Characterization of Snow Facies on the Greenland Ice Sheet Observed by TanDEM-X Interferometric SAR Data
"> Figure 1
<p>Greenland Ice Sheet facies, classified after C. S. Benson in [<a href="#B2-remotesensing-09-00315" class="html-bibr">2</a>]: the dry snow zone, where no melt occurs, the percolation zone, where a limited amount of melt per year occurs and meltwater percolates and then refreezes within the snow pack, the wet snow zone, where a substantial part of the snow melt drains off during summer, and the ablation zone, where the previous year accumulation completely melts during summer.</p> "> Figure 2
<p>(<b>a</b>) Mosaic of the backscatter <math display="inline"> <semantics> <msup> <mi>γ</mi> <mn>0</mn> </msup> </semantics> </math> over Greenland with a resolution of 200 <math display="inline"> <semantics> <mi mathvariant="normal">m</mi> </semantics> </math> × 200 <math display="inline"> <semantics> <mi mathvariant="normal">m</mi> </semantics> </math>. (<b>b</b>) Corresponding mosaic of the volume correlation factor <math display="inline"> <semantics> <msub> <mi>γ</mi> <mi>Vol</mi> </msub> </semantics> </math>. The composed TanDEM-X acquisitions were acquired in winter 2010–2011. Areas where no data are available are depicted in black.</p> "> Figure 3
<p>(<b>a</b>) <math display="inline"> <semantics> <mi>NESZ</mi> </semantics> </math> (Noise Equivalent Sigma Zero) profiles for the operational TanDEM-X beams [<a href="#B10-remotesensing-09-00315" class="html-bibr">10</a>]. (<b>b</b>) Coherence loss due to BAQ (Block Adaptive Quantization). Each curve identifies a different quantization rate (2, 3, and 4 bits/sample).</p> "> Figure 4
<p>(<b>a</b>) Slope map over Greenland derived from TanDEM-X digital elevation data. (<b>b</b>) Mask of permanent ice areas. White corresponds to the Ice Sheet and black to ice-free areas, derived from the local variance of TanDEM-X backscatter and terrain slope. The red squares identify two test sites used for verification, as presented in <a href="#remotesensing-09-00315-f005" class="html-fig">Figure 5</a>.</p> "> Figure 5
<p>Comparison between masks of permanent ice- and snow-covered regions of Greenland, derived from TanDEM-X interferometric data, and the PROMICE aerophotogrammetric map of Greenland ice masses [<a href="#B32-remotesensing-09-00315" class="html-bibr">32</a>].</p> "> Figure 6
<p>Membership values for each pixel belonging to the Ice Sheet, for the different set of cluster centers used for classifying the Greenland Ice Sheet. (<b>a</b>) three clusters, (<b>b</b>) four clusters, (<b>c</b>) five clusters.</p> "> Figure 7
<p>Classification of the Greenland Ice Sheet facies using (<b>a</b>) three, (<b>b</b>) four, and (<b>c</b>) five clusters; together with the corresponding normalized histograms of the input data and the locations of the cluster centers <math display="inline"> <semantics> <mover accent="true"> <mi mathvariant="normal">v</mi> <mo stretchy="false">^</mo> </mover> </semantics> </math> (<b>d</b>–<b>f</b>). The white rectangles locate the maximum of the histogram.</p> "> Figure 8
<p>Location of cluster centers in the normalized input domain.</p> "> Figure 9
<p>(<b>a</b>) Estimated snow facies of the Greenland Ice Sheet from TanDEM-X data with a ground resolution of about 4 km × 4 km. The contour lines identify the borders between facies 1 and 2 (yellow), facies 2 and 3 (light blue), and facies 3 and 4 (violet), respectively. (<b>b</b>) Average melt days per year from 1981 to 2010, derived from passive microwave sensors [<a href="#B33-remotesensing-09-00315" class="html-bibr">33</a>].</p> "> Figure 10
<p>Test sites along the EGIG line used for supporting the CryoSat mission with in situ measurements, superimposed onthe snow facies map as derived in <a href="#remotesensing-09-00315-f007" class="html-fig">Figure 7</a>b. (Data overlayed in ©Google Earth).</p> "> Figure 11
<p>(<b>a</b>) Mosaic of the SNR for the considered TanDEM-X acquisitions. (<b>b</b>) Refined classification of facies 1 into a northern (violet) and a southern (light blue) sub-facies. (<b>c</b>) Membership values for each pixel for the two sub-clusters. (<b>d</b>) Histogram of the input data in the normalized domain.</p> "> Figure 12
<p>Histograms of the backscatter <math display="inline"> <semantics> <msup> <mi>γ</mi> <mn>0</mn> </msup> </semantics> </math> and of the volume correlation factor <math display="inline"> <semantics> <msub> <mi>γ</mi> <mi>Vol</mi> </msub> </semantics> </math> (filled red area), and corresponding Gaussian fitting (solid curves) for facies 1 (<b>a1</b>,<b>a2</b>), facies 2 (<b>b1</b>,<b>b2</b>), facies 3 (<b>c1</b>,<b>c2</b>), and facies 4 (<b>d1</b>,<b>d2</b>). The sum of two Gaussian curves in plot (<b>a1</b>) has been used for fitting the <math display="inline"> <semantics> <msup> <mi>γ</mi> <mn>0</mn> </msup> </semantics> </math> of inner snow facies (facies 1). (<b>e1</b>) Overall normalized histogram of the total backscatter <math display="inline"> <semantics> <msup> <mi>γ</mi> <mn>0</mn> </msup> </semantics> </math> (red bars) and sum of the five fitting Gaussian distributions (black) derived for the different facies. (<b>e2</b>) overall normalized histogram of the total volume correlation factor (red bars) and sum of the four fitting Gaussians (black) derived for the different facies.</p> "> Figure 13
<p>Dependency of the volume correlation factor <math display="inline"> <semantics> <msub> <mi>γ</mi> <mi>Vol</mi> </msub> </semantics> </math> on the height of ambiguity <math display="inline"> <semantics> <msub> <mi>h</mi> <mi>amb</mi> </msub> </semantics> </math> for the snow facies 3. Red dots: <math display="inline"> <semantics> <msub> <mi>γ</mi> <mi>Vol</mi> </msub> </semantics> </math> mean values, vertical black lines: <math display="inline"> <semantics> <msub> <mi>γ</mi> <mi>Vol</mi> </msub> </semantics> </math> standard deviations (axis on the left-hand side), blue dots: number of available <math display="inline"> <semantics> <msub> <mi>γ</mi> <mi>Vol</mi> </msub> </semantics> </math> samples <span class="html-italic">N</span> per <math display="inline"> <semantics> <msub> <mi>h</mi> <mi>amb</mi> </msub> </semantics> </math> interval in logarithmic scale (axis on the right-hand side).</p> "> Figure 14
<p>Relation between snow density and permittivity, derived from [<a href="#B43-remotesensing-09-00315" class="html-bibr">43</a>].</p> "> Figure 15
<p>(<b>a</b>) Map of the retrieved X-band two-way penetration depth. (<b>b</b>) Mean differences between TanDEM-X DEM, acquired during winter, and ICESat measurements.</p> "> Figure 16
<p>(<b>a</b>) Histograms of the two-way penetration depth for the different snow facies. (<b>b</b>) Histograms of the mean difference between ICESat and TanDEM-X DEM <math display="inline"> <semantics> <mrow> <mi>Δ</mi> <mi>h</mi> </mrow> </semantics> </math> for the different facies. The mean value of each distribution is indicated by a vertical line in the corresponding color.</p> ">
Abstract
:1. Introduction
2. Fuzzy Clustering for Snow Facies Classification
2.1. The Fuzzy c-Means Clustering Optimization
2.2. Algorithm Initialization
3. Input Data: TanDEM-X Mosaics over Greenland
3.1. TanDEM-X Acquisitions over Greenland
3.2. TanDEM-X Input Mosaics
- , where is the signal-to-noise ratio and is assumed to be equal in both monostatic and bistatic images:
- According to the performance estimation analysis for TanDEM-X [10], , , and are assumed to introduce a further overall correlation factor of 0.98 (2%).
- , since images are acquired in bistatic configuration.
3.3. Generation of the Ice Sheet Mask
4. Classification Results
5. Snow Facies Interpretation and Further Considerations
5.1. Reference Snow Melt Data
5.2. In Situ Measurements along the EGIG Line
- T03 (belonging to facies 4) shows the presence of percolation features, such as ice layers and lenses, generated by meltwater and positioned under the summer melt level.
- at T05 (situated at the transition between facies 3 and facies 4), percolation features do not always reach the melt surface of the previous summer. Moreover, because of percolation, an additional moderate densification was observed beneath the previous upper end of summer surface, suggesting that most of the percolating water refreezes before reaching the previous summer surface.
- Between T07 and T12 (situated approximately at the outer and inner borders of facies 3) the depth at which percolation features could be found significantly decreased.
- T05 is situated in the percolation zone and characterized by the considerable presence of thick ice layers within the snow pack.
- A transition zone has then been detected between T05 and T21, which matches the borders of the dry snow zone.
- T21 (belonging to facies 1) is indicated as the start of the dry snow zone. From our analysis, the assigned snow facies 1 appears in that region to be slightly more extended toward the outer Ice Sheet of about 30 km.
- Significant differences in the vertical structure are detectable between T12 and T21 (Figure 5 in [40]), being high-density melt layers clearly visible at T12 only.
- Mean snow density, accumulation rate, and mean snow temperature decrease almost gradually along the EGIG line (from outer to inner regions).
5.3. Refined Classification of the Inner Snow Facies
5.4. Statistical Analysis of the Derived Snow Facies
5.5. Volume Decorrelation Dependency on the Height of Ambiguity
6. Estimation of the Penetration Depth
- at T05 (belonging to facies 4): ,
- at T09 (belonging to facies 3): ,
- at T12 and T15 (belonging to facies 2): and ,
- from T21 to the summit of the traverse (belonging to facies 1): decreases from about to about .
7. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Groh, A.; Ewert, H.; Fritsche, M.; Rülke, A.; Rosenau, R.; Scheinert, M.; Dietrich, R. Assessing the Current Evolution of the Greenland Ice Sheet by Means of Satellite and Ground-Based Observations. Surv. Geophys. 2014, 35, 1259–1480. [Google Scholar] [CrossRef]
- Benson, C.S. Stratigraphic Studies in the Snow and Firn of the Greenland Ice Sheet; Research Report 70; Reprinted August 1996; U.S. Army Snow, Ice and Permafrost Research Establishment: Hanover, Germany, 1962. [Google Scholar]
- Bales, R.C.; Guo, Q.; Shen, D.; McConnell, J.R.; Du, G.; Burkhart, J.F.; Spikes, V.B.; Hanna, E.; Cappelen, J. Annual Accumulation for Greenland Updated using Ice Core Data developed during 2000/2006 and Analysis of Daily Coastal Meteorological Data. J. Geophys. Res. 2009, 114, 1–14. [Google Scholar] [CrossRef]
- Munk, J.; Jezek, K.C.; Foster, R.R.; Gogineni, S. An Accumulation Map for the Greenland Dry-Snow Facies Derived from Spaceborne Radar. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Jezek, K.G.; Gogineni, P.; Shanableh, M. Radar Mesurements of Melt Zones on the Greenland Ice Sheet. Geophys. Res. Lett. 1994, 21, 33–36. [Google Scholar] [CrossRef]
- Rignot, E.; Jezek, K.; van Zyl, J.; Drinkwater, M. Radar Scattering from Snow Facies of the Greenland Ice Sheet: Results from the AIRSAR 1991 Campaign. In Proceedings of the IEEE IGARSS, Tokyo, Japan, 18–21 August 1993; pp. 1270–1272. [Google Scholar]
- Ashcraft, I.; Long, D. Observation and Characterization of Radar Backscatter Over Greenland. IEEE TGRS 2005, 43, 225–237. [Google Scholar] [CrossRef]
- Joughin, I.; Smith, B.E.; Howat, I.M.; Moon, T.; Scambos, T.A. A SAR Record of Early 21st Century Change in Greenland. J. Glaciol. 2016, 62, 62–71. [Google Scholar] [CrossRef]
- Weber Hoen, E.; Zebker, H. Penetration Depths Inferred from Interferometric Volume Decorrelation Observed over the Greenland Ice Sheet. IEEE TGRS 2000, 38, 2571–2583. [Google Scholar]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A Satellite Formation for High Resolution SAR Interferometry. IEEE TGRS 2007, 45, 3317–3341. [Google Scholar] [CrossRef]
- Krieger, G.; Zink, M.; Bachmann, M.; Bräutigam, B.; Schulze, D.; Martone, M.; Rizzoli, P.; Steinbrecher, U.; Antony, J.W.; De Zan, F.; et al. TanDEM-X: A Radar Interferometer with Two Formation-Flying Satellites. Acta Astronaut. 2013, 89, 83–98. [Google Scholar] [CrossRef]
- Zink, M.; Bachmann, M.; Bräutigam, B.; Fritz, T.; Hajnsek, I.; Krieger, G.; Moreira, A.; Wessel, B. TanDEM-X: The New Global DEM Takes Shape. IEEE GRSM 2014, 2, 8–23. [Google Scholar] [CrossRef]
- Martone, M.; Bräutigam, B.; Krieger, G. Decorrelation Effects in Bistatic TanDEM-X Data. In Proceedings of the IEEE IGARSS, Munich, Germany, 22–27 July 2012; pp. 5558–5561. [Google Scholar]
- Rott, H.; Sturm, K.; Miller, H. Active and Passive Microwave Signatures of Antarctic Firn by Means of Field Measurements and Satellite Data. Ann. Galciol. 1993, 17, 337–343. [Google Scholar] [CrossRef]
- Rott, H.; Floricioiu, D.; Wuite, J.; Scheiblauer, S.; Nagler, T.; Kern, M. Mass Changes of Outlet Glaciers along the Nordensjköld Coast, Northern Antarctic Peninsula, Based on TanDEM-X Satellite Measurements. Geophys. Res. Lett. 2014, 41, 8123–8129. [Google Scholar] [CrossRef]
- Munk, J.; Jezek, K.; Baumgartner, F.; Gogineni, S.P.; Forster, R.R.; Zabel, I.H.H. Estimating a Volumetric Backscatter Coefficient from In-situ Measurements on the Greenland Ice Sheet. In Proceedings of the IEEE IGARSS, Honolulu, HI, USA, 24–28 July 2000; pp. 917–919. [Google Scholar]
- Rizzoli, P.; Martone, M.; Bräutigam, B. Greenland Snow Facies Identification Approach using TanDEM-X Interferometric Data. In Proceedings of the IEEE IGARSS, Milan, Italy, 26–31 July 2015; pp. 2060–2063. [Google Scholar]
- Bezdek, J.; Ehrlich, R.; Full, W. FCM: The Fuzzy c-Means Clustering Algorithm. Comput. Geosci. 1984, 10, 191–203. [Google Scholar] [CrossRef]
- Partington, K.C. Discrimination of Glacier Facies using Multi-Temporal SAR Data. J. Glaciol. 1998, 44, 42–53. [Google Scholar] [CrossRef]
- Tran, N.; Rémy, F.; Feng, H.; Féménias, P. Snow Facies Over Ice Sheets Derived From Envisat Active and Passive Observation. IEEE TGRS 2008, 46, 3694–3708. [Google Scholar] [CrossRef]
- Höppner, F.; Klawonn, F.; Kruse, R.; Runkler, T. Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Miyamoto, S.; Ichihashi, H.; Honda, K. Algorithms for Fuzzy Clustering: Methods in c-Means Clustering with Applications; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Derrig, R.A.; Ostaszewski, K.M. Fuzzy Techniques of Pattern Recognition in Risk and Claim Classification. J. Risk Insur. 1995, 62, 447–482. [Google Scholar] [CrossRef]
- Das, S.; Baruah, H.K. Application of Fuzzy C-Means Clustering Technique in Vehicular Pollution. J. Process Manag. New Technol. 2013, 1, 96–107. [Google Scholar]
- Goyal, M.; Kumar, S. Improving the Initial Centroids of k-means Clustering Algorithm to Generalize its Applicability. J. Inst. Eng. Ser. B 2014, 95, 345–350. [Google Scholar] [CrossRef]
- Fritz, T.; Rossi, C.; Yague-Martinez, N.; Rodriguez-Gonzalez, F.; Lachaise, M.; Breit, H. Interferometric Processing of TanDEM-X data. In Proceedings of the IEEE IGARSS, Vancouver, BC, Canada, 24–29 July 2011; pp. 2428–2431. [Google Scholar]
- Rizzoli, P.; Bräutigam, B. Radar Backscatter Modeling Based on Global TanDEM-X Mission Data. IEEE TGRS 2013, 52, 5974–5988. [Google Scholar] [CrossRef]
- Rizzoli, P.; Martone, M.; Bräutigam, B. Global Interferometric Coherence Maps From TanDEM-X Quicklook Data. IEEE GRSL 2014, 11, 1861–1865. [Google Scholar] [CrossRef]
- Raney, R.K.; Freeman, T.; Hawkins, R.W.; Bamler, R. A Plea for Radar Brightness. In Proceedings of the IEEE IGARSS, Pasadena, CA, USA, 8–12 August 1994; pp. 1090–1092. [Google Scholar]
- Martone, M.; Rizzoli, P.; Bräutigam, B.; Krieger, G. A Method for Generating Forest/Non-Forest Maps from TanDEM-X Interferometric Data. In Proceedings of the IEEE IGARSS, Milan, Italy, 26–31 July 2015; pp. 2634–2637. [Google Scholar]
- Martone, M.; Bräutigam, B.; Krieger, G. Quantization Effects in TanDEM-X Data. IEEE TGRS 2015, 53, 583–597. [Google Scholar] [CrossRef]
- Citterio, M.; Ahlstrom, A. The Aerophotogrammetric Map of Greenland Ice Masses. Cryosphere 2013, 7, 445–449. [Google Scholar] [CrossRef]
- Tedesco, M. Greenland Daily Surface Melt 25km EASE-Grid; Data from 1979 to 2010; Digital Media, City College of New York, The City University of New York: New York, NY, USA, 2010. [Google Scholar]
- Nghiem, S.V.; Hall, D.K.; Mote, T.L.; Tedesco, M.; Albert, M.R.; Keegan, K.; Shuman, C.A.; DiGirolamo, N.E.; Neumann, G. The Extreme Melt Across the Greenland Ice Sheet in 2012. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Nilsson, J.; Vallelonga, P.; Simonsen, S.B.; Sandberg Sørensen, L.; Forsberg, R.; Dahl-Jensen, D.; Hirabayashi, M.; Goto-Azuma, K.; Hvidberg, C.S.; Kjær, H.A.; et al. Greenland 2012 Melt Event Effects on CryoSat-2 Radar Altimetry. Geophys. Res. Lett. 2015, 42, 3919–3926. [Google Scholar] [CrossRef]
- BYU Center for Remote Sensing; NASA Jet Propulsion Laboratory (JPL); European Space Agency (ESA) Advanced Scatterometer (ASCAT) Sigma-0 Browse Images (Non-Enhanced). Scatterometer Climate Record Pathfinder. Available online: http://www.scp.byu.edu/data/Ascat/SigBrw/ASCAT_SigBrw.html (accessed on 7 March 2017).
- The International Glaciological Expedition to Greenland (EGIG), 1956–74. Polar Rec. 1975, 110.
- Wingham, D.J. CryoSat: A Mission to Determine Fluctuations in the Earth’s Ice Fields. In Proceedings of the IEEE IGARSS, Toronto, ON, Canada, 24–28 June 2002; pp. 1750–1752. [Google Scholar]
- Scott, J.B.T.; Nienow, P.; Mair, D.; Parry, V.; Morris, E.; Wingham, D.J. Importance of Seasonal and Annual Layers in Controlling Backscatter to Radar Altimeter across the Percolation Zone of an Ice Sheet. Geophys. Res. Lett. 2006, 33, 1–6. [Google Scholar] [CrossRef]
- Morris, E.M.; Wingham, D.J. The Effect of Fluctuations in Surface Density, accumulation and Compaction on Elevation Changes along the EGIG Line, Central Greenland. J. Glaciol. 2011, 57, 416–430. [Google Scholar] [CrossRef]
- Scott, J.B.T.; Mair, D.; Nienow, P.; Parry, V.; Morris, E.M. A Ground-Based Radar Backscatter Investigation in the Percolation Zone of the Greenland Ice Sheet. Remote Sens. Environ. 2006, 104, 361–373. [Google Scholar] [CrossRef]
- Flach, J.; Partington, K.; Ruiz, C.; Jeansou, E.; Drinkwater, M. Inversion of the Surface Properties of Ice Sheets from Satellite Microwave Data. IEEE TGRS 2005, 43, 743–752. [Google Scholar] [CrossRef]
- Fujita, S.; Hirabayashi, M.; Goto-Azuma, K.; Dallmayr, R.; Satow, K.; Zheng, J.; Dahl-Jensen, D. Densification of Layered Firn of the Ice Sheet at NEEM, Greenland. J. Glaciol. 2014, 60, 905–921. [Google Scholar] [CrossRef]
- National Snow and Ice Data Center (NSIDC) GLAS/ICESat L2 Global Land Surface Altimetry Data, Version 34. Available online: http://dx.doi.org/10.5067/ICESAT/GLAS/DATA227 (accessed on 7 March 2017).
- Dall, J. InSAR Elevation Bias Caused by Penetration Into Uniform Volumes. IEEE TGRS 2007, 45, 2319–2324. [Google Scholar] [CrossRef]
- Wessel, B.; Bertram, A.; Gruber, A.; Bemm, S.; Dech, S. A New High-Resolution Elevation Model of Greenland Derived from TanDEM-X. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences of the XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016; pp. 9–16. [Google Scholar]
- Moreira, A.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.; Younis, M.; Lopez-Dekker, P.; Huber, S.; Villano, M.; Pardini, M.; Eineder, M.; et al. Tandem-L: A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the Earth’s Surface. IEEE Geosci. Remote Sens. Mag. 2015, 3, 8–23. [Google Scholar] [CrossRef]
Clusters | (%) | (%) | (%) | (%) |
---|---|---|---|---|
3 | 23.8 | 64.2 | 91.3 | 100.0 |
4 | 12.7 | 46.8 | 81.2 | 98.9 |
5 | 8.9 | 35.4 | 69.0 | 96.8 |
Facies | Ice Sheet Percentage (%) | Extension () |
---|---|---|
Facies 1 | 24.1 | 409,700 |
Facies 2 | 27.8 | 472,600 |
Facies 3 | 21.9 | 372,300 |
Facies 4 | 26.2 | 445,400 |
Facies | Backscatter | Volume Correlation Factor | ||||
---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | |||
( ) | (dB) | ( ) | (dB) | ( ) | ( ) | |
1 (southern) | 0.095 | −10.21 | 0.033 | −14.76 | 0.67 | 0.04 |
1 (northern) | 0.172 | −7.63 | 0.067 | −11.73 | ||
2 | 0.253 | −5.96 | 0.101 | −9.95 | 0.73 | 0.05 |
3 | 0.664 | −1.78 | 0.247 | −6.07 | 0.77 | 0.03 |
4 | 0.883 | −0.54 | 0.365 | −4.37 | 0.85 | 0.04 |
Facies | Backscatter | Volume Correlation Factor | ||||
---|---|---|---|---|---|---|
1 (southern) | 0.127 | −11.056 | 1.316 | 0.247 | 0.670 | 0.041 |
1 (northern) | 0.129 | −7.620 | 1.373 | |||
2 | 0.274 | −5.888 | 1.561 | 0.274 | 0.717 | 0.037 |
3 | 0.235 | −2.087 | 1.761 | 0.223 | 0.769 | 0.029 |
4 | 0.235 | −0.148 | 1.256 | 0.254 | 0.839 | 0.029 |
Facies | Mean Snow Density (g/) | Permittivity |
---|---|---|
1 | 0.355 | 1.70 |
2 | 0.395 | 1.75 |
3 | 0.40 | 1.78 |
4 | 0.41 | 1.80 |
Facies | Penetration Depth | ICESat-TDX DEM | |||
---|---|---|---|---|---|
Mean (m) | Std. Dev. (m) | Mean (m) | Std. Dev. (m) | (m) | |
1 | 4.18 | 0.51 | 5.38 | 1.90 | −1.20 |
2 | 3.58 | 0.56 | 4.70 | 1.49 | −1.12 |
3 | 3.07 | 0.33 | 3.89 | 1.54 | −0.82 |
4 | 2.34 | 0.49 | 3.74 | 2.32 | −1.40 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzoli, P.; Martone, M.; Rott, H.; Moreira, A. Characterization of Snow Facies on the Greenland Ice Sheet Observed by TanDEM-X Interferometric SAR Data. Remote Sens. 2017, 9, 315. https://doi.org/10.3390/rs9040315
Rizzoli P, Martone M, Rott H, Moreira A. Characterization of Snow Facies on the Greenland Ice Sheet Observed by TanDEM-X Interferometric SAR Data. Remote Sensing. 2017; 9(4):315. https://doi.org/10.3390/rs9040315
Chicago/Turabian StyleRizzoli, Paola, Michele Martone, Helmut Rott, and Alberto Moreira. 2017. "Characterization of Snow Facies on the Greenland Ice Sheet Observed by TanDEM-X Interferometric SAR Data" Remote Sensing 9, no. 4: 315. https://doi.org/10.3390/rs9040315
APA StyleRizzoli, P., Martone, M., Rott, H., & Moreira, A. (2017). Characterization of Snow Facies on the Greenland Ice Sheet Observed by TanDEM-X Interferometric SAR Data. Remote Sensing, 9(4), 315. https://doi.org/10.3390/rs9040315