Seasonal Timing for Estimating Carbon Mitigation in Revegetation of Abandoned Agricultural Land with High Spatial Resolution Remote Sensing
"> Figure 1
<p>Flow diagram of the methodology followed in this study (where C<sub>t</sub> is the carbon stocks (t C·ha<sup>−1</sup>), DMSI is the Digital Multi Spectral Imagery, and CVI is the crown volume index). For definitions of vegetation indices, see <a href="#remotesensing-09-00545-t001" class="html-table">Table 1</a>.</p> "> Figure 2
<p>High spatial resolution airborne DMSI image (0.5 m) of the Wickepin experimental site taken on 24 March 2011 (dry season), with examples of: (<b>a</b>) low density (500 plants ha<sup>−1</sup>, plot S2An1LD); and (<b>b</b>) high density (2000 plants ha<sup>−1</sup>, plot S2An1HD). Plots were 40 × 40 m<sup>2</sup>, with field imagery measurements taken from an internal 20 × 20 m plot to minimize competitive edge effects. Key to plot name: S1, S2—Block; An—species (<span class="html-italic">Atriplex nummularia</span>); 1, 2, 3—Replicate; LD, HD—planting density (500 or 2000 plants ha<sup>−1</sup>).</p> "> Figure 3
<p>Examples of the object-based classification for the high density (S2An1HD) and low density plots (S2An1LD) of <span class="html-italic">A. nummularia</span>. The background images are false color composites, and the yellow boundaries are the derived canopy.</p> "> Figure 4
<p>Relationship between vegetation indices and carbon stocks (C<sub>t</sub>) for the <span class="html-italic">A. nummularia</span> shrubs sampled from the 500 (Δ, LD symbols) and 2000 (●, HD symbols) plants ha<sup>−1</sup> treatments in two seasons (dry season “March-2011-Dry” (<b>a</b>,<b>b</b>) and green season “September-2010-Green” (<b>c</b>,<b>d</b>)) at the plot scale (<b>a</b>,<b>c</b>) and the plant scale (<b>b</b>,<b>d</b>) of NDVI. The black line represents the fitted linear model for all plots and the red and blue lines are for high density and low density plots, respectively.</p> "> Figure 5
<p>The relationship between the ratio of vegetation pixels (R<sub>veg</sub>) and carbon stocks (C<sub>t</sub>) for the <span class="html-italic">A. nummularia</span> shrubs sampled from the 500 (Δ, LD symbols) and 2000 (●, HD symbols) plants ha<sup>−1</sup> treatments with: linear (<b>a</b>) and non-linear (<b>b</b>) regression models fitted.</p> "> Figure 6
<p>Relationship between vegetation indices and carbon stocks (C<sub>t</sub>) for the <span class="html-italic">A. nummularia</span> shrubs sampled from the 500 (∆, LD symbols) and 2000 (●, HD symbols) plants ha<sup>−1</sup> treatments in two seasons (dry season “March-2011-Dry” (<b>a</b>–<b>e</b>) and green season “September-2010-Green” (<b>f</b>–<b>j</b>)) at plot scale. The straight line is the linear model and dashed line is the non-linear regression model fitted.</p> "> Figure 6 Cont.
<p>Relationship between vegetation indices and carbon stocks (C<sub>t</sub>) for the <span class="html-italic">A. nummularia</span> shrubs sampled from the 500 (∆, LD symbols) and 2000 (●, HD symbols) plants ha<sup>−1</sup> treatments in two seasons (dry season “March-2011-Dry” (<b>a</b>–<b>e</b>) and green season “September-2010-Green” (<b>f</b>–<b>j</b>)) at plot scale. The straight line is the linear model and dashed line is the non-linear regression model fitted.</p> "> Figure 7
<p>Relationship between vegetation indices and carbon stocks (C<sub>t</sub>) for the <span class="html-italic">A. nummularia</span> shrubs sampled from the 500 (∆, LD symbols) and 2000 (●, HD symbols) plants ha<sup>−1</sup> treatments in two seasons (dry season “March-2011-Dry” (<b>a</b>–<b>e</b>) and green season “September-2010-Green” (<b>f</b>–<b>j</b>)) at individual plant scale. The straight line is the linear model and dashed line is the non-linear regression model fitted.</p> "> Figure 7 Cont.
<p>Relationship between vegetation indices and carbon stocks (C<sub>t</sub>) for the <span class="html-italic">A. nummularia</span> shrubs sampled from the 500 (∆, LD symbols) and 2000 (●, HD symbols) plants ha<sup>−1</sup> treatments in two seasons (dry season “March-2011-Dry” (<b>a</b>–<b>e</b>) and green season “September-2010-Green” (<b>f</b>–<b>j</b>)) at individual plant scale. The straight line is the linear model and dashed line is the non-linear regression model fitted.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Ground Based Measurements
2.3. Biomass Sampling
2.4. Carbon Analysis
2.5. Allometric Relationships
2.6. High Spatial Resolution Remote Sensing Data
2.7. Vegetation Indices
2.8. Object-Based Classification Method
2.9. Scale and Estimating Carbon Stocks in A. nummularia
2.10. Statistical Analys
3. Results
3.1. Vegetation Classification Based on Difference of Pasture and Saltbush
3.2. Relationships between Digital Vegetation Indices and Carbon Stocks
3.3. Comparison of Carbon Estimation Methods for Different Seasons and Scales
4. Discussion
4.1. Characteristics and Dynamics of Vegetation Indices of Saltbush and Annual Pasture
4.2. Indicators of Carbon Stocks (Ct)
4.3. Limitations and Future Research
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Plot Name | Year | NDVI | RVI | SAVI | GCC | fc | Carbon Stocks (C, t·ha−1) |
---|---|---|---|---|---|---|---|
S1An1LD | 2010 | 0.17 | 1.42 | 0.10 | 0.37 | 0.29 | 19.3 |
2011 | 0.20 | 1.52 | 0.13 | 0.35 | 0.35 | ||
S1An2LD | 2010 | 0.16 | 1.40 | 0.09 | 0.37 | 0.26 | 18.1 |
2011 | 0.19 | 1.47 | 0.12 | 0.34 | 0.31 | ||
S1An3LD | 2010 | 0.29 | 1.82 | 0.15 | 0.39 | 0.69 | 26.8 |
2011 | 0.21 | 1.56 | 0.14 | 0.34 | 0.37 | ||
S2An1LD | 2010 | 0.19 | 1.47 | 0.11 | 0.37 | 0.35 | 32.9 |
2011 | 0.22 | 1.57 | 0.14 | 0.34 | 0.38 | ||
S2An2LD | 2010 | 0.16 | 1.40 | 0.09 | 0.37 | 0.26 | 41.7 |
2011 | 0.22 | 1.59 | 0.14 | 0.34 | 0.39 | ||
S2An3LD | 2010 | 0.18 | 1.46 | 0.10 | 0.37 | 0.33 | 18.8 |
2011 | 0.23 | 1.64 | 0.14 | 0.34 | 0.42 | ||
S1An1HD | 2010 | 0.20 | 1.51 | 0.12 | 0.38 | 0.39 | 23.8 |
2011 | 0.20 | 1.49 | 0.13 | 0.34 | 0.33 | ||
S1An2HD | 2010 | 0.18 | 1.45 | 0.11 | 0.38 | 0.33 | 14.7 |
2011 | 0.20 | 1.51 | 0.13 | 0.35 | 0.34 | ||
S1An3HD | 2010 | 0.23 | 1.62 | 0.12 | 0.38 | 0.50 | 22.1 |
2011 | 0.19 | 1.47 | 0.12 | 0.34 | 0.31 | ||
S2An1HD | 2010 | 0.15 | 1.35 | 0.08 | 0.36 | 0.20 | 42.5 |
2011 | 0.19 | 1.49 | 0.12 | 0.34 | 0.33 | ||
S2An2HD | 2010 | 0.14 | 1.32 | 0.08 | 0.37 | 0.17 | 24.5 |
2011 | 0.19 | 1.49 | 0.13 | 0.34 | 0.33 | ||
S2An3HD | 2010 | 0.16 | 1.39 | 0.09 | 0.37 | 0.25 | 39.3 |
2011 | 0.20 | 1.53 | 0.13 | 0.34 | 0.35 |
Variable | Model | R2 | RMSE (%) | LOOCV RMSE (%) | |
---|---|---|---|---|---|
Vegetation index | NDVI | y = 12.06e12.62x | 0.84 | 14.6 | 16.8 |
y = 335.87x + 7.09 | 0.78 | 16.1 | 18.8 | ||
y = 13.68 ln(x) + 67.28 | 0.63 | 20.9 | 27.8 | ||
y = 3290.91x2 − 36.87x + 15.64 | 0.83 | 14.4 | 17.5 | ||
y = 122.52x0.53 | 0.75 | 17.2 | 20.4 | ||
RVI | y = 11.61e1.78x | 0.87 | 12.9 | 15.3 | |
y = 47.28x + 6.09 | 0.81 | 14.9 | 17.9 | ||
y = 14.23 ln(x) + 40.22 | 0.64 | 20.5 | 28.6 | ||
y = 70.47x2 − 11.85x + 16.24 | 0.87 | 12.5 | 15.9 | ||
y = 42.68x0.56 | 0.78 | 16.1 | 19.3 | ||
SAVI | y = 11.89e20.04x | 0.84 | 15 | 17.6 | |
y = 530.30x + 6.83 | 0.77 | 16.3 | 19.2 | ||
y = 13.95 ln(x) + 74.20 | 0.63 | 20.9 | 27.7 | ||
y = 7923.11x2 − 41.81x + 15.24 | 0.81 | 14.8 | 18.1 | ||
y = 161.53x0.55 | 0.74 | 17.4 | 20.7 | ||
GCC | y = 11.28e8.29x | 0.89 | 12 | 15 | |
y = 220.24x + 5.35 | 0.83 | 14.4 | 17.5 | ||
y = 14.72 ln(x) + 62.73 | 0.65 | 20.3 | 29.3 | ||
y = 1520.43x2 − 62.34x + 16.19 | 0.89 | 11.5 | 15.8 | ||
y = 102.84x0.57 | 0.80 | 15.4 | 18.6 | ||
Vegetation coverage | fc | y = 12.42e7.05x | 0.81 | 14.9 | 18 |
y = 187.72x + 7.86 | 0.76 | 16.9 | 19.5 | ||
y = 13.28 ln(x) + 58.98 | 0.62 | 21.2 | 27.3 | ||
y = 945.73x2 + 2.22x + 15.18 | 0.79 | 15.7 | 18.9 | ||
y = 88.60x0.52 | 0.72 | 18 | 21.2 | ||
Rveg | y = 11.32e2.81x | 0.89 | 11.9 | 14.6 | |
y = 74.71x + 5.44 | 0.83 | 14.3 | 17.4 | ||
y = 14.62 ln(x) + 46.75 | 0.65 | 20.3 | 29.5 | ||
y = 178.87x2 − 22.86x + 16.40 | 0.89 | 11.4 | 15.4 | ||
y = 55.11x0.57 | 0.80 | 15.4 | 18.6 |
References
- Intergovernmental Panel on Climate Change (IPCC). IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Bustamante, M.; Robledo-Abad, C.; Harper, R.; Mbow, C.; Ravindranat, N.H.; Sperling, F.; Haberl, H.; Pinto Ade, S.; Smith, P. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (afolu) sector. Glob. Chang. Biol. 2014, 20, 3270–3290. [Google Scholar] [CrossRef] [PubMed]
- Harper, R.J.; Beck, A.C.; Ritson, P.; Hill, M.J.; Mitchell, C.D.; Barrett, D.J.; Smettem, K.R.J.; Mann, S.S. The potential of greenhouse sinks to underwrite improved land management. Ecol. Eng. 2007, 29, 329–341. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). The Agriculture Sectors in the Intended Nationally Determined Contributions: Summary; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; pp. 3–4. [Google Scholar]
- Smith, P.; Haberl, H.; Popp, A.; Erb, K.H.; Lauk, C.; Harper, R.J.; Tubiello, F.; de Siqueira Pinto, A.; Jafari, M.; Sohi, S.; et al. How much land based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Chang. Biol. 2013, 19, 2285–2302. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.B.; Jobbagy, E.G.; Avissar, R.; Roy, S.B.; Barrett, D.J.; Cook, C.W.; Farley, K.A.; le Maitre, D.C.; McCarl, B.A.; Murray, B.C. Trading water for carbon with biological carbon sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef] [PubMed]
- Sochacki, S.J.; Harper, R.J.; Smettem, K.R.J. Bio-mitigation of carbon following afforestation of abandoned salinized farmland. GCB Bioenergy 2012, 4, 193–201. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. 1370.0-Measures of Australia’s Progress. 2010. Available online: http://www.abs.gov.au/ausstats/[email protected]/Lookup/by%20Subject/1370.0~2010~Chapter~Salinity%20(6.2.4.4) (accessed on 3 March 2010).
- National Land and Water Resources Audit. Australian Dryland Salinity Assessment 2000. Extent, Impacts, Processes, Monitoring and Management Options; National Land and Water Resources Audit: Canberra, Australia, 2001; p. 129. [Google Scholar]
- Food and Agriculture Organization (FAO). More Information on Salt-Affected Soils. Available online: http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/ (accessed on 15 February 2017).
- Walden, L.L.; Harper, R.J.; Sochacki, S.J.; Montagu, K.D.; Wocheslander, R.; Clarke, M.; Ritson, P.; Emms, J.; Davoren, C.W.; Mowat, D.; et al. Mitigation of carbon following Atriplex nummularia revegetation in southern Australia. Ecol. Eng. 2017. in review. [Google Scholar]
- Harper, R.J.; Sochacki, S.J.; Smettem, K.R.J.; Robinson, N. Bioenergy feedstock potential from short-rotation woody crops in a dryland environment. Energy Fuels 2010, 24, 225–231. [Google Scholar] [CrossRef]
- Macintosh, A. The carbon farming initiative: Removing the obstacles to its success. Carbon Manag. 2013, 4, 185–202. [Google Scholar] [CrossRef]
- Phinn, S.; Roelfsema, C.; Dekker, A.; Brando, V.; Anstee, J. Mapping seagrass species, cover and biomass in shallow waters: An assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in moreton bay (Australia). Remote Sens. Environ. 2008, 112, 3413–3425. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Bunting, P.; Lucas, R. The delineation of tree crowns in australian mixed species forests using hyperspectral Compact Airborne Spectrographic Imager (CASI) data. Remote Sens. Environ. 2006, 101, 230–248. [Google Scholar] [CrossRef]
- Silleos, N.G.; Alexandridis, T.K.; Gitas, I.Z.; Perakis, K. Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto Int. 2006, 21, 21–28. [Google Scholar] [CrossRef]
- Reid, A.M.; Chapman, W.K.; Prescott, C.E.; Nijland, W. Using excess greenness and green chromatic coordinate colour indices from aerial images to assess lodgepole pine vigour, mortality and disease occurrence. For. Ecol. Manag. 2016, 374, 146–153. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the modis vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Ogaya, R.; Barbeta, A.; Başnou, C.; Peñuelas, J. Satellite data as indicators of tree biomass growth and forest dieback in a mediterranean holm oak forest. Ann. For. Sci. 2014, 72, 135–144. [Google Scholar] [CrossRef]
- Jin, Y.X.; Yang, X.C.; Qiu, J.J.; Li, J.Y.; Gao, T.; Wu, Q.; Zhao, F.; Ma, H.L.; Yu, H.D.; Xu, B. Remote sensing-based biomass estimation and its spatio-temporal variations in temperate grassland, northern china. Remote Sens. 2014, 6, 1496–1513. [Google Scholar] [CrossRef]
- Zheng, D.L.; Rademacher, J.; Chen, J.Q.; Crow, T.; Bresee, M.; le Moine, J.; Ryu, S.R. Estimating aboveground biomass using landsat 7 ETM+ data across a managed landscape in northern wisconsin, USA. Remote Sens. Environ. 2004, 93, 402–411. [Google Scholar] [CrossRef]
- Helman, D.; Mussery, A.; Lensky, I.M.; Leu, S. Detecting changes in biomass productivity in a different land management regimes in drylands using satellite-derived vegetation index. Soil Use Manag. 2014, 30, 32–39. [Google Scholar] [CrossRef]
- Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Suganuma, H.; Abe, Y.; Taniguchi, M.; Tanouchi, H.; Utsugi, H.; Kojima, T.; Yamada, K. Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of western australia. For. Ecol. Manag. 2006, 222, 75–87. [Google Scholar] [CrossRef]
- Fensham, R.J.; Fairfax, R.J.; Holman, J.E.; Whitehead, P.J. Quantitative assessment of vegetation structural attributes from aerial photography. Int. J. Remote Sens. 2002, 23, 2293–2317. [Google Scholar] [CrossRef]
- Sousa, A.M.O.; Goncalves, A.C.; Mesquita, P.; da Silva, J.R.M. Biomass estimation with high resolution satellite images: A case study of quercus rotundifolia. ISPRS J. Photogramm. Remote Sens. 2015, 101, 69–79. [Google Scholar] [CrossRef]
- Harper, R.J.; Sochacki, S.J.; Smettem, K.R.J.; Robinson, N.; Silberstein, R.P.; Clarke, C.J.; McGrath, J.F.; Crombie, D.S.; Hampton, C.E. Catchment Scale Evaluation of “Trees, Water and Salt”; Rural Industries Research and Development Corporation: Kingston, Australia, 2009. [Google Scholar]
- Snowdon, P.; Keith, H.; Raison, R.J. Protocol for Sampling Tree and Stand Biomass; Australian Greenhouse Office Parkes: Canberra, Australia, 2002. [Google Scholar]
- Ritson, P.; Sochacki, S. Measurement and prediction of biomass and carbon content of Pinus pinaster trees in farm forestry plantations, south-western Australia. For. Ecol. Manag. 2003, 175, 103–117. [Google Scholar] [CrossRef]
- Rayment, G.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press Pty Ltd.: Melbourne, Australia, 1992. [Google Scholar]
- Evans, B.; Lyons, T.; Barber, P.; Stone, C.; Hardy, G. Enhancing a eucalypt crown condition indicator driven by high spatial and spectral resolution remote sensing imagery. J. Appl. Remote Sens. 2012, 6, 3605. [Google Scholar] [CrossRef]
- SpecTerra Services Pty Ltd.—Global Leaders in Airborne Remote Sensing Technology. Available online: http://www.specterra.com.au (accessed on 29 May 2017).
- Bernstein, L.S.; Jin, X.; Gregor, B.; Adler-Golden, S.M. Quick atmospheric correction code: Algorithm description and recent upgrades. Opt. Eng. 2012, 51, 111719. [Google Scholar] [CrossRef]
- ENVI Image Analysis Software|ESRI Australia. Available online: https://esriaustralia.com.au/products-specialised-gis-applications-envi (accessed on 29 May 2017).
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The aster spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G. Measuring the color of growing turf with a reflectance spectroradiometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Nijland, W.; de Jong, R.; de Jong, S.M.; Wulder, M.A.; Bater, C.W.; Coops, N.C. Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras. Agric. For. Meteorol. 2014, 184, 98–106. [Google Scholar] [CrossRef]
- Wittich, K.-P.; Hansing, O. Area-averaged vegetative cover fraction estimated from satellite data. Int. J. Biometeorol. 1995, 38, 209–215. [Google Scholar] [CrossRef]
- Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping tree canopy cover and aboveground biomass in sudano-sahelian woodlands using landsat 8 and random forest. Remote Sens. 2015, 7, 10017–10041. [Google Scholar] [CrossRef]
- Ahamed, T.; Tian, L.; Zhang, Y.; Ting, K.C. A review of remote sensing methods for biomass feedstock production. Biomass Bioenergy 2011, 35, 2455–2469. [Google Scholar] [CrossRef]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef]
- Ding, X.Y. The application of ecognition in land use projects. Geomat. Spat. Inf. Technol. 2005, 28, 116–120. [Google Scholar]
- eCognition|Trimble. Available online: http://www.ecognition.com (accessed on 29 May 2017).
- Van de Wiel, M.; Di Bucchianico, A. Fast computation of the exact null distribution of spearman’s ρ and page’s l statistic for samples with and without ties. J. Stat. Plan. Inference 2001, 92, 133–145. [Google Scholar] [CrossRef]
- Frank, A.B.; Karn, J.F. Vegetation indices, CO2 flux, and biomass for northern plains grasslands. J. Rangel. Manag. 2003, 56, 382–387. [Google Scholar] [CrossRef]
- Perry, E.M.; Morse-McNabb, E.M.; Nuttall, J.G.; O’Leary, G.J.; Clark, R. Managing wheat from space: Linking modis ndvi and crop models for predicting australian dryland wheat biomass. IEEE J. STARS 2014, 7, 3724–3731. [Google Scholar] [CrossRef]
- Yan, F.; Wu, B.; Wang, Y.J. Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu US Sandy Land, China. Agric. For. Meteorol. 2015, 200, 119–128. [Google Scholar] [CrossRef]
- Ediriweera, S.; Pathirana, S.; Danaher, T.; Nichols, D. Estimating above-ground biomass by fusion of lidar and multispectral data in subtropical woody plant communities in topographically complex terrain in north-eastern australia. J. For. Res. 2014, 25, 761–771. [Google Scholar] [CrossRef]
- Peñuelas, J.; Isla, R.; Filella, I.; Araus, J.L. Visible and near-infrared reflectance assessment of salinity effects on barley. Crop Sci. 1997, 37, 198–202. [Google Scholar] [CrossRef]
- Olsson, K. Estimating canopy cover in drylands with landsat mss data. Adv. Space Res. 1984, 4, 161–164. [Google Scholar] [CrossRef]
- Woomer, P.L.; Touré, A.; Sall, M. Carbon stocks in senegal’s sahel transition zone. J. Arid Environ. 2004, 59, 499–510. [Google Scholar] [CrossRef]
- Roy, P.S.; Ravan, S.A. Biomass estimation using satellite remote sensing data—An investigation on possible approaches for natural forest. J. Biosci. 1996, 21, 535–561. [Google Scholar] [CrossRef]
- Richardson, A.J.; Everitt, J.H.; Gausman, H.W. Radiometric estimation of biomass and nitrogen-content of Alicia grass. Remote Sens. Environ. 1983, 13, 179–184. [Google Scholar] [CrossRef]
- Kaishan, S.; Bai, Z.; Fang, L.; Hongtao, D.; Zongming, W. Correlative analyses of hyperspectral reflectance, soybean lai and aboveground biomass. Trans. Chin. Soc. Agric. Eng. 2005, 1, 9. [Google Scholar]
- Santin-Janin, H.; Garel, M.; Chapuis, J.L.; Pontier, D. Assessing the performance of NDVI as a proxy for plant biomass using non-linear models: A case study on the Kerguelen archipelago. Polar Biol. 2009, 32, 861–871. [Google Scholar] [CrossRef]
- Sentera—Drones + Software to Make Sense of It All. Available online: https://sentera.com/ (accessed on 29 May 2017).
- Zahawi, R.A.; Dandois, J.P.; Holl, K.D.; Nadwodny, D.; Reid, J.L.; Ellis, E.C. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biol. Conserv. 2015, 186, 287–295. [Google Scholar] [CrossRef]
Vegetation Index | Formula | Reference |
---|---|---|
Normalized Difference Vegetation Index | NDVI = (NIR − red)/(NIR + red) | [37] |
Ratio Vegetation Index | RVI = NIR/red | [38] |
Soil Adjusted Vegetation Index | SAVI = 1.5 × (NIR − red)/(NIR + red + 0.5) | [19,39] |
Green Chromatic Coordinate | GCC = green/(red + green + blue) | [40] |
Fractional green vegetation cover | fc = (NDVI − NDVIsoil)/(NDVIveg − NDVIsoil) | [41] |
Rveg | Rveg = percentage of vegetation pixels for each plot | [25,42] |
Variable | Green Season | Dry Season | ANOVA Two-Way | |||
---|---|---|---|---|---|---|
Pasture | Saltbush | Pasture | Saltbush | |||
Vegetation Index | NDVI | 0.13 | 0.26 | 0.11 | 0.28 | *** |
RVI | 1.31 | 1.79 | 1.25 | 1.90 | *** | |
SAVI | 0.08 | 0.15 | 0.07 | 0.19 | *** | |
GCC | 0.35 | 0.37 | 0.32 | 0.34 | *** | |
Vegetation coverage | fc | 0.14 | 0.60 | 0.13 | 0.54 | *** |
Rveg | 0.46 | 0.54 | 0.46 | 0.54 | - |
Variable | Scale | ||||
---|---|---|---|---|---|
Individual Plant 1 | Plot 2 | ||||
ρ | p | ρ | p | ||
Vegetation Index | NDVI | 0.73 | 0.01 | 0.16 | 0.62 |
RVI | 0.80 | 0.003 | 0.23 | 0.47 | |
SAVI | 0.73 | 0.01 | 0.04 | 0.92 | |
GCC | 0.89 | 0.001 | 0.14 | 0.67 | |
Vegetation coverage | fc | 0.55 | 0.05 | 0.16 | 0.62 |
Variable | Scale | ||||
---|---|---|---|---|---|
Individual Plant 1 | Plot 2 | ||||
ρ | p | ρ | p | ||
Vegetation Index | NDVI | 0.86 | 0.001 | 0.88 | 0.001 |
RVI | 0.895 | 0.0002 | 0.88 | 0.001 | |
SAVI | 0.895 | 0.001 | 0.85 | 0.001 | |
GCC | 0.91 | 0.0001 | 0.42 | 0.18 | |
Vegetation coverage | fc | 0.87 | 0.001 | 0.88 | 0.001 |
Rveg | 0.91 | 0.0001 | - | - |
Variable | Model | R2 | RMSE | Density | |
---|---|---|---|---|---|
(%) | (Plants ha−1) | ||||
Vegetation index | NDVI | y = 12.29e13.44x | 0.89 | 11.9 | 2000 |
y = 7916.3x2 −618.11x + 29.584 | 0.96 | 6.5 | 500 | ||
y = 12.06e12.62x | 0.84 | 14.6 | ALL | ||
RVI | y = 12.10e1.79x | 0.9 | 11.9 | 2000 | |
y = 155.96x2 − 89.983x + 30.676 | 0.96 | 6.2 | 500 | ||
y = 11.61e1.78x | 0.87 | 12.9 | ALL | ||
SAVI | y = 12.10e21.09x | 0.88 | 11.7 | 2000 | |
y = 18485x2 − 891.27x + 28.446 | 0.92 | 9.6 | 500 | ||
y = 11.89e20.04x | 0.84 | 15 | ALL | ||
GCC | y = 11.97e7.96x | 0.89 | 12 | 2000 | |
y = 3573.8x2 − 457.16x + 32.411 | 0.96 | 6.2 | 500 | ||
y = 11.28e8.29x | 0.89 | 12 | ALL | ||
Vegetation coverage | fc | y = 12.43e7.83x | 0.89 | 12 | 2000 |
y = 2525x2 − 341.96x + 28.97 | 0.96 | 6.7 | 500 | ||
y = 12.42e7.05x | 0.81 | 15.8 | ALL | ||
Rveg | y = 11.97e2.72x | 0.89 | 12 | 2000 | |
y = 398.08x2 − 148.79x + 31.764 | 0.96 | 6.5 | 500 | ||
y = 178.87x2 − 22.86x + 16.40 | 0.89 | 11.9 | ALL |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Harper, R.J.; Handcock, R.N.; Evans, B.; Sochacki, S.J.; Dell, B.; Walden, L.L.; Liu, S. Seasonal Timing for Estimating Carbon Mitigation in Revegetation of Abandoned Agricultural Land with High Spatial Resolution Remote Sensing. Remote Sens. 2017, 9, 545. https://doi.org/10.3390/rs9060545
Liu N, Harper RJ, Handcock RN, Evans B, Sochacki SJ, Dell B, Walden LL, Liu S. Seasonal Timing for Estimating Carbon Mitigation in Revegetation of Abandoned Agricultural Land with High Spatial Resolution Remote Sensing. Remote Sensing. 2017; 9(6):545. https://doi.org/10.3390/rs9060545
Chicago/Turabian StyleLiu, Ning, Richard J. Harper, Rebecca N. Handcock, Bradley Evans, Stanley J. Sochacki, Bernard Dell, Lewis L. Walden, and Shirong Liu. 2017. "Seasonal Timing for Estimating Carbon Mitigation in Revegetation of Abandoned Agricultural Land with High Spatial Resolution Remote Sensing" Remote Sensing 9, no. 6: 545. https://doi.org/10.3390/rs9060545