InSAR Time-Series Analysis of Land Subsidence under Different Land Use Types in the Eastern Beijing Plain, China
"> Figure 1
<p>The geographic location of the study area. The red star is the location of reference points for interferometric synthetic aperture radar (InSAR) and leveling measurements. The red pushpins (BJ021, BJ031, BJ054, BJ070, BJ076, BJ135) in (<b>a</b>) and (<b>b</b>) indicate the locations of the leveling benchmarks. In (<b>a</b>), the black box represents the TerraSAR-X data spatial coverage.</p> "> Figure 2
<p>A network of interferogram pairs obtained from TerraSAR-X used in small baseline subset (SBAS) InSAR.</p> "> Figure 3
<p>Mean land subsidence rate based on the TerraSAR-X data from 2011 to 2015. The red lines are the study area boundary. L and D are the Laiguangying and DongbalizhuangDajiaoting land subsidence areas, respectively.</p> "> Figure 4
<p>Comparisons of SBAS-derived land subsidence rates and leveling measurement rates from 2011 to 2013.The location of benchmarks is marked as “BJ021”, “BJ031”, “BJ054”, “BJ070”, “BJ076” and “BJ135” in <a href="#remotesensing-09-00380-f001" class="html-fig">Figure 1</a>.</p> "> Figure 5
<p>Displacement information between 2011 and 2015 in the Laiguangying and DongbalizhuangDajiaoting land subsidence areas measured by the SBAS technique using TerraSAR-X data. (<b>a</b>–<b>e</b>) is annual deformation from 2011 to 2015, respectively.</p> "> Figure 6
<p>Time series of the land displacement in the study area. L indicates the Laiguangying land subsidence area, and D indicates the DongbalizhuangDajiaoting land subsidence area.</p> "> Figure 7
<p>Correspondence analysis chart of land subsidence rate versus the land use types. (<b>a</b>–<b>g</b>) The figures of the corrections between nine land use types and seven land subsidence rate classifications. The solid black arrows indicate vectors and the arrows of the direction of the positive vector. The black dotted lines are the extension of the vectors. The red solid arrows indicate perpendicular lines from each land use type to the vectors. The blue solid arrows are the closest to the vectors.</p> "> Figure 8
<p>Land use types are indicated with different contour colors: the blue is water area and wetland, the dark green is vegetable land, the light green is paddy field and upland soils area, and the purple is peasant-inhabited land. The five gray patterns divide the compressible deposits thickness into four classes with a thickness ranging from 50 to 100 m, 100 to 150 m, 150 to 200 m, and 200 to 260 m. A–A1 and B–B1 are two profiles perpendicular to F1, F2, and F3.</p> "> Figure 9
<p>Land subsidence rate with profiles A–A1 and B–B1. The red line is the location of the faults.</p> "> Figure 10
<p>(<b>a1</b>–<b>d1</b>) show the relationship between ground water level and the land subsidence from 2011 to 2013 in paddy field and upland soils, vegetable land, peasant-inhabited land areas, and water area and wetland. Negative values indicate the decrease of groundwater level and land subsidence. (<b>a2</b>–<b>d2</b>) is the time series relationship between the groundwater level and land subsidence.</p> "> Figure 11
<p>Distribution of land subsidence rate in the different compressible thickness layers.</p> ">
Abstract
:1. Introduction
2. Study Area
3. InSAR-Processing
3.1. Data Source
3.2. Small Baseline Interferometry
4. Results
4.1. SBAS-Derived Land Subsidence Map
4.2. SBAS Accuracy Assessment
4.3. Time Series Land Subsidence in Eastern Beijing
4.4. Land Subsidence Characteristics in Different Land Use Types
5. Discussion
5.1. Relationships between Land Subsidence and Faults
5.2. Relationships between Land Subsidence and Ground Water Level in Different Land Use Types
5.3. Relationships between Land Subsidence and Compressible Deposits
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhu, L.; Gong, H.L.; Jing, L.L.; Su, Y.M.; Li, X.J.; Jiang, J. Research on evolution of land subsidence induced by nature and human activity by utilizing remote sensing technology. In Proceedings of the Urban Remote Sensing Event 2009, Shanghai, China, 20–22 May 2009; pp. 1331–1335. [Google Scholar]
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arikan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003. [Google Scholar]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Kampes, B.M.; Hanssen, R.F. Ambiguity resolution for permanent scatterer interferometry. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2446–2453. [Google Scholar] [CrossRef]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An overview of the small baseline subset algorithm: A dinsar technique for surface deformation analysis. Pure Appl. Geophys. 2007, 164, 637–661. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Strozzi, T.; Teatini, P.; Tosi, L. Terrasar-x reveals the impact of the mobile barrier works on venice coastland stability. Remote Sens. Environ. 2009, 113, 2682–2688. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Z.; Ding, X.; Jung, H.S.; Feng, G.; Lee, C.W. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sens. Environ. 2012, 117, 429–439. [Google Scholar] [CrossRef]
- Amelung, F.; Galloway, D.L.; Bell, J.W.; Zebker, H.A.; Laczniak, R.J. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 1999, 27, 483–486. [Google Scholar] [CrossRef]
- Raucoules, D.; Le Mouelic, S.; Carnec, C.; Maisons, C.; King, C. Urban subsidence in the city of Prato (Italy) monitored by satellite radar interferometry. Int. J. Remote Sens. 2003, 24, 891. [Google Scholar] [CrossRef]
- Strozzi, T.; Wegmuller, U. Remote sensing of the system earth—A challenge for the 21th century. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999. [Google Scholar]
- Strozzi, T.; Wegmuller, U. Land subsidence monitoring with differential SAR interferometry. Photogramm. Eng. Remote Sens. 2001, 67, 1261–1270. [Google Scholar]
- Strozzi, T.; Wegmuller, U.; Werner, C.L.; Wiesmann, A. JERS SAR interferometry for land subsidence monitoring. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1702–1708. [Google Scholar] [CrossRef]
- Gong, H.L.; Zhang, Y.Q.; Li, X.J.; Lu, X.H.; Chen, B.B.; Gu, Z.Q. The research of land subsidence in Beijing based on Permanent Scatterers Interferometric Synthetic Aperture Radar(PS-InSAR) technique. Prog. Nat. Sci. 2009, 19, 1261–1266. (In Chinese) [Google Scholar]
- Zhang, Q.; Zhao, C.Y.; Ding, X.L.; Chen, Y.Q.; Wang, L.; Huang, G.W.; Yang, C.S.; Ding, X.G.; Ma, J. Research on recent characteristics of spatio-temporal evolution and mechanism of Xi’an land subsidence and ground fissure by using gps and InSAR techniques. Chin. J. Geophys. 2009, 52, 1214–1222. [Google Scholar]
- Bock, Y.; Wdowinski, S.; Ferretti, A.; Novali, F.; Fumagalli, A. Recent subsidence of the venice lagoon from continuous GPS and interferometric synthetic aperture radar. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
- Osmanoglu, B.; Dixon, T.H.; Wdowinski, S.; Cabral-Cano, E.; Jiang, Y. Mexico city subsidence observed with persistent scatterer InSAR. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 1–12. [Google Scholar] [CrossRef]
- Chen, B.B.; Gong, H.L.; Li, X.J.; Lei, K.C.; Zhu, L.; Wang, Y.B. The impact of load density differences on land subsidence based on build-up index and PS-InSAR technology. Spectrosc. Spectr. Anal. 2013, 33, 2198–2202. [Google Scholar]
- Zhang, Y.; Gong, H.; Gu, Z.; Wang, R.; Li, X.; Zhao, W. Characterization of land subsidence induced by groundwater withdrawals in the plain of Beijing city, China. Hydrogeol. J. 2014, 22, 397–409. [Google Scholar] [CrossRef]
- Qu, F.; Zhao, C.; Zhang, Q.; Lu, Z.; Yang, C.; Zhang, J. Land subsidence and ground fissures in Xi’an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sens. Environ. 2014, 155, 366–376. [Google Scholar] [CrossRef]
- Zhu, L.; Gong, H.L.; Li, X.J.; Wang, R.; Chen, B.B.; Dai, Z.X.; Teatini, P. Land subsidence due to groundwater withdrawal in the northern Beijing plain, china. Eng. Geol. 2015, 193, 243–255. [Google Scholar] [CrossRef]
- Luo, W.; Shen, X.; Zhou, H.; Han, X.; Du, X. Study of the features and the influential factors of land subsidence in the eastern part of Beijing, China. In Proceedings of the Geo-Shanghai 2014 International Conference, Shanghai, China, 26–28 May 2014. [Google Scholar]
- Gao, M.; Gong, H.; Chen, B.; Zhou, C.; Chen, W.; Liang, Y.; Shi, M.; Si, Y. InSAR time-series investigation of long-term ground displacement at Beijing capital international airport, China. Tectonophysics 2016, 691, 271–281. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, Y.Q.; Wu, J.C.; Wang, H.M.; He, J.J. Mechanical modeling of aquifer sands under long-term groundwater withdrawal. Eng. Geol. 2012, 125, 74–80. [Google Scholar] [CrossRef]
- Chen, M.; Tomás, R.; Li, Z.; Motagh, M.; Li, T.; Hu, L.; Gong, H.; Li, X.; Yu, J.; Gong, X. Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sens. 2016, 8, 468. [Google Scholar] [CrossRef]
- Chen, B.B.; Gong, H.L.; Li, X.J.; Lei, K.C.; Zhu, L.; Gao, M.L.; Zhou, C.F. Characterization and causes of land subsidence in Beijing, China. Int. J. Remote Sens. 2017, 38, 808–826. [Google Scholar] [CrossRef]
- Brawner, E. Synthetic Aperture Radar Interferometry Analysis of Ground Deformation within the Coso Geothermal Site, California. Master’s Thesis, University of Arkansas, Fayetteville, AK, USA, 2016. [Google Scholar]
- Tosi, L.; Teatini, P.; Strozzi, T.; Carbognin, L.; Brancolini, G.; Rizzetto, F. Ground surface dynamics in the northern Adriatic coastland over the last two decades. Rend. Lincei 2010, 21, 115–129. [Google Scholar] [CrossRef]
- Yang, W.Z.; Zhang, T. Statistical Analysis and Case Detailed Industry Application Using SPSS; Tsinghua University Press: Beijing, China, 2011; pp. 182–186. (In Chinese) [Google Scholar]
- Tosi, L.; Teatini, P.; Carbognin, L.; Brancolini, G. Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence: The venice coast, italy. Tectonophysics 2009, 474, 271–284. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, F.; Yang, Y. Characteristics of Quaternary sediments and layout of settlement monitoring holes in Beijing area. Shanghai Land Resour. 2014, 35, 90–93. (In Chinese) [Google Scholar]
- Tosi, L.; Teatini, P.; Strozzi, T. Natural versus anthropogenic subsidence of Venice. Sci. Rep. 2013, 3, 2710. [Google Scholar] [CrossRef] [PubMed]
- Tosi, L.; Lio, C.D.; Strozzi, T.; Teatini, P. Combining l- and x-band SAR interferometry to assess ground displacements in heterogeneous coastal environments: The Po River Delta and Venice Lagoon, Italy. Remote Sens. 2016, 8, 308. [Google Scholar] [CrossRef]
Benchmark Identifier | Average Rate from 2011 to 2013 (mm/year) | Number of SDFP Pixels | Standard Deviations | |
---|---|---|---|---|
Leveling | SBAS | |||
BJ021 | −15 | −10 | 8 | 3 |
BJ031 | −49 | −48 | 6 | 1 |
BJ054 | −113 | −105 | 4 | 5 |
BJ070 | −112 | −106 | 8 | 4 |
BJ076 | −133 | −128 | 8 | 4 |
BJ135 | −34 | −22 | 7 | 8 |
Number | Land Use Type | Area (km2) | Number of SDFP Pixels |
---|---|---|---|
1 | Paddy field, Upland soils | 80.38 | 468 |
2 | Vegetable land | 34.08 | 275 |
3 | Woodland | 28.40 | 2090 |
4 | Meadow | 23.45 | 1711 |
5 | Water area, Wetland | 46.66 | 522 |
6 | Urban construction land | 183.06 | 9982 |
7 | Peasants inhabited land | 9.11 | 489 |
8 | Large industrial zones, airport and other special land | 192.67 | 3888 |
9 | Unused land | 1.43 | 121 |
Number | Land Subsidence Rate Classification (mm/year) | Number | Land Subsidence Rate Classification (mm/year) |
---|---|---|---|
1 | −127 to −100 | 5 | −40 to −20 |
2 | −100 to −80 | 6 | −20 to 0 |
3 | −80 to −60 | 7 | 0 to 20 |
4 | −60 to −40 |
Classifications of Land Use Types | Classifications of Land Subsidence Rate | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
1 | 0.096 | 0.083 | 0.066 | 0.252 | 0.199 | 0.199 | 0.105 |
2 | 0.036 | 0.149 | 0.171 | 0.073 | 0.142 | 0.404 | 0.025 |
3 | 0.060 | 0.169 | 0.118 | 0.223 | 0.105 | 0.145 | 0.180 |
4 | 0.029 | 0.141 | 0.115 | 0.181 | 0.138 | 0.165 | 0.231 |
5 | 0.073 | 0.157 | 0.102 | 0.215 | 0.090 | 0.128 | 0.236 |
6 | 0.066 | 0.037 | 0.060 | 0.099 | 0.134 | 0.192 | 0.412 |
7 | 0.127 | 0.270 | 0.342 | 0.063 | 0.074 | 0.008 | 0.117 |
8 | 0.046 | 0.149 | 0.139 | 0.129 | 0.169 | 0.171 | 0.196 |
9 | 0.025 | 0.132 | 0.124 | 0.091 | 0.248 | 0.207 | 0.174 |
Subsidence Rate Classifications (mm/year) | Land Use Types Classifications | ||||||||
---|---|---|---|---|---|---|---|---|---|
−127 to –100 | WA | woodland | L | U | PE | meadow | wasteland | PA | vegetable |
−100 to −80 | vegetable | woodland | L | WA | wasteland | meadow | PE | PA | U |
−80 to −60 | PE | vegetable | woodland | L | WA | wasteland | meadow | PA | U |
−60 to −40 | WA | meadow | PA | L | woodland | wasteland | U | vegetable | PE |
−40 to −20 | PA | wasteland | U | L | meadow | woodland | WA | vegetable | PE |
−20 to 0 | vegetable | wasteland | PA | L | meadow | U | woodland | WA | PE |
0 to 20 | U | WA | meadow | woodland | L | PA | wasteland | PE | vegetable |
Land Use Type | Water Area, Wetland | Vegetable Land | Paddy Field, Upland Soils | Peasants Inhabited Land |
---|---|---|---|---|
Area (km2) | 46.69 | 3.41 | 8.04 | 9.11 |
Number of SDFP pixels | 522 | 275 | 468 | 489 |
Minimum land subsidence rate (mm/year) | 13 | 3 | 10 | 13 |
Mean land subsidence rate (mm/year) | 42 | 40 | 43 | 68 |
Maximum land subsidence rate (mm/year) | 121 | 125 | 126 | 127 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Gong, H.; Chen, B.; Li, J.; Gao, M.; Zhu, F.; Chen, W.; Liang, Y. InSAR Time-Series Analysis of Land Subsidence under Different Land Use Types in the Eastern Beijing Plain, China. Remote Sens. 2017, 9, 380. https://doi.org/10.3390/rs9040380
Zhou C, Gong H, Chen B, Li J, Gao M, Zhu F, Chen W, Liang Y. InSAR Time-Series Analysis of Land Subsidence under Different Land Use Types in the Eastern Beijing Plain, China. Remote Sensing. 2017; 9(4):380. https://doi.org/10.3390/rs9040380
Chicago/Turabian StyleZhou, Chaofan, Huili Gong, Beibei Chen, Jiwei Li, Mingliang Gao, Feng Zhu, Wenfeng Chen, and Yue Liang. 2017. "InSAR Time-Series Analysis of Land Subsidence under Different Land Use Types in the Eastern Beijing Plain, China" Remote Sensing 9, no. 4: 380. https://doi.org/10.3390/rs9040380
APA StyleZhou, C., Gong, H., Chen, B., Li, J., Gao, M., Zhu, F., Chen, W., & Liang, Y. (2017). InSAR Time-Series Analysis of Land Subsidence under Different Land Use Types in the Eastern Beijing Plain, China. Remote Sensing, 9(4), 380. https://doi.org/10.3390/rs9040380