An Intercomparison of Satellite-Based Daily Evapotranspiration Estimates under Different Eco-Climatic Regions in South Africa
"> Figure 1
<p>Location of Skukuza eddy covariance flux tower and Elandsberg Large Aperture Scintillometer (LAS) sites.</p> "> Figure 2
<p>Skukuza eddy covariance flux tower station in Kruger National Park.</p> "> Figure 3
<p>(<b>left</b>) LAS transmitter of infrared radiation; and (<b>right</b>) receiver of the optically modified infrared beam located about 900 m away from the transmitter.</p> "> Figure 4
<p>Meteorological data input measurements for: DOY 1-31 (<b>a</b>); and DOY 128-153 (<b>b</b>) periods in Skukuza eddy covariance flux tower site; and DOY 314–346 (<b>c</b>); and DOY 153 and 180 (<b>d</b>) periods in Elandsberg LAS site.</p> "> Figure 5
<p>Time series of measured and modeled ET for the: wet (<b>a</b>); and dry (<b>b</b>) periods in Skukuza eddy covariance flux tower site; and the dry (<b>c</b>); and wet (<b>d</b>) periods in Elandsberg LAS site.</p> "> Figure 6
<p>Scatterplots of daily measured vs. modeled ET for: Skukuza ((<b>a</b>) wet; and (<b>b</b>) dry); and Elandsberg ((<b>c</b>) dry; and (<b>d</b>) wet).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.1.1. Summer Rainfall Savannas and Skukuza Flux Tower
Eddy Covariance System
2.1.2. Winter Rainfall Fynbos and Elandsberg Large Aperture Scintillometer
Scintillometry System
2.2. Model Descriptions
2.2.1. TsVI Method
Defining the φ Parameter
2.2.2. Penman–Monteith Based MOD16 ET Model
2.2.3. Net Radiation and Soil Heat Flux Estimation
2.3. Global Evapotranspiration Products
2.3.1. LSA SAF Evapotranspiration Product
2.3.2. GLEAM Evapotranspiration Product
2.4. Datasets
2.4.1. In Situ and Meteorological Measurements
2.4.2. Remote Sensing Data
2.5. Data Analysis
3. Results
3.1. Ground Measurements of Evapotranspiration and Meteorological Input Variables
3.2. ET Models Performance Evaluation
3.2.1. Skukuza
3.2.2. Elandsberg
3.2.3. Net Radiation Estimations
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, Z.L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Gibson, L.A.; Jarmain, C.; Su, Z.; Eckardt, F.E. Review: Estimating evapotranspiration using remote sensing and the Surface Energy Balance System—A South African perspective. Water SA 2013, 39, 477–484. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip. Rev. Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Hirschboeck, K.K.; Brown, P. Integrating remote sensing and ground methods to estimate evapotranspiration. Crit. Rev. Plant Sci. 2007, 26, 139–168. [Google Scholar] [CrossRef]
- Glenn, E.P.; Nagler, P.L.; Huete, A.R. Vegetation index methods for estimating evapotranspiration by remote sensing. Surv. Geophys. 2010, 31, 531–555. [Google Scholar] [CrossRef]
- Nagler, P.L.; Cleverly, J.; Glenn, E.; Lampkin, D.; Huete, A.; Wan, Z. Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sens. Environ. 2005, 94, 17–30. [Google Scholar] [CrossRef]
- Paul, G.; Gowda, P.H.; Prasad, P.V.; Howell, T.A.; Aiken, R.M.; Neale, C.M. Investigating the influence of roughness length for heat transport (z oh) on the performance of SEBAL in semi-arid irrigated and dryland agricultural systems. J. Hydrol. 2014, 509, 231–244. [Google Scholar] [CrossRef]
- Wang, X.-G.; Wang, W.; Huang, D.; Yong, B.; Chen, X. Modifying SEBAL model based on the trapezoidal relationship between land surface temperature and vegetation index for actual evapotranspiration estimation. Remote Sens. 2014, 6, 5909–5937. [Google Scholar] [CrossRef]
- Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.H.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Applications. J. Irrig. Drain. Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Ma, W.; Ma, Y.; Ishikawa, H. Evaluation of the SEBS for upscaling the evapotranspiration based on in-situ observations over the Tibetan Plateau. Atmos. Res. 2014, 138, 91–97. [Google Scholar] [CrossRef]
- Westerhoff, R.S. Using uncertainty of Penman and Penman–Monteith methods in combined satellite and ground-based evapotranspiration estimates. Remote Sens. Environ. 2015, 169, 102–112. [Google Scholar] [CrossRef]
- Dhungel, R.; Allen, R.G.; Trezza, R.; Robison, C.W. Comparison of latent heat flux using aerodynamic methods and using the Penman–Monteith method with satellite-based surface energy balance. Remote Sens. 2014, 6, 8844–8877. [Google Scholar] [CrossRef]
- Ershadi, A.; McCabe, M.; Evans, J.; Wood, E. Impact of model structure and parameterization on Penman–Monteith type evaporation models. J. Hydrol. 2015, 525, 521–535. [Google Scholar] [CrossRef]
- Priestley, C.; Taylor, R. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Szilagyi, J.; Parlange, M.B.; Katul, G.G. Assessment of the Priestley-Taylor parameter value from ERA-Interim global reanalysis data. J. Hydrol. Environ. Res. 2014, 2, 1–7. [Google Scholar]
- Colaizzi, P.D.; Agam, N.; Tolk, J.A.; Evett, S.R.; Howell, T.A.; Gowda, P.H.; O’Shaughnessy, S.A.; Kustas, W.P.; Anderson, M.C. Two source energy balance model to calculate E, T, and ET: Comparison of Priestley-Taylor and Penman-Monteith formulations and two time scaling methods. Trans. ASABE 2014, 57, 479–498. [Google Scholar]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Arboleda, A.; Ghilain, N.; Gellens-Meulenberghs, F. The LSA-SAF evapotranspiration product-first results with MSG. In Proceedings of the 2005 EUMETSAT Meteorological Satellite Data User’s Conference, Dubrovnik, Croatia, 19–23 September 2005. [Google Scholar]
- Dutra, E.; Balsamo, G.; Viterbo, P.; Miranda, P.M.A.; Beljaars, A.; Schär, C.; Elder, K. An improved snow scheme for the ECMWF land surface model: Description and offline validation. J. Hydrometeorol. 2010, 11, 899–916. [Google Scholar] [CrossRef]
- Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F. Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data. Hydrol. Earth Syst. Sci. 2011, 15, 771–786. [Google Scholar] [CrossRef]
- Miralles, D.; De Jeu, R.; Gash, J.; Holmes, T.; Dolman, A. An application of GLEAM to estimating global evaporation. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 1–27. [Google Scholar] [CrossRef]
- Miralles, D.; Holmes, T.; De Jeu, R.; Gash, J.; Meesters, A.; Dolman, A. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- Yang, Y.; Long, D.; Guan, H.; Liang, W.; Simmons, C.; Batelaan, O. Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics. Water Resour. Res. 2015, 51, 3145–3165. [Google Scholar] [CrossRef]
- Singh, R.K.; Senay, G.B. Comparison of four different energy balance models for estimating evapotranspiration in the Midwestern United States. Water 2016, 8, 9. [Google Scholar] [CrossRef]
- Bhattarai, N.; Shaw, S.B.; Quackenbush, L.J.; Im, J.; Niraula, R. Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 75–86. [Google Scholar] [CrossRef]
- Ershadi, A.; McCabe, M.; Evans, J.; Chaney, N.; Wood, E. Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agric. For. Meteorol. 2014, 187, 46–61. [Google Scholar] [CrossRef]
- Ha, W.; Kolb, T.E.; Springer, A.E.; Dore, S.; O’Donnell, F.C.; Martinez Morales, R.; Masek Lopez, S.; Koch, G.W. Evapotranspiration comparisons between eddy covariance measurements and meteorological and remote-sensing-based models in disturbed ponderosa pine forests. Ecohydrology 2015, 8, 1335–1350. [Google Scholar] [CrossRef]
- Vinukollu, R.K.; Wood, E.F.; Ferguson, C.R.; Fisher, J.B. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ. 2011, 115, 801–823. [Google Scholar] [CrossRef]
- Jarmain, C.; Mengitsu, M.; Jewitt, G.P.W.; Kongo, V.; Bastiaanssen, W. A Methodology for Near-Real Time Spatial Estimation of Evaporation; Report 1751-1-09; Water Research Commission: Pretoria, South Africa, 2009. [Google Scholar]
- Jovanovic, N.; Garcia, C.L.; Bugan, R.D.; Teich, I.; Rodriguez, C.M.G. Validation of remotely-sensed evapotranspiration and NDWI using ground measurements at Riverlands, South Africa. Water SA 2014, 40, 211–220. [Google Scholar] [CrossRef]
- Ramoelo, A.; Majozi, N.; Mathieu, R.; Jovanovic, N.; Nickless, A.; Dzikiti, S. Validation of Global Evapotranspiration Product (MOD16) using Flux Tower Data in the African Savanna, South Africa. Remote Sens. 2014, 6, 7406–7423. [Google Scholar] [CrossRef]
- Sun, Z.; Gebremichael, M.; Ardö, J.; Nickless, A.; Caquet, B.; Merboldh, L.; Kutschi, W. Estimation of daily evapotranspiration over Africa using MODIS/Terra and SEVIRI/MSG data. Atmos. Res. 2012, 112, 35–44. [Google Scholar] [CrossRef]
- Jarmain, C.; Everson, C.S.; Savage, M.J.; Mengistu, M.G.; Clulow, A.D.; Walker, S.; Gush, M.B. Refining Tools for Evaporation Monitoring in Support of Water Resources Management; Water Research Commission Pretoria: Pretoria, South Africa, 2009. [Google Scholar]
- Klaasse, A.; Bastiaanssen, W.; Bosch, J.; Jarmain, C.; De Wit, M. Water Use Efficiency of Table and Wine Grapes in Western Cape, South Africa: The Spatial and Temporal Variation of Water Use Efficiency in Grape Cultivation Using Remote Sensing Technology; Report to the Department of Agriculture, Western Cape, South Africa; Department of Agriculture: Western Cape, South Africa, 2008.
- Klaasse, A.; Jarmain, C. GrapeLook: Improving Agricultural Water Management using Satellite Earth Observation. Available online: https://earthzine.org/2011/12/23/grapelook-improving-agricultural-water-management-using-satellite-earth-observation/ (accessed on 16 May 2014).
- Scholes, R.J.; Gureja, N.; Giannecchinni, M.; Dovie, D.; Wilson, B.; Davidson, N.; Piggott, K.; McLoughlin, C.; Van der Velde, K.; Freeman, A. The environment and vegetation of the flux measurement site near Skukuza, Kruger National Park. Koedoe-Afr. Prot. Area Conserv. Sci. 2001, 44, 73–83. [Google Scholar] [CrossRef]
- Shugart, H.H.; Macko, S.A.; Lesolle, P.; Szuba, T.A.; Mukelabai, M.M.; Dowty, P.; Swap, R.J. The SAFARI 2000–Kalahari transect wet season campaign of year 2000. Glob. Chang. Biol. 2004, 10, 273–280. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A Simple Parameterisation for Flux Footprint Predictions. Bound. Layer Meteorol. 2004, 112, 503–523. [Google Scholar] [CrossRef]
- Kormann, R.; Meixner, F.X. An analytical footprint model for non-neutral stratification. Bound.-Layer Meteorol. 2001, 99, 207–224. [Google Scholar] [CrossRef]
- Jovanovic, N.; Dzikiti, S.; Le Maitre, D.; Roberts, W.; Ramoelo, A.; Majozi, N.P. Monitoring of Water Availability Using Geo-Spatial Data and Earth Observations—Technical Report; Council for Scientific and Industrial Research: Pretoria, South Africa, 2013; p. 107. [Google Scholar]
- Goward, S.N.; Cruickshanks, G.D.; Hope, A.S. Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape. Remote Sens. Environ. 1985, 18, 137–146. [Google Scholar] [CrossRef]
- Mallick, K.; Bhattacharya, B.K.; Patel, N. Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agric. For. Meteorol. 2009, 149, 1327–1342. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Guan, H.; Zhou, X. Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. J. Hydrol. 2007, 340, 12–24. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophys. Res. Lett. 1999, 26, 2773–2776. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S. Estimation of surface evaporation map over southern Great Plains using remote sensing data. Water Resour. Res. 2001, 37, 329–340. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S. An intercomparison of regional latent heat flux estimation using remote sensing data. Int. J. Remote Sens. 2003, 24, 2221–2236. [Google Scholar] [CrossRef]
- Wang, K.; Li, Z.; Cribb, M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter. Remote Sens. Environ. 2006, 102, 293–305. [Google Scholar] [CrossRef]
- Stisen, S.; Sandholt, I.; Nørgaard, A.; Fensholt, R.; Jensen, K.H. Combining the triangle method with thermal inertia to estimate regional evapotranspiration—Applied to MSG-SEVIRI data in the Senegal River basin. Remote Sens. Environ. 2008, 112, 1242–1255. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.-L.; Tang, B. An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sens. Environ. 2010, 114, 540–551. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Monteith, J. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Sun, L.; Liang, S.; Yuan, W.; Chen, Z. Improving a Penman–Monteith evapotranspiration model by incorporating soil moisture control on soil evaporation in semiarid areas. Int. J. Digit. Earth 2013, 6, 134–156. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Noordman, E.J.M.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Shine, K.P. Parametrization of the shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo. Q. J. R. Meteorol. Soc. 1984, 110, 747–764. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. Integration of the GG model with SEBAL to produce time series of evapotranspiration of high spatial resolution at watershed scales. J. Geophys. Res. Atmos. 2010, 115, D21128. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.; Gao, F.; Hain, C.; Kustas, W. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric. For. Meteorol. 2014, 186, 1–11. [Google Scholar] [CrossRef]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar] [CrossRef]
- Dhungel, R.; Allen, R.G.; Trezza, R.; Robison, C.W. Evapotranspiration between satellite overpasses: Methodology and case study in agricultural dominant semi-arid areas. Meteorol. Appl. 2016, 23, 714–730. [Google Scholar] [CrossRef]
- Michel, D.; Jiménez, C.; Miralles, D.G.; Jung, M.; Hirschi, M.; Ershadi, A.; Martens, B.; McCabe, M.F.; Fisher, J.B.; Mu, Q. The WACMOS-ET project–Part 1: Tower-scale evaluation of four remote sensing-based evapotranspiration algorithms. Hydrol. Earth Syst. Sci. 2016, 20, 803–822. [Google Scholar] [CrossRef]
- McCabe, M.F.; Ershadi, A.; Jimenez, C.; Miralles, D.G.; Michel, D.; Wood, E.F. The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally-gridded forcing data. Geosci. Model Dev. Discuss. 2015, 8, 6809–6866. [Google Scholar] [CrossRef]
- Hu, G.; Jia, L.; Menenti, M. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sens. Environ. 2015, 156, 510–526. [Google Scholar] [CrossRef]
- Wan, Z. Collection-5 MODIS Land Surface Temperature Products Users’ Guide; ICESS, University of California: Santa Barbara, CA, USA, 2006. [Google Scholar]
- Solano, R.; Didan, K.; Jacobson, A.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); University of Arizona: Tucson, AZ, USA, 2010. [Google Scholar]
- Myneni, R. MODIS LAI/ FPAR Product User’s Guide; Boston University: Boston, MA, USA, 2012; pp. 1–7. [Google Scholar]
- Smith, K.A.; Cresser, M.S. Soil and Environmental Analysis: Modern Instrumental Techniques; CRC Press: Boca, Raton, FL, USA, 2003. [Google Scholar]
- Burba, G.; Anderson, D. A Brief Practical Guide to Eddy Covariance Flux Measurements: Principles and Workflow Examples for Scientific and Industrial Applications; Li-Cor Biosciences: Lincoln, NE, USA, 2010. [Google Scholar]
- McCabe, M.F.; Wood, E.F. Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors. Remote Sens. Environ. 2006, 105, 271–285. [Google Scholar] [CrossRef]
- Petropoulos, G.; Carlson, T.N.; Wooster, M.J.; Islam, S. A review of Ts/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture. Prog. Phys. Geogr. 2009, 33, 224–250. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Liu, Y.Y.; van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P.; de Jeu, R.A.M. Global vegetation biomass change (1988–2008) and attribution to environmental and human drivers. Glob. Ecol. Biogeogr. 2013, 22, 692–705. [Google Scholar] [CrossRef]
- Di, S.-C.; Li, Z.-L.; Tang, R.; Wu, H.; Tang, B.-H.; Lu, J. Integrating two layers of soil moisture parameters into the MOD16 algorithm to improve evapotranspiration estimations. Int. J. Remote Sens. 2015, 36, 4953–4971. [Google Scholar] [CrossRef]
Instrument | Model/Brand | Measurement |
---|---|---|
Sonic anemometer | Gill Instruments Solent R3, Hampshire, UK | 3-dimensional, orthogonal components of wind velocity, u, v, w (m/s) |
Closed path gas analyzer | IRGA, LiCOR 6262, LiCOR, Lincoln | Water vapor, carbon dioxide concentrations |
Radiometer | Kipp and Zonen CNR1, Delft, The Netherlands | Incoming and outgoing longwave and shortwave radiation |
HFT3 plates | Campbell Scientific | Soil heat flux at 5 cm depth |
Frequency domain reflectometry probes | Campbell Scientific CS615, Logan, Utah | Volumetric soil moisture content at different depths |
Method | Inputs | |
---|---|---|
Remote Sensing | Meteorological | |
LST-VI triangle | LST, EVI, surface emissivity, albedo, LAI, solar zenith angle | Ta, Pa, RH |
PM | LST, EVI, land cover, surface emissivity, albedo, LAI, solar zenith angle | Ta, Pa, RH |
Measurement Instrument Used | ||
---|---|---|
Input Variable | Skukuza | Elandsberg |
Air temperature (°C) | Campbell Scientific HMP50 probe | CS500 probe (Vaisala, Helsinki, Finland) |
Relative humidity (%) | Campbell Scientific HMP50 probe | CS500 probe (Vaisala, Helsinki, Finland) |
Wind speed (m/s) | Climatronics Wind Sensor | RM Young wind sentry (Model 03001—Campbell Scientific Ltd., Logan, UT, USA) |
Statistics | Skukuza | Elandsberg | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wet | Dry | Dry | Wet | |||||||||||||
TsVI | PM | MET | GLEAM | TsVI | PM | MET | GLEAM | TsVI | PM | MET | GLEAM | TsVI | PM | MET | GLEAM | |
R2 | 0.13 | 0.05 | 0.45 | 0.15 | 0.24 | 0.34 | 0.07 | 0.42 | 0.42 | 0.36 | 0.08 | 0.00 | 0.06 | 0.09 | 0.12 | 0.01 |
Bias (mm/day) | −0.79 | −0.28 | −2.66 | −1.08 | −0.01 | −0.36 | −0.17 | −0.64 | −0.65 | −0.51 | −0.09 | −0.65 | 0.21 | 0.61 | 0.34 | −0.19 |
MAE (mm/day) | 1.40 | 0.89 | 2.66 | 1.46 | 0.23 | 0.36 | 0.25 | 0.64 | 0.89 | 0.69 | 0.65 | 0.94 | 0.46 | 0.69 | 0.52 | 0.28 |
RMSE (mm/day) | 1.66 | 1.25 | 2.85 | 1.64 | 0.29 | 0.40 | 0.32 | 0.67 | 1.05 | 0.85 | 0.96 | 1.15 | 0.60 | 0.77 | 0.63 | 0.42 |
rRMSE | 36.46 | 27.34 | 67.50 | 40.44 | 28.34 | 39.86 | 31.09 | 65.96 | 35.42 | 28.73 | 35.03 | 40.73 | 88.91 | 114.64 | 119.55 | 73.02 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majozi, N.P.; Mannaerts, C.M.; Ramoelo, A.; Mathieu, R.; Mudau, A.E.; Verhoef, W. An Intercomparison of Satellite-Based Daily Evapotranspiration Estimates under Different Eco-Climatic Regions in South Africa. Remote Sens. 2017, 9, 307. https://doi.org/10.3390/rs9040307
Majozi NP, Mannaerts CM, Ramoelo A, Mathieu R, Mudau AE, Verhoef W. An Intercomparison of Satellite-Based Daily Evapotranspiration Estimates under Different Eco-Climatic Regions in South Africa. Remote Sensing. 2017; 9(4):307. https://doi.org/10.3390/rs9040307
Chicago/Turabian StyleMajozi, Nobuhle P., Chris M. Mannaerts, Abel Ramoelo, Renaud Mathieu, Azwitamisi E. Mudau, and Wouter Verhoef. 2017. "An Intercomparison of Satellite-Based Daily Evapotranspiration Estimates under Different Eco-Climatic Regions in South Africa" Remote Sensing 9, no. 4: 307. https://doi.org/10.3390/rs9040307
APA StyleMajozi, N. P., Mannaerts, C. M., Ramoelo, A., Mathieu, R., Mudau, A. E., & Verhoef, W. (2017). An Intercomparison of Satellite-Based Daily Evapotranspiration Estimates under Different Eco-Climatic Regions in South Africa. Remote Sensing, 9(4), 307. https://doi.org/10.3390/rs9040307