Modelling Seasonal GWR of Daily PM2.5 with Proper Auxiliary Variables for the Yangtze River Delta
"> Figure 1
<p>The ground PM<sub>2.5</sub> monitoring sites and meteorology stations in the Yangtze River Delta (YRD) region.</p> "> Figure 2
<p>The procedure of constructing seasonal Geographically Weighted Regression (GWR) models with proper auxiliary variables.</p> "> Figure 3
<p>Contributions from nine auxiliary variables in GWR modelling of four seasons and the whole year. (<b>a</b>) spring, (<b>b</b>) summer, (<b>c</b>) autumn, (<b>d</b>) winter, (<b>e</b>) whole year, (<b>f</b>) curve line of contributions from all auxiliary variables in four seasons and the whole year. The box gives the 25%–75% percentile and the line in the box denotes the median. The whisker is the maximum and minimum of R<sup>2</sup>, the points outside the box are outliers, inside the box an average of R<sup>2</sup>.</p> "> Figure 4
<p>(<b>a</b>–<b>d</b>) The comparison of all seasonal GWR models with different auxiliary variables. Blue scattering points are quantitative measures (R<sup>2</sup>, RMSE, MAPE and AICc) of model fitting and red points are those of model evaluation. The dash lines are fitted curves of all scattered points in different seasons.</p> "> Figure 5
<p>Spatial distribution maps of retrieved PM<sub>2.5</sub> concentrations of all 9 models on 16 September 2013. The radial basis interpolation (RBF) method was utilized to interpolate meteorological variables and grid them into cells with spatial resolution of 0.1 degree. (<b>a</b>–<b>i</b>) correspond to retrieved maps of PM<sub>2.5</sub> concentrations from models 1–9 in <a href="#remotesensing-09-00346-t004" class="html-table">Table 4</a>.</p> "> Figure 6
<p>(<b>a</b>–<b>d</b>) Comparison between observed PM<sub>2.5</sub> and predicted PM<sub>2.5</sub> concentrations in the four seasonal models. The dashed lines are regression lines.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Ground-Level PM2.5 Concentration Data
2.1.2. MODIS AOD
2.1.3. Meteorological Datasets
2.1.4. Geographical Datasets
2.1.5. Data Pre-Processing and Integration
2.2. Method
2.2.1. The Regular GWR Model
2.2.2. Seasonal GWR Modelling with Proper Auxiliary Variables
- The datasets of main variables and preliminary auxiliary variables are categorized into four different seasons, spring, summer, autumn, and winter.
- Different regular GWR models are constructed with main variables and auxiliary variables in different seasons. For each model in each season, we take AOD and PM2.5 as main variables and separately add each element of nine single auxiliary variables one at a time into the GWR model. The performance of obtained regular GWR models is quantified via the Determination Coefficient (R2). By comparing with the simple seasonal GWR model without auxiliary variables, we rank the contributions of each auxiliary variable in the regular GWR modelling of daily PM2.5 in descending order. Dominating auxiliary variables for GWR modelling in different seasons are then obtained.
- Spearman correlation coefficient analysis is implemented into each pair of dominating auxiliary variables in different seasons. The operation is to reduce the collinearity and redundancy among dominating auxiliary variables. The spearman correlation coefficient is a nonparametric rank correlation coefficient, and it is a distribution-free version of the classical Pearson’s product–moment correlation coefficient [40]. A higher coefficient means stronger relationships among different auxiliary variables and the coefficient at 0.3 is regarded as the threshold of weak correlations in our study. Once two dominating auxiliary variables have the spearman correlation coefficient over 0.3, and only one of them is chosen for further GWR modelling. The pruned auxiliary variables are obtained after the Spearman correlation coefficient analysis.
- Factor analysis is carried out to verify the representativeness of pruned auxiliary variables. The idea of factor analysis is to group the variables having high correlations or close connections into the same class, where each class represents a basic structure called the common factor. The main common factors are able to reflect the major information of the original variables. In this study, the average of four season accumulated variance of the first four common factors is 70.97%. Moreover, the factor rotation in factor analysis provides actual physical meaning to explain working mechanisms of each pruned auxiliary variables. In the manuscript, we do not use uniform seasonal load matrix to construct new daily common variables and replace original variables because of the big probability of exaggerated errors.
- The proper auxiliary variables are achieved for four different seasonal GWR models. The seasonal GWR models for daily PM2.5 are finally obtained in the YRD region.
2.2.3. Model Evaluation and Verification
3. Results
3.1. Descriptive Statistic of Datasets
3.2. Proper Auxiliary Variables Analysis
3.3. Evaluation and Verification of Seasonal GWR Models
3.3.1. Comparison of Regular GWR Models with Varied Auxiliary Variables
3.3.2. Comparison with the Observed PM2.5 Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Hou, Q.; Li, N.; Zhai, S. Assessment of human exposure level to PM10 in China. Atmos. Environ. 2013, 70, 376–386. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G., Jr.; Speizer, F.E. An association between air pollution and mortality in six U.S. Cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, L.; Mu, H.; Pan, X.; Jing, S.; Feng, C.; He, K.; Koutrakis, P.; Christiani, D.C. Acute health impacts of airborne particles estimated from satellite remote sensing. Environ. Int. 2013, 51, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Weichenthal, S.; Villeneuve, P.J.; Burnett, R.T.; van Donkelaar, A.; Martin, R.V.; Jones, R.R.; Dellavalle, C.T.; Sandler, D.P.; Ward, M.H.; Hoppin, J.A. Long-term exposure to fine particulate matter: Association with nonaccidental and cardiovascular mortality in the agricultural health study cohort. Environ. Health Perspect. 2014, 122, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z. Spatial analysis of MODIS aerosol optical depth, PM2.5, and chronic coronary heart disease. Int. J. Health Geogr. 2009, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zanobetti, A.; Kloog, I.; Coull, B.A.; Koutrakis, P.; Melly, S.J.; Schwartz, J.D. Low-concentration PM2.5 and mortality: Estimating acute and chronic effects in a population-based study. Environ. Health Perspect. 2016, 124, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zang, Z.; Zhang, L.; Yi, L.; Wang, W. Estimating national-scale ground-level PM25 concentration in china using geographically weighted regression based on MODIS and MISR AOD. Environ. Sci. Pollut. Res. 2016, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Hu, X.; Huang, L.; Bi, J.; Liu, Y. Estimating ground-level PM2.5 in China using satellite remote sensing. Environ. Sci. Technol. 2014, 48, 7436–7444. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Paciorek, C.J.; Koutrakis, P. Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environ. Health Perspect. 2009, 117, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Lu, N. Spatiotemporal distribution and short-term trends of particulate matter concentration over China, 2006–2010. Environ. Sci. Pollut. Res. 2014, 21, 9665–9675. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Cao, J.-J.; Shen, Z.-X.; Han, Y.-M.; Lee, S.-C.; Huang, Y.; Zhu, C.-S.; Wang, Q.-Y.; Xu, H.-M.; Huang, R.-J. Spatial and seasonal variations of PM2.5 mass and species during 2010 in Xi’an, China. Sci. Total Environ. 2015, 508, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Strawa, A.W.; Chatfield, R.B.; Legg, M.J.; Scarnato, B.V.; Esswein, R. In improving retrievals of regional PM2.5 concentrations from MODIS and OMI multi-satellite observations. In Proceedings of the American Geophysical Union 2013 Fall Meeting, San Francisco, CA, USA, 9–13 December 2013. [Google Scholar]
- Hu, X.; Waller, L.A.; Lyapustin, A.; Wang, Y.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G.; Estes, S.M.; Quattrochi, D.A.; Puttaswamy, S.J. Estimating ground-level PM2.5 concentrations in the southeastern united states using MAIAC AOD retrievals and a two-stage model. Remote Sens. Environ. 2014, 140, 220–232. [Google Scholar] [CrossRef]
- Song, W.; Jia, H.; Huang, J.; Zhang, Y. A satellite-based geographically weighted regression model for regional PM 2.5 estimation over the Pearl River Delta region in China. Remote Sens. Environ. 2014, 154, 1–7. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.; Zhang, L.; Li, Y.; Pan, X.; Wang, W. National-scale estimates of ground-level PM2.5 concentration in China using geographically weighted regression based on 3 km resolution MODIS AOD. Remote Sens. 2016, 8, 184. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, T.; Gu, X.; Chen, H.; Wang, Y.; Zheng, F.; Xiang, K. Comparison of four ground-level PM2.5 estimation models using parasol aerosol optical depth data from China. Int. J. Environ. Res. Public Health 2016, 13, 180. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Hu, X.; Sayer, A.M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013. Environ. Health Perspect. 2016, 124, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Park, R.J.; Jacob, D.J.; Li, Q.; Kilaru, V.; Sarnat, J.A. Mapping annual mean ground-level PM2.5 concentrations using multiangle imaging spectroradiometer aerosol optical thickness over the contiguous united states. J. Geophys. Res. Atmos. 2004, 109, 2285–2311. [Google Scholar]
- Boys, B.L.; Martin, R.V.; Van, D.A.; Macdonell, R.J.; Hsu, N.C.; Cooper, M.J.; Yantosca, R.M.; Lu, Z.; Streets, D.G.; Zhang, Q. Fifteen-year global time series of satellite-derived fine particulate matter. Environ. Sci. Technol. 2014, 48, 11109–11118. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Li, Y.; Yuan, Z.; Lau, A.K.; Li, C.; Fung, J.C. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM 2.5. Remote Sens. Environ. 2015, 156, 117–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sens. Environ. 2015, 160, 252–262. [Google Scholar] [CrossRef]
- Ma, Z. Study on Spatiotemporal Distribution of PM2.5 in China Using Satellite Remote Sensing. Ph.D. Thesis, Nanjing University, Nanjing, China, 2015. [Google Scholar]
- Li, Z.; Zhang, Y.; Shao, J.; Li, B.; Hong, J.; Liu, D.; Li, D.; Wei, P.; Li, W.; Li, L. Remote sensing of atmospheric particulate mass of dry PM2.5 near the ground: Method validation using ground-based measurements. Remote Sens. Environ. 2016, 173, 59–68. [Google Scholar] [CrossRef]
- Tian, J.; Chen, D. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM 2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements. Remote Sens. Environ. 2010, 114, 221–229. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.; Zhang, L.; Li, Z.; Chen, D.; Zhang, G. Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with Calipso and MODIS fire count. Remote Sens. Environ. 2015, 168, 276–285. [Google Scholar] [CrossRef]
- HuHu, X.; Waller, L.A.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G.; Estes, S.M.; Quattrochi, D.A.; Sarnat, J.A.; Yang, L. Estimating ground-level PM(2.5) concentrations in the southeastern U.S. Using geographically weighted regression. Environ. Res. 2012, 121, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Liu, Y.; Zhao, Q.; Liu, M.; Zhou, Y.; Bi, J. Satellite-derived high resolution PM concentrations in Yangtze river delta region of China using improved linear mixed effects model. Atmos. Environ. 2016, 133, 156–164. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, L.; Qin, K.; Zhang, Y.; Shen, Y.; Zhou, Y. A geographically and temporally weighted regression model for ground-level PM2.5 estimation from satellite-derived 500 m resolution AOD. Remote Sens. 2016, 8, 262. [Google Scholar] [CrossRef]
- Kloog, I.; Koutrakis, P.; Coull, B.A.; Lee, H.J.; Schwartz, J. Assessing temporally and spatially resolved PM 2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmos. Environ. 2011, 45, 6267–6275. [Google Scholar] [CrossRef]
- Hu, X. Estimation of PM2.5 concentrations in the conterminous U.S. using MODIS data and a three-stage model. In Proceedings of the American Geophysical Union 2015 Fall Meeting, San Francisco, CA, USA, 14–18 December 2015. [Google Scholar]
- Van Donkelaar, A.; Martin, R.V.; Spurr, R.J.; Burnett, R.T. High-resolution satellite-derived PM2.5 from optimal estimation and geographically weighted regression over North America. Environ. Sci. Technol. 2015, 49, 10482–10491. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Sun, W. Investigating meteorological and geographical effect in remote sensing retrieval of PM2.5 concentration in Yangtze River Delta. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–18 July 2016; pp. 4108–4111. [Google Scholar]
- Fang, X.; Zou, B.; Liu, X.; Sternberg, T.; Zhai, L. Satellite-based ground PM 2.5 estimation using timely structure adaptive modeling. Remote Sens. Environ. 2016, 186, 152–163. [Google Scholar] [CrossRef]
- Mu, Q.; Zhang, S. Assessment of the Trend of Heavy PM2.5 Pollution Days and Economic Loss of Health Effects during 2001–2013. Acta Sci. Nat. Univ. Pekin. 2015, 51, 694–706. [Google Scholar]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, S.X.; Fu, X.; Watson, J.G.; Jiang, J.K.; Fu, Q.Y.; Chen, C.H.; Xu, B.Y.; Yu, J.S.; Chow, J.C. Impact of biomass burning on haze pollution in the Yangtze River Delta, China: A case study of summer in 2011. Atmos. Chem. Phys. 2014, 14, 4573–4585. [Google Scholar] [CrossRef]
- Xu, J.H.; Jiang, H. Esitmation of PM2.5 concentration over the Yangtze Delta using remote sensing: analysis of spatial and temporal variations. Environ. Sci. 2015, 36, 3119–3127. (In Chinese) [Google Scholar]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environ. Plan. A 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Hauke, J.; Kossowski, T. Comparison of values of Pearson’s and Spearman's correlation coefficients on the same sets of data. Quaest. Geogr. 2015, 30, 87–93. [Google Scholar] [CrossRef]
- Tu, Y.K.; Kellett, M.; Clerehugh, V.; Gilthorpe, M.S. Problems of correlations between explanatory variables in multiple regression analyses in the dental literature. Br. Dent. J. 2005, 199, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Fu, J.; Jiang, D.; Hu, W.; Dong, D.; Huang, Y.; Zhao, M. Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China. Int. J. Environ. Res. Public Health 2013, 11, 173–186. [Google Scholar] [CrossRef] [PubMed]
Study Area | Meteorological Factors | Geographical Factors | References |
---|---|---|---|
China | relatively humidity, air temperature, wind speed, horizontal visibility | — | [16] |
Global | GEOS–Chem chemical transport model (CTM) | urban land cover, elevation | [32] |
China | boundary layer height, temperature, wind speed, relative humidity, air pressure | population density, monthly mean normalized difference vegetation index (NDVI) | [9] |
Pearl River Delta region | temperature, wind speed, relative humidity | — | [15] |
North American Regional | boundary layer height, relative humidity, air temperature, wind speed | percentage of forest cover | [27] |
Data | Variables (Abbreviation) | Unit | Time Frequency | Spatial Parameters | |
---|---|---|---|---|---|
Main Variables | PM2.5 concentration | PM2.5 | μg/m3 | Hourly | 121 stations |
MODIS AOD | AOD | — | Daily | 10 km | |
Preliminary Auxiliary Variables | Geographical data | NDVI | — | 16 days | 1 km |
Geomorphy (Geom) | — | — | 10 km | ||
DEM(Elev) | m | — | 90 m | ||
Meteorological data | Temperature (Temp) | °C | Daily | 72 stations | |
Relative humidity (RH) | % | ||||
Wind speed (WS) | m/s | ||||
Air pressure (Apre) | Pa | ||||
Vapor pressure (Vpre) | Pa | ||||
surface horizontal visibility (VSB) | km | Hourly | 23 stations |
Whole Year | Variable | Model Fitting (N = 3482, day = 66) | Model Evaluation (N = 715, day = 66) | ||||||
Mean | Min | Max | SD | Mean | Min | Max | SD | ||
PM2.5 (μg/m3) | 61.75 | 3 | 400 | 40.43 | 67 | 21 | 267 | 32. | |
AOD (Unit less) | 0.69 | 0.03 | 3.51 | 0.41 | 0.62 | 0.04 | 2.98 | 0.35 | |
Spring | Variable | Model Fitting (N = 1237, day = 21) | Day-Site Evaluation (N = 198, day = 21) | ||||||
Mean | Min | Max | SD | Mean | Min | Max | SD | ||
PM2.5 (μg/m3) | 68.02 | 3 | 279 | 38.43 | 68.72 | 12 | 257 | 35.89 | |
AOD (Unit less) | 0.82 | 0.08 | 3.51 | 0.41 | 0.69 | 0.11 | 3.21 | 0.39 | |
Summer | Variable | Model Fitting (N = 809, day = 16) | Day-Site Evaluation (N = 182, day = 16) | ||||||
Mean | Min | Max | SD | Mean | Min | Max | SD | ||
PM2.5 (μg/m3) | 39.50 | 3 | 400 | 23.25 | 41.50 | 14 | 400 | 26.25 | |
AOD (Unit less) | 0.67 | 0.04 | 2.33 | 0.34 | 0.67 | 0.06 | 2.33 | 0.35 | |
Autumn | Variable | Model Fitting (N = 1014, day = 18) | Day-Site Evaluation (N = 181, day = 18) | ||||||
Mean | Min | Max | SD | Mean | Min | Max | SD | ||
PM2.5 (μg/m3) | 57.95 | 5 | 205 | 35.62 | 62.5 | 9 | 235 | 35.62 | |
AOD (Unit less) | 0.58 | 0.035 | 2.50 | 0.42 | 0.59 | 0.04 | 2.70 | 0.51 | |
Winter | Variable | Model Fitting (N = 422, day = 11) | Day-Site Evaluation (N = 154, day = 11) | ||||||
Mean | Min | Max | SD | Mean | Min | Max | SD | ||
PM2.5 (μg/m3) | 96.76 | 5 | 284 | 50.10 | 102.3 | 25 | 267 | 45 | |
AOD (Unit less) | 0.62 | 0.037 | 2.94 | 0.41 | 0.59 | 0.04 | 3.02 | 0.41 |
Model Groups | Models | Spring | Summer | Autumn | Winter | Year |
---|---|---|---|---|---|---|
AOD + 0 | 1 | AOD | ||||
AOD + 1 | 2 | AOD, WS | AOD, Elev | AOD, WS | AOD, Apre | AOD, WS |
3 | AOD, Vpre | AOD, Vpre | AOD, Temp | AOD, RH | AOD, Vpre | |
4 | AOD, VSB | AOD, VSB | AOD, VSB | AOD, VSB | AOD, VSB | |
AOD + 2 | 5 | AOD, WS, Vpre | AOD, Elev, Vpre | AOD, WS, Temp | AOD, Apre RH | AOD, WS, Vpre |
6 | AOD, WS, VSB | AOD, Elev, VSB | AOD, WS, VSB | AOD, Apre, VSB | AOD, WS, VSB | |
7 | AOD, Vpre, VSB | AOD, Vpre, VSB | AOD, Temp, VSB | AOD, RH, VSB | AOD, Vpre, VSB | |
AOD + 3 (Ours) | 8 | AOD, WS, Vpre, VSB | AOD, Elev, Vpre, VSB | AOD, WS, Temp, VSB | AOD, Apre, RH, VSB | AOD, WS, Vpre, VSB |
AOD + 4 | 9 | AOD, WS, Vpre, VSB, Elev | AOD, Elev Temp, Vpre, VSB, | AOD, WS, Temp, Vpre, VSB | AOD, WS, Apre, RH, VSB | AOD, WS , Temp, Vpre, VSB |
Model | Parameter Estimate | MAPE (%) | |||||
---|---|---|---|---|---|---|---|
Fitting | Evaluation | ||||||
1 | 6.87 | — | — | — | — | 22.17 | 35.91 |
2 | 7.56 | 1.28 | — | — | — | 21.89 | 35.29 |
3 | 6.67 | — | 4.31 | — | — | 21.85 | 36.34 |
4 | 0.81 | — | — | −6.65 | — | 22.64 | 33.18 |
5 | 6.38 | 0.55 | 2.24 | — | 22.24 | 34.34 | |
6 | 2.77 | 1.33 | — | −9.49 | — | 20.92 | 33.05 |
7 | 3.22 | — | 6.38 | −5.82 | — | 20.99 | 34.04 |
8 | 3.09 | 0.61 | 3.89 | −5.00 | — | 20.81 | 32.25 |
9 | 3.84 | 0.81 | 5.98 | −4.81 | 1.45 | 20.92 | 32.79 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Sun, W.; Yang, G.; Zhang, D. Modelling Seasonal GWR of Daily PM2.5 with Proper Auxiliary Variables for the Yangtze River Delta. Remote Sens. 2017, 9, 346. https://doi.org/10.3390/rs9040346
Jiang M, Sun W, Yang G, Zhang D. Modelling Seasonal GWR of Daily PM2.5 with Proper Auxiliary Variables for the Yangtze River Delta. Remote Sensing. 2017; 9(4):346. https://doi.org/10.3390/rs9040346
Chicago/Turabian StyleJiang, Man, Weiwei Sun, Gang Yang, and Dianfa Zhang. 2017. "Modelling Seasonal GWR of Daily PM2.5 with Proper Auxiliary Variables for the Yangtze River Delta" Remote Sensing 9, no. 4: 346. https://doi.org/10.3390/rs9040346
APA StyleJiang, M., Sun, W., Yang, G., & Zhang, D. (2017). Modelling Seasonal GWR of Daily PM2.5 with Proper Auxiliary Variables for the Yangtze River Delta. Remote Sensing, 9(4), 346. https://doi.org/10.3390/rs9040346