Quantifying Streamflow Variations in Ungauged Lake Basins by Integrating Remote Sensing and Water Balance Modelling: A Case Study of the Erdos Larus relictus National Nature Reserve, China
<p>Location of the Erdos <span class="html-italic">Larus relictus</span> National Nature Reserve (ELRNNR).</p> "> Figure 2
<p>Example of the remote sensing extracting water area of Bojiang Lake based on <span class="html-italic">MNDWI</span>. The date of used images in Figure a and b are 28/September/1995 and 28/August/2013, respectively. (<b>a-1</b>) and (<b>b-1</b>) show the false color composite images of Bojiang Lake by <span class="html-italic">SWIR2, SWIR1</span>, and <span class="html-italic">Green</span> bands. (<b>a-2</b>) and (<b>b-2</b>) show the calculated results of <span class="html-italic">MNDWI</span>. (<b>a-3</b>) and (<b>b-3</b>) show the lake water surface with the <span class="html-italic">MNDWI</span> threshold value of 0.35 (the black regions).</p> "> Figure 3
<p>Variations of (<b>a</b>) average annual lake area, (<b>b</b>) annual anomaly and accumulative anomaly, (<b>c</b>) average annual lake volume, and (<b>d</b>) anomaly and accumulative anomaly of volume in the Erdos <span class="html-italic">Larus relictus</span> National Nature Reserve (ELRNNR).</p> "> Figure 4
<p>Variations in the spatial distribution range of Bojiang Lake during different typical periods.</p> "> Figure 5
<p>Variations of (<b>a</b>) annual average lake streamflow, (<b>b</b>) annual anomaly and accumulative anomaly of streamflow, (<b>c</b>) annual average precipitation, (<b>d</b>) annual anomaly and accumulative anomaly of precipitation, (<b>e</b>) annual average potential evapotranspiration, (<b>f</b>) annual anomaly and accumulative anomaly of potential evapotranspiration in the Bojiang Lake basin.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Estimation of Time Series of Lake Volume Variations Based on Remote Sensing Technique and Empirical Formula
2.3.2. Conceptual Model of Lake Water Balance
2.3.3. Climate Elasticity Method for Quantifying the Drivers of Lake Streamflow Variations
2.3.4. Trend Analysis
3. Results
3.1. Changes in Lake Area and Lake Volume
3.2. Changes of Streamflow, Precipitation, and Evapotranspiration
3.3. Impacts of Climate Variability and Human Activities on Streamflow into Lake
4. Discussion
4.1. The Driving Factors of Bojiang Lake Area and Streamflow Changes and the Implications
4.2. Quantification on Contributors of Lake Streamflow Variations in Ungauged Basins and the Uncertainties
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, R.G.; McDowell, W.H.; Kortelainen, P.; Caraco, N.F.; Melack, J.M.; et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 2006, 51, 2388–2397. [Google Scholar] [CrossRef]
- Talbot, M.R.; Delibrias, G. Holocene variations in the level of lake bosumtwi, ghana. Nature 1977, 268, 722–724. [Google Scholar] [CrossRef]
- Macdonald, G.M.; Edwards, T.W.D.; Moser, K.A.; Pienitz, R.; Smol, J.P. Rapid response of treeline vegetation and lakes to past climate warming. Nature 1993, 361, 243–246. [Google Scholar] [CrossRef]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smold, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Richards, K.; Ke, L.; HienPhan, V. Accelerated lake expansion on the tibetan plateau in the 2000s: Induced by glacial melting or other processes? Water Resour. Res. 2014, 50, 3170–3186. [Google Scholar] [CrossRef]
- Tan, C.; Ma, M.; Kuang, H. Spatial-temporal characteristics and climatic responses of water level fluctuations of global major lakes from 2002 to 2010. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Ma, R.; Duan, H.; Hu, C.; Feng, X.; Li, A.; Ju, W.; Jiang, J.; Yang, G. A half-century of changes in china’s lakes: Global warming or human influence? Geophys. Res. Lett. 2010, 37, L24106. [Google Scholar] [CrossRef]
- Vanderhoof, M.K.; Alexander, L.C. The role of lake expansion in altering the wetland landscape of the prairie pothole region, united states. Wetlands 2016, 36, 309–321. [Google Scholar] [CrossRef]
- Wu, Q.; Lane, C.R. Delineation and quantification of wetland depressions in the prairie pothole region of north dakota. Wetlands 2016, 36, 215–227. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Rothhaupt, K.-O.; Mörtl, M.; Cantonati, M.; G.-Tóth, L.; Fischer, P. Ecological effects of water-level fluctuations in lakes. Hydrobiologia 2008, 613, 1–4. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L. Heterogeneous change patterns of water level for inland lakes in high mountain asia derived from multi-mission satellite altimetry. Hydrol. Processes 2014, 29, 2769–2781. [Google Scholar] [CrossRef]
- Yang, X.; Lu, X. Drastic change in china’s lakes and reservoirs over the past decades. Sci. Rep. 2014, 4, 6041. [Google Scholar] [CrossRef] [PubMed]
- Coe, M.T.; Foley, J.A. Human and natural impacts on the water resources of the lake chad basin. J. Geophys. Res. Atmos. 2001, 106, 3349–3356. [Google Scholar] [CrossRef]
- Assel, R.A.; Quinn, F.H.; Sellinger, C.E. Hydroclimatic factors of the recent record drop in laurentian great lakes water levels. Bull. Am. Meteorol. Soc. 2004, 85, 1143–1151. [Google Scholar] [CrossRef]
- Sellinger, C.E.; Stow, C.A.; Lamon, E.C.; Qian, S.S. Recent water level declines in the lake michigan-huron system. Environ. Sci. Technol. 2008, 42, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Bohn, T.J.; Podest, E.; Mcdonald, K.C.; Lettenmaier, D.P. On the causes of the shrinking of lake chad. Environ. Res. Lett. 2011, 6, 329–346. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the mongolian plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, J.; Singh, V.P.; Gu, X.; Chen, X. Evaluation of impacts of climate change and human activities on streamflow in the poyang lake basin, China. Hydrol. Proc. 2016, 30, 2562–2572. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; Mcdonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U. A decade of predictions in ungauged basins (pub)—A review. Hydrol. Sci. J. 2013, 58, 1–58. [Google Scholar] [CrossRef]
- Sivapalan, M.; Takeuchi, K.; Franks, S.W.; Gupta, V.K.; Karambiri, H.; Lakshmi, V.; Liang, X.; McDonnell, J.J.; Mendiondo, E.M.; O’Connell, P.E.; et al. Iahs decade on prediction in ungauged basins (pub), 2003–2012: Shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 2003, 48, 857–880. [Google Scholar] [CrossRef]
- Montanari, A.; Young, G.; Savenije, H.H.G.; Hughes, D.; Wagener, T.; Ren, L.L.; Koutsoyiannis, D.; Cudennec, C.; Toth, E.; Grimaldi, S. Pantarhei-everything flows: Change in hydrology and society—The iahs scientific decade 2013–2022. Hydrol. Sci. J. 2013, 58, 1256–1275. [Google Scholar] [CrossRef]
- Birkett, C.M. The contribution of topex/poseidon to the global monitoring of climatically sensitive lakes. J. Geophys. Res. Atmos. 1995, 100, 25179–25204. [Google Scholar] [CrossRef]
- Frazier, P.S.; Page, K.J. Water body detection and delineation with landsat tm data. Photogramm. Eng. Remote Sens. 2000, 66, 1461–1468. [Google Scholar]
- Alsdorf, D.E.; Rodriguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007, 45, RG2002. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L. Modeling and analysis of lake water storage changes on the tibetan plateau using multi-mission satellite data. Remote Sens. Environ. 2013, 135, 25–35. [Google Scholar] [CrossRef]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; Mcintyre, A.; Tan, P.; Curnow, S. Water observations from space: Mapping surface water from 25years of landsat imagery across australia. Remote Sens. Environ. 2015, 174, 341–352. [Google Scholar] [CrossRef]
- Lane, C.R.; Anenkhonov, O.; Liu, H.; Autrey, B.C.; Chepinoga, V. Classification and inventory of freshwater wetlands and aquatic habitats in the selenga river delta of lake baikal, russia, using high-resolution satellite imagery. Wetl. Ecol. Manag. 2015, 23, 1–20. [Google Scholar] [CrossRef]
- Deus, D.; Gloaguen, R.; Krause, P. Water balance modeling in a semi-arid environment with limited in situ data using remote sensing in lake manyara, east african rift, tanzania. Remote Sens. 2013, 5, 1651–1680. [Google Scholar] [CrossRef]
- Pan, F.; Liao, J.; Li, X.; Guo, H. Application of the inundation area—lake level rating curves constructed from the srtmdem to retrieving lake levels from satellite measured inundation areas. Comput. Geosci. 2013, 52, 168–176. [Google Scholar] [CrossRef]
- Guo, M.; Wu, W.; Zhou, X.; Chen, Y.; Li, J. Investigation of the dramatic changes in lake level of the bosten lake in northwestern china. Theor. Appl. Clim. 2014, 119, 341–351. [Google Scholar] [CrossRef]
- Wang, F.; Liang, L.; Zhang, Y.; Gao, R. Eco-hydrological model and critical conditions of hydrology of the wetland of erdoslarusrelictus nature reserve. Acta Ecol. Sin. 2009, 29, 307–313. [Google Scholar] [CrossRef]
- Kebede, S.; Travi, Y.; Alemayehu, T.; Marc, V. Water balance of lake tana and its sensitivity to fluctuations in rainfall, blue nile basin, ethiopia. J. Hydrol. 2006, 316, 233–247. [Google Scholar] [CrossRef]
- Baup, F.; Frappart, F.; Maubant, J. Combining high-resolution satellite images and altimetry to estimate the volume of small lakes. Hydrol. Earth Syst. Sci. 2014, 18, 2007–2020. [Google Scholar] [CrossRef]
- Schaake, J.C. From climate to flow. In Climate Change and US Water Resources; WhileyInterscience: New York, NY, USA, 1990; pp. 177–206. [Google Scholar]
- Dooge, J.; Bruen, M.; Parmentier, B. A simple model for estimating the sensitivity of runoff to long-term changes in precipitation without a change in vegetation. Adv. Water Resour. 1999, 23, 153–163. [Google Scholar] [CrossRef]
- Sankarasubramanian, A.; Vogel, R.M.; Limbrunner, J.F. Climate elasticity of streamflow in the United States. Water Resour. Res. 2001, 37, 1771–1781. [Google Scholar] [CrossRef]
- Arora, V.K. The use of the aridity index to assess climate change effect on annual runoff. J. Hydrol. 2002, 265, 164–177. [Google Scholar] [CrossRef]
- Fu, G.; Charles, S.P.; Chiew, F.H. A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resour. Res. 2007, 43, W11419. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D. Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff. Water Resour. Res. 2011, 47, W07526. [Google Scholar] [CrossRef]
- Liu, X.; Liu, C.; Luo, Y.; Zhang, M.; Xia, J. Dramatic decrease in streamflow from the headwater source in the central route of china's water diversion project: Climatic variation or human influence? J. Geophys. Res. Atmos. 2012, 117, D06113. [Google Scholar] [CrossRef]
- Liang, K.; Liu, C.; Liu, X.; Song, X. Impacts of climate variability and human activity on streamflow decrease in a sediment concentrated region in the middle yellow river. Stoch. Environ. Res. Risk Assess. 2013, 27, 1741–1749. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Liu, C.; Bai, P. Responses of runoff to climatic variation and human activities in the fenhe river, china. Stoch. Environ. Res. Risk Assess. 2013, 27, 1293–1301. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, C.; Dai, X.; Liu, T.; Duan, Z.; Liu, L.; Mitrovic, S.M. Separation of the impacts of climate change and human activity on runoff variations. Hydrol. Sci. J. 2015, 60, 234–246. [Google Scholar] [CrossRef]
- Ramsar, C. The List of Wetlands of International Importance; RAMSAR Secretariat: Gland, Switzerland, 2004. [Google Scholar]
- He, F.; Melville, D.; Xing, X.; Ren, Y. A review on studies of the relict gull larusrelictus. Chin. J. Zool. 2002, 37, 65–70. (In Chinese) [Google Scholar]
- Xing, X.; Yu, X.; Bai, Z.; Jia, L. Analysis of water balance of the wetland in erdoslarusrelictus nature reserve. J. Arid Land Resour. Environ. 2009, 23, 100–103. (In Chinese) [Google Scholar]
- Duff, D.G.; Bakewell, D.N.; Williams, M.D. The relict gull larusrelictus in china and elsewhere. Forktail 1991, 6, 43–65. [Google Scholar]
- He, F.; Zhang, Y.; Wu, Y.; Gao, T. The distribution of the relict gull larusrelictus in maowusu desert, Inner Mongolia, China. Forktail 1992, 7, 151–154. [Google Scholar]
- He, F.; Ren, Y.; Bai, X. Preview of the no. 1148 ramsar site on the ordos upland of western inner Mongolia. Chin. Birds 2010, 1, 80–81. [Google Scholar] [CrossRef]
- He, F.; Ren, Y.; Guo, Y. Habitat succession and development of waterbird population in Tiaolimiao-Alashan lake in inner Mongolia. Wetl. Sci. Manag. 2015, 11, 54–58. (In Chinese) [Google Scholar]
- Zhang, Y.; Liu, C.; Tian, L.; Bu, H. Recent records of the relict gull larusrelictus in western neimongol autonomous region, China. Forktail 1991, 6, 66–67. [Google Scholar]
- Zhang, Y.; Ding, W.; Bu, H.; Tian, L. Breeding ecology of the relict gull larusrelictus in ordos, inner Mongolia, China. Forktail 1992, 7, 131–137. [Google Scholar]
- Zhang, Y.; He, F.A. Study of the breeding ecology of the relict gull larusrelictus at ordos, inner Mongolia, China. Forktail 1993, 8, 125–132. [Google Scholar]
- Liang, K.; Lou, H.; Cheng, C. Characteristics of groundwater flow in the ordoslarusrelictus reserve wetland. Resour. Sci. 2011, 33, 1089–1098. (In Chinese) [Google Scholar]
- Yan, G.; Lou, H.; Liang, K.; Zhang, Z. Dynamics and driving forces of bojiang lake area in Erdoslarusrelictus national nature reserve, China. Quat. Int. 2016, (in press). [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-guidelines for computing crop water requirements-fao irrigation and drainage paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Gao, B.C. SPIE’s 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics. In Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space; International Society for Optics and Photonics, 1995; pp. 225–236. [Google Scholar]
- Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation water content mapping using landsat data derived normalized difference water index for corn and soybeans. Remot. Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Duan, Z.; Bastiaanssen, W. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sens. Environ. 2013, 134, 403–416. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Engin. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, D.; Liu, X.; Zhao, C. Spatial and temporal change in the potential evapotranspiration sensitivity to meteorological factors in China (1960–2007). J. Geogr. Sci. 2012, 22, 3–14. [Google Scholar] [CrossRef]
- Milly, P.; Dunne, K. Macroscale water fluxes 2. Water and energy supply control of their interannual variability. Water Res. 2002, 38, 45–65. [Google Scholar] [CrossRef]
- Fu, G.; Charles, S.P.; Viney, N.R.; Chen, S.; Wu, J.Q. Impacts of climate variability on stream-flow in the yellow river. Hydro. Proc. 2007, 21, 3431–3439. [Google Scholar] [CrossRef]
- Budyko, M. Evaporation under natural conditions, gidrometeorizdat, leningrad. In Climate and Life; Academic Press: London, UK, 1974. [Google Scholar]
- Zhang, L.; Dawes, W.; Walker, G. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Keyantash, J.; Dracup, J.A. The quantification of drought: An evaluation of drought indices. Bull. Am. Meteoriol. Soc. 2002, 83, 1167. [Google Scholar]
- Van Den Broeke, M.; Bamber, J.; Ettema, J.; Rignot, E.; Schrama, E.; van de Berg, W.J.; van Meijgaard, E.; Velicogna, I.; Wouters, B. Partitioning recent greenland mass loss. Science 2009, 326, 984–986. [Google Scholar] [CrossRef] [PubMed]
- Wei, F. Modern Climatic Statistical Diagnosis and Prediction Techniques, 2nd ed.; China Meteorological Press: Beijing, China, 2007. [Google Scholar]
- Yang, M.; Yao, T.; He, Y.; Thompson, L. Enso events recorded in the guliya ice core. Clim. Chan. 2000, 47, 401–409. [Google Scholar] [CrossRef]
- Gibbs, P.H. Introduction to linear regression analysis. Technometrics 2012, 25, 2775–2776. [Google Scholar] [CrossRef]
- Mislick, G.K.; Nussbaum, D.A. Linear Regression Analysis; John Wiley: Hoboken, NJ, USA, 2003; pp. 362–363. [Google Scholar]
- Ecotourism and Nature-Reserve Sustainability in Environmentally Fragile Poor Areas: The Case of the Ordos Relict Gull Reserve in China. Available online: http://search.proquest.com/openview/cb511451ad749ab1bc63b57fbe102f4e/1?pq-origsite=gscholar&cbl=136137 (accessed on 9 June 2017).
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Pielke, R.A.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. A Math. Phys. Eng. Sci. 2002, 360, 1705–1719. [Google Scholar] [CrossRef] [PubMed]
Year | Sensor | Path/Row | Acquisition Date (DD/MM) |
---|---|---|---|
1974 | MSS | 137/32, 138/32 | 24/05, 11/06 |
1975 | MSS | 137/32, 138/32 | 22/04, 28/05, 16/06, 21/07, 09/08, 14/09, 20/10 |
1976 | MSS | 137/32, 138/32 | 16/04, 22/05, 28/06, 16/07, 21/08, 25/09 |
1977 | MSS | 137/32, 138/32 | 29/04, 18/05, 23/06, 16/08, 20/09, 09/10 |
1978 | MSS | 137/32, 138/32 | 28/04, 21/05, 26/06, 14/07, 20/08, 25/09, 12/10 |
1979 | MSS | 137/32, 138/32 | 16/05, 21/06, 19/09, 25/10 |
1980 | MSS | 137/32, 138/32 | 22/04, 10/05, 15/06, 21/07, 26/08, 13/09, 19/10 |
1981 | MSS | - | No data available for download, linear interpolation by precipitation in August |
1982 | MSS | - | |
1983 | MSS | - | |
1984 | MSS/TM | - | |
1985 | MSS/TM | - | |
1986 | TM | - | |
1987 | TM | 128/32, 127/32 | 17/08, 24/10, 16/11, 18/12 |
1988 | TM | 128/32, 127/32 | 17/04, 19/05, 20/06, 29/07, 14/08, 15/09, 17/10, 27/11, 20/12 |
1989 | TM | 128/32, 127/32 | 29/05, 14/06, 09/07, 26/08, 27/09, 29/10, 30/11, 23/12 |
1990 | TM | 128/32, 127/32 | 29/03, 23/04, 25/05, 26/06, 19/07, 29/08, 05/09, 16/10, 17/11, 10/12 |
1991 | TM | 128/32, 127/32 | 04/01, 21/02, 26/04, 19/05, 20/06, 31/07, 23/08, 17/09, 26/10, 27/11 |
1992 | TM | 128/32, 127/32 | 30/05, 22/06, 17/07, 25/08, 26/09, 12/10, 22/11, 24/12 |
1993 | TM | 128/32, 127/32 | 26/02, 30/03, 15/04, 24/05, 18/06, 20/07, 22/09, 24/10, 27/12 |
1994 | TM | 128/32, 127/32 | 24/03, 25/04, 27/05, 21/06, 14/07, 31/08, 25/09, 02/10, 28/11, 14/12 |
1995 | TM | 128/32, 127/32 | 31/01, 16/02, 20/03, 21/04, 24/06, 26/07, 18/08, 28/09, 30/10, 15/11, 24/12 |
1996 | TM | 128/32, 127/32 | 26/02, 23/04, 25/05, 17/06, 12/07, 29/08, 21/09, 23/10, 24/11 |
1997 | TM | 128/32, 127/32 | 28/02, 16/03, 26/04, 02/05, 29/06, 31/07, 23/08, 24/09, 26/10, 27/11, 22/12 |
1998 | TM | 128/32, 127/32 | 30/01, 28/03, 20/04, 31/05, 23/06, 09/07, 26/08, 27/09, 22/10, 30/11, 25/12 |
1999 | TM/ETM+ | 128/32, 127/32 | 27/02, 09/05, 26/06, 28/07, 22/08, 23/09, 25/10, 26/11, 28/12 |
2000 | TM/ETM+ | 128/32, 127/32 | 20/01, 21/02, 17/03, 18/04, 20/05, 21/06, 30/07, 31/08, 25/09, 27/10, 28/11, 30/12 |
2001 | TM/ETM+ | 128/32, 127/32 | 22/01, 23/02, 27/03, 21/04, 30/05, 24/06, 26/07, 27/08, 19/09, 21/10, 22/11, 16/12 |
2002 | TM/ETM+ | 128/32, 127/32 | 25/01, 26/02, 23/03, 24/04, 26/05, 27/06, 29/07, 30/08, 15/09, 17/10, 25/11, 20/12 |
2003 | TM/ETM+ | 128/32, 127/32 | 21/01, 22/02, 10/03, 11/04, 29/05, 21/06, 23/07, 24/08, 25/09, 27/10, 28/11, 30/12 |
2004 | TM/ETM+ | 128/32, 127/32 | 24/01, 25/02, 28/03, 29/04, 22/05, 23/06, 25/07, 26/08, 27/09, 29/10, 23/11, 25/12 |
2005 | TM/ETM+ | 128/32, 127/32 | 26/01, 27/02, 22/03, 23/04, 25/05, 19/06, 28/07, 29/08, 23/09, 25/10, 26/11, 27/12 |
2006 | TM/ETM+ | 128/32, 127/32 | 29/01, 21/02, 25/03, 26/04, 28/05, 29/06, 31/07, 30/08, 26/09, 28/10, 20/11, 22/12 |
2007 | TM/ETM+ | 128/32, 127/32 | 23/01, 24/02, 28/03, 29/04, 31/05, 25/06, 27/07, 28/08, 20/09, 21/10, 26/11, 27/12 |
2008 | TM/ETM+ | 128/32, 127/32 | 27/01, 28/02, 22/03, 23/04, 25/05, 26/06, 21/07, 22/08, 30/09, 25/10, 27/11, 28/12 |
2009 | TM/ETM+ | 128/32, 127/32 | 20/01, 21/02, 25/03, 26/04, 28/05, 29/06, 24/07, 25/08, 26/09, 28/10, 20/11, 22/12 |
2010 | TM/ETM+ | 128/32, 127/32 | 23/01, 24/02, 28/03, 29/04, 24/05, 25/06, 18/07, 25/08, 13/09, 15/10, 16/11, 18/12 |
2011 | TM/ETM+ | 128/32, 127/32 | 19/01, 20/02, 24/03, 25/04, 27/05, 28/06, 30/07, 31/08, 23/09, 24/10, 26/11, 28/12 |
2012 | ETM+ | 128/32, 127/32 | 22/01, 23/02, 26/03, 27/04, 20/05, 21/06, 23/07, 24/08, 25/09, 27/10, 28/11, 30/12 |
2013 | ETM+/OLI | 128/32, 127/32 | 24/01, 25/02, 20/03, 21/04, 23/05, 24/06, 27/07, 28/08, 29/09, 22/10, 24/11, 26/12 |
Period | Qin | QHd | Qna | ΔQna | ΔQC | ΔQH | ΔQP | ΔQE0 | ΔQHind | ΔQHd | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | (mm) | % | (mm) | % | (mm) | (mm) | (mm) | (mm) | |
I | 14.42 | 6.53 | 20.95 | — | — | — | — | — | — | — | — | — |
II | 8.10 | 7.05 | 15.15 | -6.33 | −4.91 | 77.7 | −1.43 | 22.3 | −5.23 | 0.31 | −0.89 | −0.52 |
III | 1.12 | 9.19 | 10.31 | −13.31 | −5.43 | 40.8 | −7.91 | 59.2 | −5.11 | −0.32 | −5.21 | −2.66 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, K. Quantifying Streamflow Variations in Ungauged Lake Basins by Integrating Remote Sensing and Water Balance Modelling: A Case Study of the Erdos Larus relictus National Nature Reserve, China. Remote Sens. 2017, 9, 588. https://doi.org/10.3390/rs9060588
Liang K. Quantifying Streamflow Variations in Ungauged Lake Basins by Integrating Remote Sensing and Water Balance Modelling: A Case Study of the Erdos Larus relictus National Nature Reserve, China. Remote Sensing. 2017; 9(6):588. https://doi.org/10.3390/rs9060588
Chicago/Turabian StyleLiang, Kang. 2017. "Quantifying Streamflow Variations in Ungauged Lake Basins by Integrating Remote Sensing and Water Balance Modelling: A Case Study of the Erdos Larus relictus National Nature Reserve, China" Remote Sensing 9, no. 6: 588. https://doi.org/10.3390/rs9060588
APA StyleLiang, K. (2017). Quantifying Streamflow Variations in Ungauged Lake Basins by Integrating Remote Sensing and Water Balance Modelling: A Case Study of the Erdos Larus relictus National Nature Reserve, China. Remote Sensing, 9(6), 588. https://doi.org/10.3390/rs9060588