The Use of Surveillance Cameras for the Rapid Mapping of Lava Flows: An Application to Mount Etna Volcano
"> Figure 1
<p>Location of the current Etna_NETVIS sites and areas visible from them (E at the start of all abbreviations stands for Etna; C: Cuad; M: Milo; MC: Monte Cagliato; MO: Montagnola; N: Nicolosi; S: Schiena dell’Asino; H, T and V at the end of all abbreviations stand for High resolution, Thermal and Visible sensors, respectively). Each color corresponds to the areas visible from the various sites as indicated in the legend.</p> "> Figure 2
<p>(<b>a</b>) Additional observation sites; (<b>b</b>) example of the area potentially observed from a simulated observation site; and (<b>c</b>) 3D lateral view from the observation site simulated in (<b>b</b>).</p> "> Figure 3
<p>(<b>a</b>) Nominal size on the ground of pixel with respect to the distance not considering the distortion effects; and (<b>b</b>) Horizontal Field of with respect to the distance. The dashed black lines approximate the distance between Monte Cagliato site and the summit craters.</p> "> Figure 4
<p>View of the 3D calibration test field devised on the INGV facility edifice in Nicolosi (CT). The thirty-five regularly distributed artificial targets are 0.15 m diameter black circles drawn inside white squares.</p> "> Figure 5
<p>Distortion curves, estimated for the VIVOTEK IP8172, that show the displacement from the corrected distances of image points from the optical axis plotted along the diagonal.</p> "> Figure 6
<p>Modules of the NETVIS tool.</p> "> Figure 7
<p>Flowchart of the three modules in the NETVIS tool: (<b>a</b>) Image Orientation Module; (<b>b</b>) Image orthoRectification Module; (<b>c</b>) Change Detection Module.</p> "> Figure 8
<p>(<b>a</b>) GCPs position on the 2005 DLR orthophoto map. The inset in (<b>a</b>) locates the test site on the whole volcano. (<b>b</b>) Example of an image acquired during the test. The inset in (<b>b</b>) shows an enlarged view of a GCP.</p> "> Figure 9
<p>(<b>a</b>) Orthophoto extracted by the IRMod and GCP positions on the ground (green crosses). (<b>b</b>,<b>c</b>) Differences between GCP position measured on the ground and on the orthophoto (red dots).</p> "> Figure 10
<p>Simulated view of a VIVOTEK-like camera observing at EMO site, the 3D virtual targets used as GCPs are also shown.</p> "> Figure 11
<p>Simulation test for a VIVOTEK-like camera at EMO site: (<b>a</b>) GCP measured on a reference map (shaded relief); and (<b>b</b>) GCPs distributed on the orthophoto extracted from the simulation.</p> "> Figure 12
<p>Orthophotos extracted by the NETVIS tool from EMCT images of 12 August 2011 and delimiting of the lava flow field evolution. The east and north coordinates evaluated in the UTM-WGS84 reference system are reported along the X- and Y-axes, respectively.</p> "> Figure 13
<p>Orthophotos extracted by the NETVIS tool from EMCT images of 29 August 2011 and delimiting of the lava flow field evolution. The east and north coordinates evaluated in the UTM-WGS84 reference system are reported along the X- and Y-axes, respectively.</p> "> Figure 14
<p>(<b>a</b>) Temporal evolution of the covered area manually digitized on the orthophoto extracted with the IOMod; and (<b>b</b>) temporal evolution of the areal expansion. In both figures, data related to the lava flow fields of the 12 and 29 August episodes are represented as black dashed line and squares and by red line and triangles, respectively. In the X-axis, 7 h and 50 min have been subtracted to the eruptive time of the 12 August episode, while 3 h and 15 min have been subtracted to that of 29 August for comparing the two trends.</p> "> Figure 15
<p>(<b>a</b>) Example of two subsequent EMCT thermal images acquired during the 8 December 2011 eruptive episode; (<b>b</b>) multi-temporal dataset; (<b>c</b>) representation of lava flow areal evolution obtained with the aid of the results of the change detection analysis; and (<b>d</b>) comparison between the temporal evolution of the areal expansion of the 12 August lava field evaluated by manually digitizing the flow field limits on NETVIS orthophotos (black dashed line and squares) or by applying the change detection module (green line and dots). In the X-axis 7 h and 50 min have been subtracted to the eruptive time of the 12 August episode.</p> ">
Abstract
:1. Introduction
2. The Etna_NETVIS Network
3. Camera Orientation
3.1. Analysis of Method for Estimating Internal Orientation Parameters/Sensor Calibration Procedure
3.2. Estimation of the External Orientation Parameters
4. The NETVIS Tool
4.1. The Image Orientation Module (IOMod)
4.2. The Image orthoRectification Module (IRMod)
4.3. The Change Detection Module (CDMod)
5. Testing the NETVIS Tool
5.1. La Montagnola Test Field
5.2. Test on the Simulated Scenario
6. NETVIS Processing of Images Acquired During Effusive Activity
7. Discussion
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
Etna_NETVIS | Etna NEtwork of Thermal and Visible Sensors |
2D | two dimensional |
3D | three dimensional |
GCP | Ground Control Points |
DEM | Digital Elevation Model |
2D | two dimensional |
GPS | Global Positioning System |
IOMod | Image Orientation Module |
IRMod | Image orthoRectification Module |
CDMod | Change Detection Module |
INGV | Istituto Nazionale di Geofisica e Vulcanologia |
CT | Catania |
SEVIRI | Spinning Enhanced Visible and InfraRed Imager |
ECV | Etna Cuad Visible |
EMV | Etna Milo Vible |
EMOV | Etna Montagnola Visible |
EMOT | Etna Montagnola Thermal |
ENV | Etna Nicolosi Visible |
ENT | Etna Nicolosi Thermal |
EMCT | Etna Monte Cagliato Thermal |
EMCH | Etna Monte Cagliato High resolution |
EMOH | Etna Montagnola High resolution |
FOV | field of view |
HFOV and VFOV | Horizontal and Vertical Field of View |
EN | Etna Nicolosi |
EMO | Etna Montagnola |
ESV | Etna Schiena dell’Asino Visible |
ERF | External ReFerence system |
IR-MAD | Iteratively Reweighted—Multivariate Alteration Detection |
CCA | Canonical Correlations Analysis |
MAD | Multivariate Alteration Detection |
RTK | Real Time Kinematic |
UTM-WGS84 | Universal Transverse of Mercator-World Geodetic System 1984 |
References
- Baldi, P.; Coltelli, M.; Fabris, M.; Marsella, M.; Tommasi, P. High precision photogrammetry for monitoring the evolution of the NW flank of Stromboli volcano during and after the 2002–2003 eruption. Bull. Volcanol. 2005, 70, 703–715. [Google Scholar] [CrossRef]
- Marsella, M.; Proietti, C.; Sonnessa, A.; Coltelli, M.; Tommasi, P.; Bernardo, E. The evolution of the Sciara del Fuoco subaerial slope during the 2007 Stromboli eruption: Relation between deformation processes and effusive activity. J. Volcanol. Geotherm. Res. 2009, 182, 201–213. [Google Scholar] [CrossRef]
- Diefenbach, A.K.; Crider, J.G.; Schilling, S.P.; Dzurisin, D. Rapid, low-cost photogrammetry to monitor volcanic eruptions: An example from Mount St. Helens, Washington, USA. Bull. Volcanol. 2012. [Google Scholar] [CrossRef]
- Diefenbach, A.K.; Bull, K.F.; Wessels, R.L.; McGimsey, R.G. Photogrammetric monitoring of lava dome growth during the 2009 eruption of Redoubt Volcano. J. Volcanol. Geotherm. Res. 2013, 259, 308–316. [Google Scholar] [CrossRef]
- Heipke, C. State-of-the-art of digital photogrammetric workstations for topographic applications. ISPRS J. Photogramm. Remote Sens. 1995, 61, 49–56. [Google Scholar]
- Kraus, K. Photogrammetry; Dummler: Bonn, Germany, 1998. [Google Scholar]
- Marsella, M.; Nardinocchi, C.; Proietti, C.; Daga, L.; Coltelli, M. Monitoring active volcanos using aerial images and the Orthoview tool. Remote Sens. 2014, 6, 12166–12186. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Varley, N. Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima, Mexico. Geophys. Res. Letts. 2012, 39, L22303. [Google Scholar] [CrossRef]
- Ryan, G.A.; Loughlin, S.C.; James, M.R.; Jones, L.D.; Calder, E.S.; Christopher, T.; Strutt, M.; Wadge, G. Growth of the lava dome and extrusion rates at Soufrière Hills Volcano, Montserrat, West Indies: 2005–2008. Geophys. Res. Letts. 2010, 37, L00E08. [Google Scholar] [CrossRef]
- James, M.R.; Robson, H. Sequential digital elevation models of active lava flows from ground-based stereo time-lapse imagery. ISPRS J. Photogram. Remote Sens. 2014, 97, 160–170. [Google Scholar] [CrossRef]
- Coltelli, M.; Proietti, C.; Branca, S.; Marsella, M.; Andronico, D.; Lodato, L. Analysis of the 2001 lava flow eruption of Mt. Etna from 3D mapping. J. Geophys. Res. 2007, 112, F02029. [Google Scholar] [CrossRef]
- Marsella, M.; Coltelli, M.; Proietti, C.; Branca, S.; Monticelli, R. 2002–2003 lava flow eruption of stromboli: A contribution to understanding lava discharge mechanism using periodic digital photogrammetry surveys. In The Stromboli Volcano: An Integrated Study of the 2002–2003 Eruption; Calvari, S., Inguaggiato, S., Puglisi, G., Ripepe, M., Rosi, M., Eds.; American Geophysical Union: Washington, DC, USA, 2008. [Google Scholar]
- Scifoni, S.; Coltelli, M.; Marsella, M.; Proietti, C.; Napoleoni, Q.; Vicari, A.; del Negro, C. Mitigation of lava flow invasion hazard through optimized barrier configuration aided by numerical simulation: The case of the 2001 Etna eruption. J. Volcanol. Geotherm. Res. 2010, 192, 16–26. [Google Scholar] [CrossRef]
- Coltelli, M.; Marsella, M.; Proietti, C.; Scifoni, S. The case of the 1981 eruption of Mount Etna, an example of very fast moving lava flows. Geochem. Geophys. Geosyst. 2012. [Google Scholar] [CrossRef]
- Honda, K.; Nagai, M. Real-time volcano activity mapping using ground-based digital imagery. ISPRS J. Photogramm. Remote Sens. 2002, 57, 159–168. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; Pinkerton, H.; Ball, M. Oblique photogrammetry with visible and thermal images of active lava flows. Bull. Volcanol. 2006, 69, 105–108. [Google Scholar] [CrossRef]
- James, M.R.; Pinkerton, H.; Robson, S. Image-based measurement of flux variation in distal regions of active lava flows. Geochem. Geophys. Geosyst. 2007, 8, Q03006. [Google Scholar] [CrossRef]
- James, M.R.; Pinkerton, H.; Applegarth, L.J. Detecting the development of active lava flow fields with a very-long-range terrestrial laser scanner and thermal imagery. Geophys. Res. Lett. 2009, 36, L22305. [Google Scholar] [CrossRef]
- Lewis, A.; Hilley, G.E.; Lewicki, J.L. Integrated thermal infrared imaging and structure-from-motion photogrammetry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA, USA. J. Volcanol. Geotherm. Res. 2015, 303, 16–24. [Google Scholar] [CrossRef]
- Travelletti, J.; Delacourt, C.; Allemand, P.; Malet, J.P.; Schmittbuhl, J.; Toussaint, R.; Bastard, M. Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS J. Photogramm. Remote Sens. 2012, 70, 39–55. [Google Scholar] [CrossRef]
- Maas, H.G.; Dietrich, R.; Schwalbe, E.; Bäßler, M.; Westfeld, P. Analysis of the motion behaviour of Jakobshavn Isbrae Glacier in Greenland by monocular image sequence analysis. In Proceedings of the ISPRS Commission V Symposium ‘Image Engineering and Vision Metrology’ 2006, Dresden, Germany, 25–27 September 2006; Volume XXXVI, pp. 179–183.
- Dietrich, R.; Maas, H.G.; Baessler, M.; Ruelke, A.; Richter, A.; Schwalbe, E.; Westfeld, P. Jakobshavn Isbrae, West Greenland: Flow velocities and tidal interaction of the front area from 2004 field observations. J. Geophys. Res. Earth Surf. 2007, 112, F03S21. [Google Scholar] [CrossRef]
- Maas, H.G.; Casassa, G.; Schneider, D.; Schwalbe, E.; Wendt, A. Photogrammetric techniques for the determination of spatio-temporal velocity fields at Glaciar San Rafael, Chile. Photogramm. Eng. Remote Sens. 2013, 79, 299–306. [Google Scholar] [CrossRef]
- Messerli, A.; Grinstead, A. Image GeoRectification and feature tracking toolbox: ImGRAFT. Geosci. Instrum. Methods Data Syst. 2015, 4, 23–34. [Google Scholar] [CrossRef]
- Ganci, G.; James, M.R.; Calvari, S.; del Negro, C. Separating the thermal fingerprints of lava flows and simultaneous lava fountaining using ground-based thermal camera and SEVIRI measurements. Geophys. Res. Lett. 2013, 40, 5058–5063. [Google Scholar] [CrossRef]
- OPENCV. Available online: http://opencv.org (accessed on 27 July 2016).
- HALCON Embedded. Available online: http://www.halcon.com (accessed on 27 July 2016).
- Heikillä, J. Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1066–1077. [Google Scholar] [CrossRef]
- Nielsen, A.A.; Conradsen, K.; Simpson, J.J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies. Remote Sens. Environ. 1998, 64, 1–19. [Google Scholar] [CrossRef]
- Nielsen, A.A. The regularized iteratively reweighted mad method for change detection in multi- and hyperspectral Data. IEEE Trans. Image Process. 2007, 162, 463. [Google Scholar] [CrossRef]
- Nielsen, A.A.; Canty, M.J. A method for unsupervised change detection and automatic radiometric normalization in multispectral data. In Proceeding of the 34th International Symposium on Remote Sensing of Environment: The GEOSS Era: Towards Operational Environmental Monitoring. International Society for Photogrammetry and Remote Sensing, Sydney, Australia, 10–15 April 2011.
- Behncke, B.; Branca, S.; Corsaro, R.A.; de Beni, E.; Miraglia, L.; Proietti, C. The 2011–2012 summit activity of Mount Etna: Birth, growth and products of the newSE crater. J. Volcanol. Geotherm. Res. 2014, 270, 10–21. [Google Scholar] [CrossRef]
Camera Model | Canon VC-C4R | VIVOTEK IP8172 | FLIR A40 | FLIR A320 |
---|---|---|---|---|
Sensor width (mm) | 3.8 | 6.4 | 14.3 | 7.9 |
Sensor height (mm) | 2.9 | 4.8 | 10.8 | 5.7 |
Pixel width (µm) | 8.2 | ~3 | 44.7 | 24 |
Pixel height (µm) | 8.2 | ~3 | 45.0 | 24 |
Focal length (mm) | 4–64 | 2.8–12 | 14.3 | 18.4 |
HFOV (°) | 3–47.5 | 33–93 | 24 | 25 |
VFOV (°) | 2.25–35.62 | 24–68 | 18 | 18.8 |
OpenCV | Halcon | OpenCv-Halcon | |
---|---|---|---|
Sensor W (mm) | 6.310 | 6.020 | 0.290 |
Sensor H (mm) | 4.800 | 4.800 | 0.000 |
Pixel (μm) | 3.10 | 3.18 | −0.08 |
Focal (mm) | 11.320 | 11.220 | 0.100 |
PP x (mm) | 2.880 | 2.600 | 0.280 |
PP y (mm) | 2.190 | 1.940 | 0.250 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coltelli, M.; D’Aranno, P.J.V.; De Bonis, R.; Guerrero Tello, J.F.; Marsella, M.; Nardinocchi, C.; Pecora, E.; Proietti, C.; Scifoni, S.; Scutti, M.; et al. The Use of Surveillance Cameras for the Rapid Mapping of Lava Flows: An Application to Mount Etna Volcano. Remote Sens. 2017, 9, 192. https://doi.org/10.3390/rs9030192
Coltelli M, D’Aranno PJV, De Bonis R, Guerrero Tello JF, Marsella M, Nardinocchi C, Pecora E, Proietti C, Scifoni S, Scutti M, et al. The Use of Surveillance Cameras for the Rapid Mapping of Lava Flows: An Application to Mount Etna Volcano. Remote Sensing. 2017; 9(3):192. https://doi.org/10.3390/rs9030192
Chicago/Turabian StyleColtelli, Mauro, Peppe J. V. D’Aranno, Roberto De Bonis, Josè F. Guerrero Tello, Maria Marsella, Carla Nardinocchi, Emilio Pecora, Cristina Proietti, Silvia Scifoni, Marianna Scutti, and et al. 2017. "The Use of Surveillance Cameras for the Rapid Mapping of Lava Flows: An Application to Mount Etna Volcano" Remote Sensing 9, no. 3: 192. https://doi.org/10.3390/rs9030192
APA StyleColtelli, M., D’Aranno, P. J. V., De Bonis, R., Guerrero Tello, J. F., Marsella, M., Nardinocchi, C., Pecora, E., Proietti, C., Scifoni, S., Scutti, M., & Wahbeh, W. (2017). The Use of Surveillance Cameras for the Rapid Mapping of Lava Flows: An Application to Mount Etna Volcano. Remote Sensing, 9(3), 192. https://doi.org/10.3390/rs9030192