Xian, G.; Crane, M. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using landsat satellite data. Remote Sens. Environ. 2006, 104, 147–156. [Google Scholar] [CrossRef]
- Lougeay, R.; Brazel, A.; Hubble, M. Monitoring intraurban temperature patterns and associated land cover in Phoenix, Arizona using landsat thermal data. Geocarto Int. 1996, 11, 79–90. [Google Scholar] [CrossRef]
- Lazzarini, M.; Marpu, P.R.; Ghedira, H. Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sens. Environ. 2013, 130, 136–152. [Google Scholar] [CrossRef]
- Wilson, J.S.; Clay, M.; Martin, E.; Stuckey, D.; Vedder-Risch, K. Evaluating environmental influences of zoning in urban ecosystems with remote sensing. Remote Sens. Environ. 2003, 86, 303–321. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Myint, S.W.; Wentz, E.A.; Brazel, A.J.; Quattrochi, D.A. The impact of distinct anthropogenic and vegetation features on urban warming. Landsc. Ecol. 2013, 28, 1–20. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Hoffman, M. Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build. 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Essa, W.; van der Kwast, J.; Verbeiren, B.; Batelaan, O. Downscaling of thermal images over urban areas using the land surface temperature–impervious percentage relationship. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 95–108. [Google Scholar] [CrossRef]
- Zheng, B.; Myint, S.W.; Fan, C. Spatial configuration of anthropogenic land cover impacts on urban warming. Landsc. Urban Plan. 2014, 130, 104–111. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Z.-F.; Ye, X.-Y.; Cai, Y.-B.; Ma, W.-C.; Chen, M.-N. Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl. Geogr. 2013, 44, 121–133. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Definiens, A. Definiens Ecognition Developer 8 User Guide; Definens AG: Munchen, Germany, 2009. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; National Center for Atmospheric Research: Boulder, CO, USA, 2005. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: London, UK; Boca Raton, FL, USA; New York, NY, USA; Washingdon, DC, USA, 2008. [Google Scholar]
- Story, M.; Congalton, R.G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for landsat MSS, TM, ETM+, and EO-1 Ali sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from landsat TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef]
- Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J. Error sources on the land surface temperature retrieved from thermal infrared single channel remote sensing data. Int. J. Remote Sens. 2006, 27, 999–1014. [Google Scholar] [CrossRef]
- NOAA National Centers For Environmental Information. Available online: http://www.ncdc.noaa.gov (accessed on 3 June 2017).
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Israel Central Bureau of Statistics. Available online: http://www.cbs.gov.il/reader (accessed on 22 February 2015).
- Statistics Bureau of Xinjing Uygur Autonomous Region. Available online: http://www.xjtj.gov.cn (accessed on 15 May 2015).
- Census of India. Available online: http://www.censusindia.gov.in (accessed on 8 July 2015).
- Socioeconomic Data And Applications Center (SEDAC). Global Rural-Urban Mapping Project (GRUMP), v1. Available online: http://sedac.ciesin.columbia.edu/data/collection/grump-v1 (accessed on 14 April 2015).
- US Census Bureau. Available online: http://www.census.gov (accessed on 15 June 2015).
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis, 3; Confidence Regions for the Parameters of Polynomial Regression Equations; Springer Science+Business Media: Berlin/Heidelberg, Germany, 1950; pp. 1–16. [Google Scholar]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964.
- Townshend, J.R. Terrain Analysis and Remote Sensing; George Allen and Unwin: Croes Nest, Australia, 1981. [Google Scholar]
- Oke, T.R. Boundary Layer Climates; Psychology Press: Abingdon, UK, 1987; Volume 5. [Google Scholar]
- Stone, B., Jr.; Rodgers, M.O. Urban form and thermal efficiency: How the design of cities influences the urban heat island effect. J. Am. Plan. Assoc. 2001, 67, 186–198. [Google Scholar] [CrossRef]
- Carnahan, W.H.; Larson, R.C. An analysis of an urban heat sink. Remote Sens. Environ. 1990, 33, 65–71. [Google Scholar] [CrossRef]
- Hao, X.; Li, W.; Deng, H. The oasis effect and summer temperature rise in arid regions-case study in Tarim Basin. Sci. Rep. 2016, 6, 35418. [Google Scholar] [CrossRef] [PubMed]
- Theeuwes, N.E.; Steeneveld, G.-J.; Ronda, R.J.; Rotach, M.W.; Holtslag, A.A. Cool city mornings by urban heat. Environ. Res. Lett. 2015, 10, 114022. [Google Scholar] [CrossRef]
- Hafner, J.; Kidder, S.Q. Urban heat island modeling in conjunction with satellite-derived surface/soil parameters. J. Appl. Meteorol. 1999, 38, 448–465. [Google Scholar] [CrossRef]
- Nichol, J.E. High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-based study. J. Appl. Meteorol. 1996, 35, 135–146. [Google Scholar] [CrossRef]
- Steeneveld, G.; Koopmans, S.; Heusinkveld, B.; Van Hove, L.; Holtslag, A. Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in The Netherlands. J. Geophys. Res. Atmos. 2011, 116, D20129. [Google Scholar] [CrossRef]
- Bounoua, L.; Safia, A.; Masek, J.; Peters-Lidard, C.; Imhoff, M.L. Impact of urban growth on surface climate: A case study in Oran, Algeria. J. Appl. Meteorol. Climatol. 2009, 48, 217–231. [Google Scholar] [CrossRef]
- Peña, M.A. Relationships between remotely sensed surface parameters associated with the urban heat sink formation in Santiago, Chile. Int. J. Remote Sens. 2008, 29, 4385–4404. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.O.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2011, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Mallick, J.; Rahman, A. Impact of population density on the surface temperature and micro-climate of Delhi. Curr. Sci. 2012, 102, 12. [Google Scholar]
- The Drying of the West. Available online: http://www.economist.com (accessed on 22 June 2017).
City | Data Source |
---|---|
Beer Sheva, Israel | Israel Central Bureau of Statistics [44] |
Hotan, China | Statistics Bureau of Xinjing Uygur Autonomous Region [45] |
Jodhpur, India | Census of India [46] |
Kharga, Egypt | Global Rural-Urban Mapping Project [47] |
Las Vegas, NV, USA | US Census Bureau [48] |
City | 1990 | 2000 | 2010 | |||
---|---|---|---|---|---|---|
O-Ac 1 (%) | Kappa 2 | O-Ac (%) | Kappa | O-Ac (%) | Kappa | |
Beer Sheva, Israel | 88 | 0.84 | 92.67 | 0.91 | 88 | 0.85 |
Hotan, China | 93.6 | 0.91 | 89 | 0.85 | 90.33 | 0.87 |
Jodhpur, India | 82.29 | 0.78 | 80 | 0.76 | 82.57 | 0.78 |
Kharga, Egypt | 94.5 | 0.91 | 95.5 | 0.93 | 95.5 | 0.93 |
Las Vegas, NV, USA | 84.5 | 0.8 | 88.12 | 0.85 | 89.29 | 0.87 |
City | Agriculture to Urban (km2) | Desert to Urban (km2) | Shrub to Urban (km2) |
---|---|---|---|
Beer Sheva, Israel | 41.23 | 71.51 | 39.64 |
Hotan, China | 16.16 | 6.09 | 0.42 |
Jodhpur, India | 120.03 | 1.86 | 8.83 |
Kharga, Egypt | 24.48 | 26.17 | 0 |
Las Vegas, NV, USA | 4.98 | 164.52 | 638.45 |
Variable | SUHI | RURVD | Log10 (Pop) | Log10 (Urban) |
---|---|---|---|---|
SUHI | 1 | |||
RURVD | −0.371 ** | 1 | ||
Log10 (Pop) | 0.016 | −0.351 ** | 1 | |
Log10 (Urban) | 0.309 * | −0.192 | 0.173 | 1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, C.; Myint, S.W.; Kaplan, S.; Middel, A.; Zheng, B.; Rahman, A.; Huang, H.-P.; Brazel, A.; Blumberg, D.G. Understanding the Impact of Urbanization on Surface Urban Heat Islands—A Longitudinal Analysis of the Oasis Effect in Subtropical Desert Cities. Remote Sens. 2017, 9, 672. https://doi.org/10.3390/rs9070672
Fan C, Myint SW, Kaplan S, Middel A, Zheng B, Rahman A, Huang H-P, Brazel A, Blumberg DG. Understanding the Impact of Urbanization on Surface Urban Heat Islands—A Longitudinal Analysis of the Oasis Effect in Subtropical Desert Cities. Remote Sensing. 2017; 9(7):672. https://doi.org/10.3390/rs9070672
Chicago/Turabian StyleFan, Chao, Soe W. Myint, Shai Kaplan, Ariane Middel, Baojuan Zheng, Atiqur Rahman, Huei-Ping Huang, Anthony Brazel, and Dan G. Blumberg. 2017. "Understanding the Impact of Urbanization on Surface Urban Heat Islands—A Longitudinal Analysis of the Oasis Effect in Subtropical Desert Cities" Remote Sensing 9, no. 7: 672. https://doi.org/10.3390/rs9070672