Mapping Above-Ground Biomass of Winter Oilseed Rape Using High Spatial Resolution Satellite Data at Parcel Scale under Waterlogging Conditions
"> Figure 1
<p>Experiments designed from October 2014 to May 2015 at the Deqing study site, Zhejiang, China. Background maps were color composite GF-1 acquired on 12 May 2015, with the (RGB) band combination= bands 4, 3, 2.</p> "> Figure 2
<p>Scatter plots showing the relationships between the selected vegetation indices (VIs) and above ground biomass (AGB) of winter oilseed rape from October 2014 to May 2015 for (<b>a</b>) MTVI2; (<b>b</b>) EVI2; (<b>c</b>) OSAVI; (<b>d</b>) RDVI; (<b>e</b>) EVI; (<b>f</b>) SAVI; (<b>g</b>) RVI; and (<b>h</b>) NDVI; the data set used to establish the regression model is the calibration set; the power regression lines are also shown.</p> "> Figure 3
<p>Comparison between measured AGB and estimated AGB. The black dash line is the 1:1 line and the colorized solid lines are the linear regression trend lines. The data set we used were: (<b>a</b>) the validation set; (<b>b</b>) the data collected from the plots conducting, or had finished with, the soil water content stress treatments; (<b>c</b>) the data collected from different growth stages.</p> "> Figure 3 Cont.
<p>Comparison between measured AGB and estimated AGB. The black dash line is the 1:1 line and the colorized solid lines are the linear regression trend lines. The data set we used were: (<b>a</b>) the validation set; (<b>b</b>) the data collected from the plots conducting, or had finished with, the soil water content stress treatments; (<b>c</b>) the data collected from different growth stages.</p> "> Figure 4
<p>Variation of the estimated AGB for different soil water content treatments from 2014 to 2015 growth stages. (<b>a</b>–<b>c</b>) represents the soil water content treatments imposed at seedling stage, flowering stage, and podding stage, respectively. The shallow orange vertical lines mean the date of waterlogging treatments imposed at three growth stages, respectively.</p> "> Figure 5
<p>Maps of winter oilseed rape AGB during the vegetative growth stages from 2014 to 2015. The blue rectangles and red rectangles represent the plots were conducting, or had finished with, the flooding and waterlogging treatment, respectively.</p> "> Figure 6
<p>Winter oilseed rape seasonal growth from 2014 to 2015.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection
2.3. Remote Sensing Data
2.3.1. Remote Sensing Data Acquisition
2.3.2. Remote Sensing Data Pre-Processing
2.4. Vegetation Indices
2.5. Method and Accuracy Validation
3. Results
3.1. Relationships between AGB and Vegetation Indices
3.2. Impact of Different Soil Water Content Treatments on Oilseed Rape AGB
3.3. Mapping of the Spatial Variability of Crop Growth Conditions
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fu, T.D.; Tu, J.X.; Ma, C.Z.; Zhang, Y.; Zhang, D.X.; Li, X.H. The present and future of rapeseed production in china. In Proceedings of International Symposium on Rapeseed Science; Science Press: New York, NY, USA, 2001. [Google Scholar]
- Zhang, X.K.; Chen, J.; Chen, L.; Wang, H.Z.; Li, J.N. Imbibition behavior and flooding tolerance of rapeseed seed (Brassica napus L.) with different testa color. Genet. Resour. Crop Evol. 2008, 55, 1175–1184. [Google Scholar] [CrossRef]
- Song, F.P.; Hu, L.Y.; Zhou, G.S.; Wu, J.S.; Fu, T.D. Effects of waterlogging time on rapeseed (brassica napus l.) growth and yield. Acta Agron. Sin. 2010, 36, 170–176. [Google Scholar] [CrossRef]
- Song, F.P.; Hu, L.Y.; Zhou, G.S.; Wu, J.S.; Fu, T.D. Effects of water table on rapeseed (Brassica napus L.) growth and yield. Acta Agrono. Sin. 2009, 35, 1508–1515. [Google Scholar] [CrossRef]
- Xu, B.B.; Cheng, Y.; Zou, X.L.; Zhang, X.K. Ethanol content in plants of brassica napus l. Correlated with waterlogging tolerance index and regulated by lactate dehydrogenase and citrate synthase. Acta Phys. Plant 2016, 38, 1–9. [Google Scholar] [CrossRef]
- Zou, X.L.; Hu, C.W.; Zeng, L.; Cheng, Y.; Xu, M.Y.; Zhang, X.K. A comparison of screening methods to identify waterlogging tolerance in the field in brassica napus l. During plant ontogeny. PLoS ONE 2014, 9, e89731. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.Q.; Wu, Y.Y.; Song, Z.Y.; Huang, Z.Q. The performance physiological mechanism and prevention of oliseed rape waterlogging. J. Anhui Agric. Sci. 2000, 28, 171. [Google Scholar]
- Xu, M.Y.; Ma, H.Q.; Zeng, L.; Cheng, Y.; Lu, G.Y.; Xu, J.S.; Zhang, X.K.; Zou, X.L. The effect of waterlogging on yield and seed quality at the early flowering stage in brassica napus l. Field Crop. Res. 2015, 180, 238–245. [Google Scholar] [CrossRef]
- Marino, S.; Cocozza, C.; Tognetti, R.; Alvino, A. Use of proximal sensing and vegetation indexes to detect the inefficient spatial allocation of drip irrigation in a spot area of tomato field crop. Precis. Agric. 2015, 16, 613–629. [Google Scholar] [CrossRef]
- Cannell, R.Q.; Belford, R.K. Effects of waterlogging at different stages of development on the growth and yield of winter oilseed rape (Brassica napus L.). J. Sci. Food Agric. 1980, 31, 963–965. [Google Scholar] [CrossRef]
- Zhou, W.J.; Lin, X.Q. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.). Field Crop. Res. 1995, 44, 103–110. [Google Scholar] [CrossRef]
- Boem, F.H.G.; Lavado, R.S.; Porcelli, C.A. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crop. Res. 1996, 47, 175–179. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, D.; Lin, X. Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape (Brassica napus L.). J. Plant Growth Regul. 1997, 16, 47–53. [Google Scholar] [CrossRef]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of rapideye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. 2015, 34, 235–248. [Google Scholar] [CrossRef]
- Ehammer, A.; Fritsch, S.; Conrad, C.; Lamers, J.; Dech, S. Statistical derivation of fpar and lai for irrigated cotton and rice in arid uzbekistan by combining multi-temporal rapideye data and ground measurements. Proc. SPIE 2010, 7824, 782409. [Google Scholar]
- Wang, F.M.; Huang, J.F.; Wang, Y.; Liu, Z.Y.; Peng, D.L.; Cao, F.F. Monitoring nitrogen concentration of oilseed rape from hyperspectral data using radial basis function. Int. J. Digit. Earth 2013, 6, 550–562. [Google Scholar] [CrossRef]
- McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future directions of precision agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green lai of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Wang, A.Q.; Chen, J.D.; Jing, C.W.; Ye, G.Q.; Wu, J.P.; Huang, Z.X.; Zhou, C.S. Monitoring the invasion of spartina alterniflora from 1993 to 2014 with landsat tm and SPOT 6 satellite data in Yueqing Bay, China. PLoS ONE 2015, 10, e0135538. [Google Scholar] [CrossRef] [PubMed]
- Plummer, S.E. Perspectives on combining ecological process models and remotely sensed data. Ecol. Model. 2000, 129, 169–186. [Google Scholar] [CrossRef]
- Shang, J.L.; Liu, J.G.; Huffman, T.; Qian, B.D.; Pattey, E.; Wang, J.F.; Zhao, T.; Geng, X.Y.; Kroetsch, D.; Dong, T.F.; et al. Estimating plant area index for monitoring crop growth dynamics using landsat-8 and rapideye images. J. Appl. Remote Sens. 2014, 8, 085196. [Google Scholar] [CrossRef]
- Zhang, B.H.; Zhang, L.; Xie, D.; Yin, X.L.; Liu, C.J.; Liu, G. Application of synthetic NDVI time series blended from landsat and MODIS data for grassland biomass estimation. Remote Sens. 2015, 8, 10. [Google Scholar] [CrossRef]
- Goetz, S.J. Multi-sensor analysis of ndvi, surface temperature and biophysical variables at a mixed grassland site. Int. J. Remote Sens. 1997, 18, 71–94. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Lowenberg-DeBoer, J. Precision agriculture and sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Metternicht, G. Vegetation indices derived from high-resolution airborne videography for precision crop management. Int. J. Remote Sens. 2003, 24, 2855–2877. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Stucky, N.; Griscom, B.W.; Ashton, M.S.; Diels, J.; van der Meer, B.; Enclona, E. Biomass estimations and carbon stock calculations in the oil palm plantations of african derived savannas using IKONOS data. Int. J. Remote Sens. 2004, 25, 5447–5472. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S. A comparative analysis of high spatial resolution IKONOS and Worldview-2 imagery for mapping urban tree species. Remote Sens. Environ. 2012, 124, 516–533. [Google Scholar] [CrossRef]
- Xiong, X.X.; Lachérade, S.; Aznay, O.; Fougnie, B.; Fulbright, J.; Wang, Z.P. Comparison of S-NPP VIIRS and PLEIADES lunar observations. Proc. SPIE 2015, 9639, 96390Y. [Google Scholar]
- Shang, J.L.; Liu, J.G.; Ma, B.L.; Zhao, T.; Jiao, X.F.; Geng, X.Y.; Huffman, T.; Kovacs, J.M.; Walters, D. Mapping spatial variability of crop growth conditions using rapideye data in Northern Ontario, Canada. Remote Sens. Environ. 2015, 168, 113–125. [Google Scholar] [CrossRef]
- Bausch, W.C.; Khosla, R. Quickbird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize. Precis. Agric. 2010, 11, 274–290. [Google Scholar] [CrossRef]
- Huang, W.J.; Huang, J.F.; Wang, X.Z.; Wang, F.M.; Shi, J.J. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra. Sensors 2013, 13, 16023–16050. [Google Scholar] [CrossRef] [PubMed]
- Soudani, K.; François, C.; Maire, G.; Dantec, V.L.; Dufrêne, E. Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sens. Environ. 2006, 102, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.L.; Steven, M.D.; Colls, J.J. Spectral responses of pot-grown plants to displacement of soil oxygen. Int. J. Remote Sens. 2004, 25, 4395–4410. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Liu, J.G.; Pattey, E.; Miller, J.R.; McNairn, H.; Smith, A.; Hu, B.X. Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sens. Environ. 2010, 114, 1167–1177. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.; Corsi, F.; van Wieren, S.E.; Sobhan, I. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int. J. Appl. Earth Obs. 2007, 9, 414–424. [Google Scholar] [CrossRef]
- Muñoz, J.D.; Finley, A.O.; Gehl, R.; Kravchenko, S. Nonlinear hierarchical models for predicting cover crop biomass using normalized difference vegetation index. Remote Sens. Environ. 2010, 114, 2833–2840. [Google Scholar] [CrossRef]
- Huang, S.Y.; Miao, Y.X.; Zhao, G.M.; Yuan, F.; Ma, X.B.; Tan, C.X.; Yu, W.F.; Gnyp, M.L.; Lenz-Wiedemann, V.I.S.; Rascher, U.; et al. Satellite remote sensing-based in-season diagnosis of rice nitrogen status in northeast China. Remote Sens. 2015, 7, 10646–10667. [Google Scholar] [CrossRef]
- Liu, J.G.; Pattey, E.; Jégo, G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sens. Environ. 2012, 123, 347–358. [Google Scholar] [CrossRef]
- Meroni, M.; Colombo, R.; Panigada, C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens. Environ. 2004, 92, 195–206. [Google Scholar] [CrossRef]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Jin, X.L.; Yang, G.J.; Xu, X.G.; Yang, H.; Feng, H.K.; Li, Z.H.; Shen, J.X.; Zhao, C.J.; Lan, Y.B. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sens. 2015, 7, 13251–13272. [Google Scholar] [CrossRef]
- Gao, S.; Niu, Z.; Huang, N.; Hou, X.H. Estimating the leaf area index, height and biomass of maize using HJ-1 and RADARSAT-2. Int. J. Appl. Earth Obs. 2013, 24, 1–8. [Google Scholar] [CrossRef]
- Gnyp, M.L.; Miao, Y.X.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.K.; Huang, S.Y.; Bareth, G. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crop. Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Lee, B.W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Europ. J. Agronomy 2006, 24, 349–356. [Google Scholar] [CrossRef]
- Clay, D.E.; Kim, K.I.; Chang, J.; Clay, S.A.; Dalsted, K. Characterizing water and nitrogen stress in corn using remote sensing. Agron. J. 2006, 98, 579–587. [Google Scholar] [CrossRef]
- Li, A.; Liang, S.; Wang, A.; Qin, J. Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques. Photogramm. Eng. Remote Sens. 2007, 73, 1149–1157. [Google Scholar] [CrossRef]
- Teillet, P.M.; Fedosejevs, G.; Thome, K.J.; Barker, J.L. Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens. Environ. 2007, 110, 393–409. [Google Scholar] [CrossRef]
- Xu, J.F.; Huang, J.F. Empirical line method using spectrally stable targets to calibrate IKONOS imagery. Pedosphere 2008, 18, 124–130. [Google Scholar] [CrossRef]
- Anaya, J.A.; Chuvieco, E.; Palacios-Orueta, A. Aboveground biomass assessment in Colombia: A remote sensing approach. For. Ecol. Manag. 2009, 257, 1237–1246. [Google Scholar] [CrossRef]
- Jin, Y.X.; Yang, X.C.; Qiu, J.J.; Li, J.Y.; Gao, T.; Wu, Q.; Zhao, F.; Ma, H.L.; Yu, H.D.; Xu, B. Remote sensing-based biomass estimation and its spatio-temporal variations in temperate grassland, northern China. Remote Sens. 2014, 6, 1496–1513. [Google Scholar] [CrossRef]
- Eckert, S. Improved forest biomass and carbon estimations using texture measures from Worldview-2 satellite data. Remote Sens. 2012, 4, 810–829. [Google Scholar] [CrossRef]
- Gong, P.; Pu, R.L.; Biging, G.S.; Larrieu, M.R. Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1355–1362. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Long, D.S.; Gessler, P.E.; Hunt, E.R. Combined spectral index to improve ground-based estimates of nitrogen status in dryland wheat. Agron. J. 2008, 100, 1694. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; van der Heijden, G.W.A.M.; Verzakov, S.; Schaepman, M.E. Estimating grassland biomass using SVM band shaving of hyperspectral data. Photogramm. Eng. Remote Sens. 2007, 73, 1141–1148. [Google Scholar] [CrossRef]
- Cheng, Q. Validation and correction of MOD15-LAI using in situ rice LAI in southern China. Commun. Soil Sci. Plant Anal. 2008, 39, 1658–1669. [Google Scholar] [CrossRef]
- Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Marais Sicre, C.; Le Dantec, V.; Demarez, V. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sens. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Sakowska, K.; Juszczak, R.; Gianelle, D. Remote sensing of grassland biophysical parameters in the context of the Sentinel-2 satellite mission. J. Sens. 2016, 2016, 1–16. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Atzberger, C.; Wieren, S. Estimation of vegetation lai from hyperspectral reflectance data: Effects of soil type and plant architecture. Int. J. Appl. Earth Obs. 2008, 10, 358–373. [Google Scholar] [CrossRef]
- Ma, B.L.; Dwyer, L.M.; Costa, C.; Cober, E.R.; Morrison, M.J. Early prediction of soybean yield from canopy reflectance measurements. Agron. J. 2001, 93, 1227–1234. [Google Scholar] [CrossRef]
- Carter, G.A.; Spiering, B.A. Optical properties of intact leaves for estimating chlorophyll concentration. J. Environ. Qual. 2002, 31, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Suganuma, H.; Abe, Y.; Taniguchi, M.; Tanouchi, H.; Utsugi, H.; Kojima, T.; Yamada, K. Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia. For. Ecol. Manag. 2006, 222, 75–87. [Google Scholar] [CrossRef]
- Carlson, T.N.; Riziley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Tian, F.; Brandt, M.; Liu, Y.Y.; Verger, A.; Tagesson, T.; Diouf, A.A.; Rasmussen, K.; Mbow, C.; Wang, Y.; Fensholt, R. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. 2016, 177, 265–276. [Google Scholar] [CrossRef]
- Zhu, X.L.; Liu, D.S. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Farré, I.; Robertson, M.J.; Asseng, S.; French, R.; Dracup, M. Simulating lupin development, growth, and yield in a Mediterranean environment. Crop Pasture Sci. 2004, 55, 863–877. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, S.; Machwitz, M.; Ehammer, A.; Conrad, C.; Dech, S. Validation of the collection 5 MODIS FPAR product in a heterogeneous agricultural landscape in arid Uzbekistan using multitemporal RapidEye imagery. Int. J. Remote Sens 2012, 33, 6818–6837. [Google Scholar] [CrossRef]
- Smethurst, C.F.; Shabala, S. Screening methods for waterlogging tolerance in lucerne: Comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct. Plant Biol. 2003, 30, 335–343. [Google Scholar] [CrossRef]
- Rubio, G.; Casasola, G.; Lavado, R.S. Adaptations and biomass production of two grasses in response to waterlogging and soil nutrient enrichment. Oecologia 1995, 102, 102–105. [Google Scholar] [CrossRef]
- Wang, N.; Yu, F.H.; Li, P.X.; He, W.M.; Liu, J.; Yu, G.L.; Song, Y.B.; Dong, M. Clonal integration supports the expansion from terrestrial to aquatic environments of the amphibious stoloniferous herb alternanthera philoxeroides. Plant Biol. 2009, 11, 483–489. [Google Scholar] [CrossRef] [PubMed]
NO. | Satellite | Remote Sensing Date | Field Campaign Date | Sampling Plots (CK/W/F) | Growth Stage |
---|---|---|---|---|---|
1 | - | - | 26 October 2014 | - | Sowing |
2 | Pleiades-1A | 4 December 2014 | 8 December 2014 | 6 (6/0/0) | Seedling Stage |
3 | Worldview-3 | 31 December 2014 | 29 December 2014 | 9 (9/0/0) | Seedling Stage |
4 | Spot-6 | 12 February 2015 | 5 February 2015 | 9 (3/3/3) | Seedling Stage |
5 | Worldview-2 | 10 March 2015 | 12 March 2015 | 9 (3/3/3) | Stem Elongation Stage |
6 | Spot-6 | 24 March 2015 | 28 March 2015 | 15 (3/6/6) | Flowering Stage |
7 | Spot-6 | 13 April 2015 | 16 April 2015 | 15 (3/6/6) | Podding Stage |
8 | Worldview-2 | 21 April 2015 | 23 April 2015 | 15 (3/6/6) | Podding Stages |
9 | Worldview-2 | 1 May 2015 | 5 May 2015 | 21 (3/9/9) | Podding Stages |
10 | - | - | 16 May 2015 | - | Harvest |
Name | Subset | Samples Size | Min | Max | Range | Mean | SD a | CV b |
---|---|---|---|---|---|---|---|---|
Biomass | Calibration set | 75 | 27.84 | 1627.95 | 1600.11 | 529.21 | 391.03 | 0.74 |
Validation set | 24 | 25.92 | 1295.79 | 1269.87 | 508.61 | 362.50 | 0.71 |
Satellite Sensors | Launch Date | Sensor Altitude (Km) | Spectral Range (μm) | Nadir Spatial Resolution (m) | |||
---|---|---|---|---|---|---|---|
Blue | Green | Red | NIR | ||||
Pleiades-1A | 17 December 2011 | 694 | 0.430–0.550 | 0.490–0.610 | 0.600–0.720 | 0.750–0.950 | 2.00 |
Worldview-3 | 13 August 2014 | 617 | 0.450–0.510 | 0.510–0.580 | 0.630–0.690 | 0.770–0.895 | 1.24 |
Worldview-2 | 6 October 2009 | 770 | 0.450–510 | 0.510–0.580 | 0.630–0.690 | 0.770–0.895 | 1.80 |
Spot-6 | 9 September 2012 | 695 | 0.455–0.525 | 0.530–0.590 | 0.625–0.695 | 0.760–0.890 | 6.00 |
Acronym | Index | Formula | References |
---|---|---|---|
EVI | The enhanced vegetation index | [51] | |
EVI2 | Two-band enhanced vegetation index | [52] | |
RVI | Ratio Vegetation Index | [53] | |
NDVI | Normalized difference vegetation index | [42] | |
RDVI | Renormalized difference vegetative index | [54] | |
OSAVI | Optimized soil adjusted vegetation index | [55] | |
SAVI | Soil adjusted vegetation index | [56] | |
MTVI2 | Modified triangular vegetation index 2 | [57] |
VIs | RVI | NDVI | MTVI2 | OSAVI | EVI | RDVI | SAVI | EVI2 |
---|---|---|---|---|---|---|---|---|
AGB | 0.75 ** | 0.74 ** | 0.72 ** | 0.72 ** | 0.71 ** | 0.69 ** | 0.69 ** | 0.69 ** |
VIs | Model | Regression Equation | R2 | F | Q2 | RMSE (g/m2) | rRMSE (%) |
---|---|---|---|---|---|---|---|
NDVI | Power | 0.77 ** | 239.35 | 0.91 | 104.64 | 21 | |
Exponential | 0.76 ** | 228.06 | 0.90 | 108.66 | 21 | ||
Linear | 0.48 ** | 67.52 | 0.80 | 160.74 | 32 | ||
Logarithmic | 0.46 ** | 62.18 | 0.74 | 181.49 | 36 | ||
Quadratic | 0.50 ** | 35.51 | 0.87 | 126.23 | 25 | ||
RVI | Power | 0.74 ** | 211.09 | 0.89 | 119.17 | 23 | |
Exponential | 0.69 ** | 158.87 | 0.72 | 189.52 | 37 | ||
Linear | 0.49 ** | 70.15 | 0.88 | 123.30 | 24 | ||
Logarithmic | 0.49 ** | 70.30 | 0.83 | 145.61 | 29 | ||
Quadratic | 0.50 ** | 35.54 | 0.84 | 140.64 | 28 | ||
OSAVI | Power | 0.74 ** | 211.56 | 0.87 | 126.14 | 25 | |
Exponential | 0.70 ** | 186.50 | 0.84 | 140.21 | 28 | ||
Linear | 0.45 ** | 58.58 | 0.79 | 161.33 | 32 | ||
Logarithmic | 0.44 ** | 56.38 | 0.74 | 180.75 | 36 | ||
Quadratic | 0.45 ** | 28.89 | 0.80 | 160.10 | 32 | ||
MTVI2 | Power | 0.75 ** | 215.70 | 0.86 | 132.91 | 26 | |
Exponential | 0.69 ** | 164.37 | 0.78 | 166.70 | 33 | ||
Linear | 0.45 ** | 59.61 | 0.82 | 150.86 | 30 | ||
Logarithmic | 0.45 ** | 59.16 | 0.76 | 173.46 | 34 | ||
Quadratic | 0.46 ** | 30.43 | 0.78 | 166.71 | 33 | ||
EVI | Power | 0.73 ** | 196.32 | 0.85 | 139.54 | 27 | |
Exponential | 0.69 ** | 160.96 | 0.78 | 164.86 | 32 | ||
Linear | 0.43 ** | 55.10 | 0.79 | 162.38 | 32 | ||
Logarithmic | 0.43 ** | 54.73 | 0.74 | 181.36 | 36 | ||
Quadratic | 0.44 ** | 27.72 | 0.75 | 175.83 | 35 | ||
RDVI | Power | 0.72 ** | 187.88 | 0.82 | 148.93 | 29 | |
Exponential | 0.68 ** | 154.53 | 0.75 | 176.75 | 35 | ||
Linear | 0.41 ** | 51.24 | 0.78 | 167.44 | 33 | ||
Logarithmic | 0.42 ** | 51.83 | 0.73 | 183.00 | 36 | ||
Quadratic | 0.421 ** | 26.18 | 0.73 | 184.30 | 36 | ||
SAVI | Power | 0.72 ** | 185.16 | 0.82 | 151.54 | 30 | |
Exponential | 0.67 ** | 150.84 | 0.74 | 180.20 | 35 | ||
Linear | 0.41 ** | 50.45 | 0.77 | 168.52 | 33 | ||
Logarithmic | 0.41 ** | 51.28 | 0.73 | 183.82 | 36 | ||
Quadratic | 0.42 ** | 25.97 | 0.72 | 186.45 | 37 | ||
EVI2 | Power | 0.71 ** | 178.90 | 0.81 | 156.88 | 31 | |
Exponential | 0.66 ** | 138.60 | 0.70 | 194.39 | 38 | ||
Linear | 0.40 ** | 48.46 | 0.78 | 168.45 | 33 | ||
Logarithmic | 0.41 ** | 50.55 | 0.74 | 182.85 | 36 | ||
Quadratic | 0.42 ** | 26.05 | 0.71 | 191.28 | 38 |
VIs | Model | a | b | R2 | F | Q2 | RMSE (g/m2) | rRMSE (%) |
---|---|---|---|---|---|---|---|---|
NDVI | Power | 6075.9–6946.3 | 4.99–5.10 | 0.72–0.78 | 188.56–257.82 | 0.87–0.92 | 99.23–108.57 | 20-27 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Wei, C.; Chen, Y.; Liu, W.; Song, P.; Zhang, D.; Wang, A.; Song, X.; Wang, X.; Huang, J. Mapping Above-Ground Biomass of Winter Oilseed Rape Using High Spatial Resolution Satellite Data at Parcel Scale under Waterlogging Conditions. Remote Sens. 2017, 9, 238. https://doi.org/10.3390/rs9030238
Han J, Wei C, Chen Y, Liu W, Song P, Zhang D, Wang A, Song X, Wang X, Huang J. Mapping Above-Ground Biomass of Winter Oilseed Rape Using High Spatial Resolution Satellite Data at Parcel Scale under Waterlogging Conditions. Remote Sensing. 2017; 9(3):238. https://doi.org/10.3390/rs9030238
Chicago/Turabian StyleHan, Jiahui, Chuanwen Wei, Yaoliang Chen, Weiwei Liu, Peilin Song, Dongdong Zhang, Anqi Wang, Xiaodong Song, Xiuzhen Wang, and Jingfeng Huang. 2017. "Mapping Above-Ground Biomass of Winter Oilseed Rape Using High Spatial Resolution Satellite Data at Parcel Scale under Waterlogging Conditions" Remote Sensing 9, no. 3: 238. https://doi.org/10.3390/rs9030238