Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges
"> Figure 1
<p>Location of the discussed sites with multi-purpose land cover maps from Landsat data. More details are provided in <a href="#remotesensing-08-00979-t001" class="html-table">Table 1</a>.</p> "> Figure 2
<p>CAVM [<a href="#B5-remotesensing-08-00979" class="html-bibr">5</a>] and global land cover maps for the CAVM domain. For a description, see <a href="#remotesensing-08-00979-t002" class="html-table">Table 2</a>.</p> "> Figure 3
<p>Comparison of GLC2000 classes with CAVM [<a href="#B5-remotesensing-08-00979" class="html-bibr">5</a>].</p> "> Figure 4
<p>Comparison of ECOCLIMAP classes with CAVM [<a href="#B5-remotesensing-08-00979" class="html-bibr">5</a>].</p> "> Figure 5
<p>Comparison of CCI Land Cover 2010 classes with CAVM [<a href="#B5-remotesensing-08-00979" class="html-bibr">5</a>].</p> "> Figure 6
<p>Comparison of the number of classes and spatial resolution from land cover classifications north of the treeline for different applications. (sources: [<a href="#B9-remotesensing-08-00979" class="html-bibr">9</a>,<a href="#B11-remotesensing-08-00979" class="html-bibr">11</a>,<a href="#B13-remotesensing-08-00979" class="html-bibr">13</a>,<a href="#B23-remotesensing-08-00979" class="html-bibr">23</a>,<a href="#B25-remotesensing-08-00979" class="html-bibr">25</a>,<a href="#B26-remotesensing-08-00979" class="html-bibr">26</a>,<a href="#B35-remotesensing-08-00979" class="html-bibr">35</a>,<a href="#B40-remotesensing-08-00979" class="html-bibr">40</a>,<a href="#B41-remotesensing-08-00979" class="html-bibr">41</a>,<a href="#B42-remotesensing-08-00979" class="html-bibr">42</a>,<a href="#B47-remotesensing-08-00979" class="html-bibr">47</a>,<a href="#B50-remotesensing-08-00979" class="html-bibr">50</a>,<a href="#B52-remotesensing-08-00979" class="html-bibr">52</a>,<a href="#B56-remotesensing-08-00979" class="html-bibr">56</a>,<a href="#B59-remotesensing-08-00979" class="html-bibr">59</a>,<a href="#B63-remotesensing-08-00979" class="html-bibr">63</a>,<a href="#B64-remotesensing-08-00979" class="html-bibr">64</a>,<a href="#B66-remotesensing-08-00979" class="html-bibr">66</a>,<a href="#B67-remotesensing-08-00979" class="html-bibr">67</a>,<a href="#B69-remotesensing-08-00979" class="html-bibr">69</a>,<a href="#B73-remotesensing-08-00979" class="html-bibr">73</a>,<a href="#B75-remotesensing-08-00979" class="html-bibr">75</a>,<a href="#B96-remotesensing-08-00979" class="html-bibr">96</a>,<a href="#B97-remotesensing-08-00979" class="html-bibr">97</a>,<a href="#B100-remotesensing-08-00979" class="html-bibr">100</a>,<a href="#B101-remotesensing-08-00979" class="html-bibr">101</a>,<a href="#B102-remotesensing-08-00979" class="html-bibr">102</a>,<a href="#B103-remotesensing-08-00979" class="html-bibr">103</a>,<a href="#B110-remotesensing-08-00979" class="html-bibr">110</a>]).</p> ">
Abstract
:1. Introduction
2. Development of Techniques for Local- to Regional-Scale Mapping
3. Maps for Upscaling Studies
3.1. Super-Sites
3.2. Further Studies
4. Permafrost Subsurface and Land Surface Features
5. Changing Land Cover and Transition Zones
6. National- and Regional-Scale Land Cover Maps
7. The Arctic in Global Land Cover Maps
8. Challenges and Promising Approaches
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ALOS | Advanced Land Observing Satellite |
ALT | Active Layer Thickness |
AMSR-E | Advanced Microwave Scanning Radiometer-Earth Observing System |
ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
AVHRR | Advanced Very High Resolution Radiometer |
CAFF | Conservation of Arctic Flora and Fauna |
CAVM | Circum-Arctic Vegetation Map |
CCI | Climate Change Initiative |
CHRIS | Compact High Resolution Imaging Spectrometer |
CS | Closed Shrubland |
DCW | Digital Chart of the World |
DIS | Data and Information System |
DUE | Data User Element |
EBF | Evergreen Broadleaf Forest |
ENF | Evergreen Needle-leaf Forest |
ENVISAT | Environmental Satellite |
ERS | European Remote Sensing Satellite |
ESA | European Space Agency |
ET | Evapotranspiration |
ETM | Enhanced Thematic Mapper |
FAO | Food and Agriculture Organization |
G | Grassland |
GLC | Global Land Cover |
GPP | Gross Primary Production |
HRV | High Resolution Visible |
IGBP | International Geosphere-Biosphere Programme |
ISODATA | Iterative Self-Organizing Data Analysis Technique Algorithm |
JERS | Japanese Earth Resources Satellite |
JRC | Joint Research Centre |
KH | Keyhole |
LAI | Leaf Area Index |
LC | Land Cover |
LCCS | Land Cover Classification System |
MERIS | Medium Resolution Imaging Spectrometer |
MISR | Multi-angle Imaging Spectroradiometer |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MSS | Multispectral Scanner System |
NDVI | Normalized Difference Vegetation Index |
NH | Northern Hemisphere |
NOAA | National Oceanic and Atmospheric Administration |
NPP | Net Primary Production |
ORCHIDEE | Organizing Carbon and Hydrology in Dynamic Ecosystems |
OS | Open Shrubland |
PALSAR | Phased Array L-Band Synthetic Aperture Radar |
PFT | Plant Function Type |
Proba | Project for On-Board Autonomy |
SAR | Synthetic Aperture Radar |
SOCC | Soil Organic Carbon Content |
SPOT | Satellite Pour l’Observation de la Terre |
TC | Tasseled Cap |
TM | Thematic Mapper |
UMD | University of Maryland |
VGT | Vegetation |
WG | Wooded Grassland |
WL | Woodland |
References
- Westermann, S.; Ostby, T.I.; Gisnas, K.; Schuler, T.V.; Etzelmuller, B. A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data. CRYOSPHERE 2015, 9, 1303–1319. [Google Scholar] [CrossRef]
- Smith, M. Potential Responses of Permafrost to Climatic Change. J. Cold Reg. Eng. 1990, 4, 29–37. [Google Scholar] [CrossRef]
- Ottle, C.; Lescure, J.; Maignan, F.; Poulter, B.; Wang, T.; Delbart, N. Use of various remote sensing land cover products for plant functional type mapping over Siberia. Earth Syst. Sci. Data 2013, 5, 331–348. [Google Scholar] [CrossRef]
- Walker, D.; Bay, C.; Daniels, F.; Einarsson, E.; Elvebakk, A.; Johansen, B.; Kapitsa, A.; Kholod, S.; Murray, D.; Talbot, S.; et al. Toward a new arctic vegetation map—A review of existing maps. J. Veg. Sci. 1995, 6, 427–436. [Google Scholar] [CrossRef]
- Walker, D.; Gould, W.; Maier, H.; Raynolds, M. The Circumpolar Arctic Vegetation Map: AVHRR-derived base maps, environmental controls, and integrated mapping procedures. Int. J. Remote Sens. 2002, 23, 4551–4570. [Google Scholar] [CrossRef]
- Bartsch, A.; Pathe, C.; Scipal, K.; Wagner, W. Detection of permanent open water surfaces in central Siberia with ENVISAT ASAR wide swath data with special emphasis on the estimation of methane fluxes from tundra wetlands. Hydrol. Res. 2008, 39, 89–100. [Google Scholar] [CrossRef]
- Virtanen, T.; Ek, M. The fragmented nature of tundra landscape. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 4–12. [Google Scholar] [CrossRef]
- Olthof, I.; Latifovic, R.; Pouliot, D. Development of a circa 2000 land cover map of northern Canada at 30 m resolution from Landsat. Can. J. Remote Sens. 2009, 35, 152–165. [Google Scholar] [CrossRef]
- Pearce, C. Mapping muskox habitat in the canadian high arctic with spot satellite data. Arctic 1991, 44, 49–57. [Google Scholar] [CrossRef]
- Markon, C.; Derksen, D. Identification of tundra land cover near Teshekpuk Lake, Alaska using SPOT satellite data. Arctic 1994, 47, 222–231. [Google Scholar] [CrossRef]
- Kayhko, J.; Pellikka, P. Remote sensing of the impact of reindeer grazing on vegetation in northern Fennoscandia using SPOT XS data. Polar Res. 1994, 13, 115–124. [Google Scholar] [CrossRef]
- Belchansky, G.; Ovchinnikov, G.; Douglas, D. Comparative evaluation of ALMAZ, ERS-1, JERS-I and Landsat-TM for discriminating wet tundra. In Proceedings of the 1995 International Geoscience and Remote Sensing Symposium, Quantitative Remote Sensing for Science and Applications (IGARSS 95.), Firenze, Italy, 10–14 July 1995; Stein, T., Ed.; Volume 1, pp. 309–311.
- Belchansky, G.; Ovchinikov, G.; Kozlenko, N.; Douglas, D. Assessment of dependence between SAR data focusing parameters and tundra habitat classification. In Proceedings of the 1995 International Geoscience and Remote Sensing Symposium, Quantitative Remote Sensing for Science and Applications (IGARSS 95), Firenze, Italy, 10–14 July 1995; Stein, T., Ed.; Volume 1, pp. 219–221.
- Joria, P.; Jorgenson, J. Comparison of three methods for mapping tundra with landsat digital data. Photogramm. Eng. Remote Sens. 1996, 62, 163–169. [Google Scholar]
- Rees, W.G. Physical Principles of Remote Sensing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Mosbech, A.; Hansen, B. Comparison of satellite imagery and infrared aerial photography as vegetation mapping methods in an arctic study area—Jameson Land, East Greenland. Polar Res. 1994, 13, 139–152. [Google Scholar] [CrossRef]
- Brossard, T.; Joly, D. Probability models, remote sensing and field observation: Test for mapping some plant distributions in the Kongsfjord area, Svalbard. Polar Res. 1994, 13, 153–161. [Google Scholar] [CrossRef]
- Cihlar, J.; Ly, H.; Xiao, Q. Land cover classification with AVHRR multichannel composites in northern environments. Remote Sens. Environ. 1996, 58, 36–51. [Google Scholar] [CrossRef]
- Fleming, M.D. The Second Circumpolar Arctic Vegetation Mapping Workshop, Arendal, Norway, 19–24 May 1996 and The CAVM-North American Workshop, Anchorage Alaska, US, 14–16 January 1997; Institute of Arctic and Alpine Research: Boulder, CO, USA, 1997; pp. 25–26. [Google Scholar]
- Walker, D. An integrated vegetation mapping approach for northern Alaska (1:4 M scale). Int. J. Remote Sens. 1999, 20, 2895–2920. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Cihlar, J.; Chen, W. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data. J. Geophys. Res.-Atmos. 1999, 104, 27735–27754. [Google Scholar] [CrossRef]
- Williams, M.; Rastetter, E.; Shaver, G.; Hobbie, J.; Carpino, E.; Kwiatkowski, B. Primary production of an arctic watershed: An uncertainty analysis. Ecol. Appl. 2001, 11, 1800–1816. [Google Scholar] [CrossRef]
- Takeuchi, W.; Tamura, M.; Yasuoka, Y. Estimation of methane emission from West Siberian wetland by scaling technique between NOAA AVHRR and SPOT HRV. Remote Sens. Environ. 2003, 85, 21–29. [Google Scholar] [CrossRef]
- Olthof, I.; Fraser, R.H. Mapping northern land cover fractions using Landsat ETM. Remote Sens. Environ. 2007, 107, 496–509. [Google Scholar] [CrossRef]
- Hugelius, G.; Virtanen, T.; Kaverin, D.; Pastukhov, A.; Rivkin, F.; Marchenko, S.; Romanovsky, V.; Kuhry, P. High-resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic. J. Geophys. Res.-Biogeosci. 2011, 116, G03024. [Google Scholar] [CrossRef]
- Broderick, D.E.; Frey, K.E.; Rogan, J.; Alexander, H.D.; Zimov, N.S. Estimating upper soil horizon carbon stocks in a permafrost watershed of Northeast Siberia by integrating field measurements with Landsat-5 TM and WorldView-2 satellite data. Gisci. Remote Sens. 2015, 52, 131–157. [Google Scholar] [CrossRef]
- Moody, D.I.; Brumby, S.P.; Rowland, J.C.; Altmann, G.L. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries. J. Appl. Remote Sens. 2014, 8. [Google Scholar] [CrossRef]
- Fraser, R.; McLennan, D.; Ponomarenko, S.; Olthof, I. Image-based predictive ecosystem mapping in Canadian arctic parks. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 129–138. [Google Scholar] [CrossRef]
- Atwood, D.K.; Small, D.; Gens, R. Improving PolSAR Land Cover Classification With Radiometric Correction of the Coherency Matrix. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 848–856. [Google Scholar] [CrossRef]
- Banks, S.; Ullmann, T.; Roth, A.; Schmitt, A.; Dech, S.; King, D. Classification of Arctic Coastal Land Covers with Polarimetric SAR Data. In Proceedings of the 2013 IEEE Radar Conference (RADAR), Ottawa, ON, Canada, 29 April–3 May 2013.
- Banks, S.N.; King, D.J.; Merzouki, A.; Duffe, J. Characterizing scattering behaviour and assessing potential for classification of Arctic shore and near-shore land covers with fine Quad-Pol RADARSAT-2 data. Can. J. Remote Sens. 2014, 40, 291–314. [Google Scholar] [CrossRef]
- Ullmann, T.; Schmitt, A.; Roth, A.; Duffe, J.; Dech, S.; Hubberten, H.W.; Baumhauer, R. Land cover characterization and classification of Arctic tundra environments by means of polarized synthetic aperture X- and C-band radar (PolSAR) and Landsat 8 multispectral imagery—Richards Island, Canada. Remote Sens. 2014, 6, 8565–8593. [Google Scholar] [CrossRef]
- Duguay, Y.; Bernier, M.; Levesque, E.; Domine, F. Land cover classification in SubArctic regions using fully polarimetric RADARSAT-2 data. Remote Sens. 2016, 8, 697. [Google Scholar] [CrossRef]
- Duguay, C.R.; Zhang, T.; Leverington, D.W.; Romanovsky, V.E. Satellite remote sensing of permafrost and seasonally frozen ground. In Remote Sensing in Northern Hydrology: Measuring Environmental Change; American Geophysical Union: Washington, DC, USA, 2013; pp. 91–118. [Google Scholar]
- Muster, S.; Langer, M.; Heim, B.; Westermann, S.; Boike, J. Subpixel heterogeneity of ice-wedge polygonal tundra: A multi-scale analysis of land cover and evapotranspiration in the Lena River Delta, Siberia. Tellus Ser. B-Chem. Phys. Meteorol. 2012, 64, 17301. [Google Scholar] [CrossRef]
- Bartsch, A.; Trofaier, A.M.; Hayman, G.; Sabel, D.; Schlaffer, S.; Clark, D.B.; Blyth, E. Detection of open water dynamics with ENVISAT ASAR in support of land surface modeling at high latitudes. Biogeosciences 2012, 9, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Trofaier, A.M.; Bartsch, A.; Rees, W.G.; Leibman, M.O. Assessment of spring floods and surface water extent over the Yamalo-Nenets Autonomous District. Environ. Res. Lett. 2013, 8, 045026. [Google Scholar] [CrossRef]
- Virtanen, T.; Mikkola, K.; Nikula, A. Satellite image based vegetation classification of a large area using limited ground reference data: A case study in the Usa Basin, north-east European Russia. Polar Res. 2004, 23, 51–66. [Google Scholar] [CrossRef]
- Muller, S.; Walker, D.; Nelson, F.; Auerbach, N.; Bockheim, J.; Guyer, S.; Sherba, D. Accuracy assessment of a land-cover map of the Kuparuk River Basin, Alaska: Considerations for remote regions. Photogramm. Eng. Remote Sens. 1998, 64, 619–628. [Google Scholar]
- Schneider, J.; Grosse, G.; Wagner, D. Land cover classification of tundra environments in the Arctic Lena Delta based on Landsat 7 ETM+ data and its application for upscaling of methane emissions. Remote Sens. Environ. 2009, 113, 380–391. [Google Scholar] [CrossRef] [Green Version]
- Reeburgh, W.; King, J.; Regli, S.; Kling, G.; Auerbach, N.; Walker, D. A CH4 emission estimate for the Kuparuk River basin, Alaska. J. Geophys. Res.-Atmos. 1998, 103, 29005–29013. [Google Scholar] [CrossRef]
- Stow, D.; Hope, A.; Boynton, W.; Phinn, S.; Walker, D.; Auerbach, N. Satellite-derived vegetation index and cover type maps for estimating carbon dioxide flux for arctic tundra regions. Geomorphology 1998, 21, 313–327. [Google Scholar] [CrossRef]
- Nelson, F.; Shiklomanov, N.; Mueller, G.; Hinkel, K.; Walker, D.; Bockheim, J. Estimating active-layer thickness over a large region: Kuparuk River Basin, Alaska, USA. Arct. Alp. Res. 1997, 29, 367–378. [Google Scholar] [CrossRef]
- Auerbach, N.A.; Walker, D.A.; Bockheim, J.G. Land Cover Map of the Kuparuk River Basin, Alaska; Institute of Arctic and Alpine Research, University of Colorado: Boulder, CO, USA, 1997. [Google Scholar]
- Walker, D.A.; Daniëls, F.J.A.; Alsos, I.; Bhatt, U.S.; Breen, A.L.; Buchhorn, M.; Bültmann, H.; Druckenmiller, L.A.; Edwards, M.E.; Ehrich, D.; et al. Circumpolar Arctic vegetation: A hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data. Environ. Res. Lett. 2016, 11, 055005. [Google Scholar] [CrossRef]
- Muller, S.; Racoviteanu, A.; Walker, D. Landsat MSS-derived land-cover map of northern Alaska: Extrapolation methods and a comparison with photo-interpreted and AVHRR-derived maps. Int. J. Remote Sens. 1999, 20, 2921–2946. [Google Scholar] [CrossRef]
- Zubrzycki, S.; Kutzbach, L.; Grosse, G.; Desyatkin, A.; Pfeiffer, E.M. Organic carbon and total nitrogen stocks in soils of the Lena River Delta. Biogeosciences 2013, 10, 3507–3524. [Google Scholar] [CrossRef]
- Terentieva, I.E.; Glagolev, M.V.; Lapshina, E.D.; Sabrekov, A.F.; Maksyutov, S. Mapping of West Siberian taiga wetland complexes using Landsat imagery: Implications for methane emissions. Biogeosciences 2016, 13, 4615–4626. [Google Scholar] [CrossRef]
- Heikkinen, J.; Virtanen, T.; Huttunen, J.; Elsakov, V.; Martikainen, P. Carbon balance in East European tundra. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Kuhry, P.; Mazhitova, G.G.; Forest, P.A.; Deneva, S.; Virtanen, T.; Kultti, S. Upscaling soil organic carbon estimates for the Usa Basin (Northeast European Russia) using GIS-based land cover and soil classification schemes. Geogr. Tidsskr.-Dan. J. Geogr. 2002, 102, 11–25. [Google Scholar]
- Marushchak, M.E.; Kiepe, I.; Biasi, C.; Elsakov, V.; Friborg, T.; Johansson, T.; Soegaard, H.; Virtanen, T.; Martikainen, P.J. Carbon dioxide balance of subarctic tundra from plot to regional scales. Biogeosciences 2013, 10, 437–452. [Google Scholar] [CrossRef]
- Hugelius, G. Spatial upscaling using thematic maps: An analysis of uncertainties in permafrost soil carbon estimates. Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef]
- Jorgensen, C.J.; Johansen, K.M.L.; Westergaard-Nielsen, A.; Elberling, B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat. Geosci. 2015, 8, 20–23. [Google Scholar] [CrossRef]
- Elberling, B.; Tamstorf, M.P.; Michelsen, A.; Arndal, M.F.; Sigsgaard, C.; Illeris, L.; Bay, C.; Hansen, B.U.; Christensen, T.R.; Hansen, E.S.; et al. Soil and plant community-characteristics and dynamics at Zackenberg. In High-Arctic Ecosystem Dynamics in a Changing Climate; Advances in Ecological Research; Academic Press: New York, NY, USA, 2008; Volume 40, pp. 223–248. [Google Scholar]
- Palmtag, J.; Hugelius, G.; Lashchinskiy, N.; Tamstorf, M.P.; Richter, A.; Elberling, B.; Kuhry, P. Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost. Arct. Antarct. Alp. Res. 2015, 47, 71–88. [Google Scholar] [CrossRef]
- Siewert, M.B.; Hanisch, J.; Weiss, N.; Kuhry, P.; Maximov, T.C.; Hugelius, G. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. J. Geophys. Res. Biogeosci. 2015, 120, 1973–1994. [Google Scholar] [CrossRef]
- Johansen, B.E.; Karlsen, S.R.; Tømmervik, H. Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Rec. 2012, 48, 47–63. [Google Scholar] [CrossRef]
- Johansen, B.; Tommervik, H. The relationship between phytomass, NDVI and vegetation communities on Svalbard. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 20–30. [Google Scholar] [CrossRef]
- Hartley, I.P.; Hill, T.C.; Wade, T.J.; Clement, R.J.; Moncrieff, J.B.; Prieto-Blanco, A.; Disney, M.I.; Huntley, B.; Williams, M.; Howden, N.J.K.; et al. Quantifying landscape-level methane fluxes in subarctic Finland using a multiscale approach. Glob. Chang. Biol. 2015, 21, 3712–3725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgenstern, A.; Grosse, G.; Guenther, F.; Fedorova, I.; Schirrmeister, L. Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. Cryosphere 2011, 5, 849–867. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, A.; Gude, M.; Jonasson, C.; Scherer, D. Identification of geomorphic process units in Karkevagge, northern Sweden, by remote sensing and digital terrain analysis. Geogr. Ann. Ser. A-Phys. Geogr. 2002, 84A, 171–178. [Google Scholar] [CrossRef]
- Bartsch, A.; Gude, M.; Gurney, S.D. A geomatics-based approach for the derivation of the spatial distribution of sediment transport processes in periglacial mountain environments. Earth Surf. Proc. Landf. 2008, 33, 2255–2265. [Google Scholar] [CrossRef]
- Liljedahl, A.K.; Boike, J.; Daanen, R.P.; Fedorov, A.N.; Frost, G.V.; Grosse, G.; Hinzman, L.D.; Iijma, Y.; Jorgenson, J.C.; Matveyeva, N.; et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Grosse, G.; Schirrmeister, L.; Malthus, T. Application of Landsat-7 satellite data and a DEM for the quantification of thermokarst-affected terrain types in the periglacial Lena-Anabar coastal lowland. Polar Res. 2006, 25, 51–67. [Google Scholar] [CrossRef]
- Ulrich, M.; Grosse, G.; Chabrillat, S.; Schirrmeister, L. Spectral characterization of periglacial surfaces and geomorphological units in the Arctic Lena Delta using field spectrometry and remote sensing. Remote Sens. Environ. 2009, 113, 1220–1235. [Google Scholar] [CrossRef] [Green Version]
- Turner, K.W.; Wolfe, B.B.; Edwards, T.W.D.; Lantz, T.C.; Hall, R.I.; Larocque, G. Controls on water balance of shallow thermokarst lakes and their relations with catchment characteristics: A multi-year, landscape-scale assessment based on water isotope tracers and remote sensing in Old Crow Flats, Yukon (Canada). Glob. Chang. Biol. 2014, 20, 1585–1603. [Google Scholar] [CrossRef]
- Heindel, R.C.; Chipman, J.W.; Virginia, R.A. The Spatial Distribution and Ecological Impacts of Aeolian Soil Erosion in Kangerlussuaq, West Greenland. Ann. Assoc. Am. Geogr. 2015, 105, 875–890. [Google Scholar] [CrossRef]
- Leibman, M.O.; Khomutov, A.; Gubarkov, A.; Mullanurov, D.; Dvornikov, Y. The research station Vaskiny Dachi, Central Yamal, West Siberia, Russia—A review of 25 years of permafrost studies. Fenn. Int. J. Geogr. 2015, 153, 330. [Google Scholar]
- Beck, I.; Ludwig, R.; Bernier, M.; Levesque, E.; Boike, J. Assessing Permafrost Degradation and Land Cover Changes (1986–2009) using Remote Sensing Data over Umiujaq, Sub-Arctic Quebec. Permafr. Periglac. Proc. 2015, 26, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Muster, S.; Heim, B.; Abnizova, A.; Boike, J. Water body distributions across scales: A remote sensing based comparison of three Arctic tundra wetlands. Remote Sens. 2013, 5, 1498–1523. [Google Scholar] [CrossRef] [Green Version]
- Widhalm, B.; Bartsch, A.; Leibman, M.; Khomutov, A. Active layer thickness estimation from X-band SAR backscatter intensity. Cryosphere Discuss. 2016, 2016, 1–18. [Google Scholar] [CrossRef]
- Ou, C.; Leblon, B.; Zhang, Y.; LaRocque, A.; Webster, K.; McLaughlin, J. Modelling and mapping permafrost at high spatial resolution using Landsat and Radarsat images in northern Ontario, Canada: Part 1—Model calibration. Int. J. Remote Sens. 2016, 37, 2727–2750. [Google Scholar] [CrossRef]
- Ou, C.; LaRocque, A.; Leblon, B.; Zhang, Y.; Webster, K.; McLaughlin, J. Modelling and mapping permafrost at high spatial resolution using Landsat and Radarsat-2 images in Northern Ontario, Canada: Part 2—Regional mapping. Int. J. Remote Sens. 2016, 37, 2751–2779. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Roth, J.E.; Miller, P.F.; Macander, M.J.; Duffy, M.S.; Pullman, E.R.; Miller, E.A.; Attanas, L.B.; Wells, A.F.; Talbot, S. An ecological land survey and landcover map of the Selawik National Wildlife Refuge. Technical Report; ABR, Inc.—Environmental Research & Services and U.S. Fish and Wildlife Service: Kotzebue, AK, USA, 2009. [Google Scholar]
- Cable, W.L.; Romanovsky, V.E.; Jorgenson, M.T. Scaling-up permafrost thermal measurements in western Alaska using an ecotype approach. Cryosphere 2016, 10, 2517–2532. [Google Scholar] [CrossRef]
- Bartsch, A.; Widhalm, B.; Kuhry, P.; Hugelius, G.; Palmtag, J.; Siewert, M. Can C-Band SAR be used to estimate soil organic carbon storage in tundra? Biogeosci. Discuss. 2016, 2016, 1–24. [Google Scholar] [CrossRef]
- Reschke, J.; Bartsch, A.; Schlaffer, S.; Schepaschenko, D. Capability of C-band SAR for operational wetland monitoring at high latitudes. Remote Sens. 2012, 4, 2923–2943. [Google Scholar] [CrossRef]
- Bartsch, A.; Wagner, W.; Scipal, K.; Pathe, C.; Sabel, D.; Wolski, P. Global monitoring of wetlands—The value of ENVISAT ASAR Global mode. J. Environ. Manag. 2009, 90, 2226–2233. [Google Scholar] [CrossRef] [PubMed]
- Widhalm, B.; Bartsch, A.; Heim, B. A novel approach for the characterization of tundra wetland regions with C-band SAR satellite data. Int. J. Remote Sens. 2015, 36, 5537–5556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selkowitz, D.J. A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in Arctic Alaska. Remote Sens. Environ. 2010, 114, 1338–1352. [Google Scholar] [CrossRef]
- Smith, L.C.; Sheng, Y.; MacDonald, G.M.; Hinzman, L.D. Disappearing Arctic lakes. Science 2005, 308, 1429. [Google Scholar] [CrossRef] [PubMed]
- Kumpula, T.; Pajunen, A.; Kaarlejarvi, E.; Forbes, B.C.; Stammler, F. Land use and land cover change in Arctic Russia: Ecological and social implications of industrial development. Glob. Environ. Chang.-Hum. Policy Dimens. 2011, 21, 550–562. [Google Scholar] [CrossRef]
- Stow, D.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens. Environ. 2004, 89, 281–308. [Google Scholar] [CrossRef]
- Bhatt, U.S.; Walker, D.A.; Raynolds, M.K.; Bieniek, P.A.; Epstein, H.E.; Comiso, J.C.; Pinzon, J.E.; Tucker, C.J.; Polyakov, I.V. Recent declines in warming and vegetation greening trends over pan-Arctic tundra. Remote Sens. 2013, 5, 4229–4254. [Google Scholar] [CrossRef]
- Urban, M.; Forkel, M.; Eberle, J.; Huettich, C.; Schmullius, C.; Herold, M. Pan-Arctic climate and land cover trends derived from multi-variate and multi-scale analyses (1981–2012). Remote Sens. 2014, 6, 2296–2316. [Google Scholar] [CrossRef]
- Fraser, R.H.; Olthof, I.; Carriere, M.; Deschamps, A.; Pouliot, D. Detecting long-term changes to vegetation in northern Canada using the Landsat satellite image archive. Environ. Res. Lett. 2011, 6, 045502. [Google Scholar] [CrossRef]
- Frost, G.V.; Epstein, H.E.; Walker, D.A. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Fraser, R.; Olthof, I.; Carriere, M.; Deschamps, A.; Pouliot, D. A method for trend-based change analysis in Arctic tundra using the 25-year Landsat archive. Polar Rec. 2012, 48, 83–93. [Google Scholar] [CrossRef]
- Nitze, I.; Grosse, G. Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks. Remote Sens. Environ. 2016, 181, 27–41. [Google Scholar] [CrossRef]
- Raynolds, M.K.; Walker, D.A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; van de Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813. [Google Scholar] [CrossRef]
- Lin, D.H.; Johnson, D.R.; Andresen, C.; Tweedie, C.E. High spatial resolution decade-time scale land cover change at multiple locations in the Beringian Arctic (1948–2000s). Environ. Res. Lett. 2012, 7, 025502. [Google Scholar] [CrossRef]
- Silapaswan, C.; Verbyla, D.; McGuire, A. Land cover change on the Seward Peninsula: The use of remote sensing to evaluate the potential influences of climate warming on historical vegetation dynamics. Can. J. Remote Sens. 2001, 27, 542–554. [Google Scholar] [CrossRef]
- Rees, W.; Williams, M. Monitoring changes in land cover induced by atmospheric pollution in the Kola Peninsula, Russia, using Landsat-MSS data. Int. J. Remote Sens. 1997, 18, 1703–1723. [Google Scholar] [CrossRef]
- Tommervik, H.; Hogda, K.A.; Solheim, L. Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data. Remote Sens. Environ. 2003, 85, 370–388. [Google Scholar] [CrossRef]
- Ranson, K.; Sun, G.; Kharuk, V.; Kovacs, K. Assessing tundra-taiga boundary with multi-sensor satellite data. Remote Sens. Environ. 2004, 93, 283–295. [Google Scholar] [CrossRef]
- Hufkens, K.; Scheunders, P.; Ceulemans, R. Validation of the sigmoid wave curve fitting algorithm on a forest-tundra ecotone in the Northwest Territories, Canada. Ecol. Inf. 2009, 4, 1–7. [Google Scholar] [CrossRef]
- Montesano, P.M.; Neigh, C.S.R.; Sexton, J.; Feng, M.; Channan, S.; Ranson, K.J.; Townshend, J.R. Calibration and Validation of Landsat Tree Cover in the Taiga-Tundra Ecotone. Remote Sens. 2016, 8, 551. [Google Scholar] [CrossRef]
- Beck, P.S.A.; Horning, N.; Goetz, S.J.; Loranty, M.M.; Tape, K.D. Shrub Cover on the North Slope of Alaska: A circa 2000 Baseline Map. Arct. Antarct. Alp. Res. 2011, 43, 355–363. [Google Scholar] [CrossRef]
- Bartsch, A.; Kumpula, J.; Colpaert, A. Applicability of Remote Sensing to small scale vegetation and reindeer pasture inventory—A study from northern Finland. Nord. Geogr. Publ. 1999, 28, 103–113. [Google Scholar]
- Rees, W.; Williams, M.; Vitebsky, P. Mapping land cover change in a reindeer herding area of the Russian Arctic using Landsat TM and ETM+ imagery and indigenous knowledge. Remote Sens. Environ. 2003, 85, 441–452. [Google Scholar] [CrossRef]
- Tommervik, H.; Johansen, B.; Tombre, I.; Thannheiser, D.; Hogda, K.; Gaare, E.; Wielgolaski, F. Vegetation changes in the Nordic mountain birch forest: The influence of grazing and climate change. Arct. Antarct. Alp. Res. 2004, 36, 323–332. [Google Scholar] [CrossRef]
- Nordberg, M.; Allard, A. A remote sensing methodology for monitoring lichen cover. Can. J. Remote Sens. 2002, 28, 262–274. [Google Scholar] [CrossRef]
- Cihlar, J.; Guindon, B.; Beaubien, J.; Latifovic, R.; Peddle, D.; Wulder, M.; Fernandes, R.; Kerr, J. From need to product: A methodology for completing a land cover map of Canada with Landsat data. Can. J. Remote Sens. 2003, 29, 171–186. [Google Scholar] [CrossRef]
- Olthof, I.; Butson, C.; Fernandes, R.; Fraser, R.; Latifovic, R.; Orazietti, J. Landsat ETM plus mosaic of northern Canada. Can. J. Remote Sens. 2005, 31, 412–419. [Google Scholar] [CrossRef]
- Selkowitz, D.J.; Stehman, S.V. Thematic accuracy of the National Land Cover Database (NLCD) 2001 land cover for Alaska. Remote Sens. Environ. 2011, 115, 1401–1407. [Google Scholar] [CrossRef]
- Gould, W.; Edlund, S.; Zoltai, S.; Raynolds, M.; Walker, D.; Maier, H. Canadian Arctic vegetation mapping. Int. J. Remote Sens. 2002, 23, 4597–4609. [Google Scholar] [CrossRef]
- Gould, W.; Raynolds, M.; Walker, D. Vegetation, plant biomass, and net primary productivity patterns in the Canadian Arctic. J. Geophys. Res.-Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Walker, D.; Raynolds, M.; Daniels, F.; Einarsson, E.; Elvebakk, A.; Gould, W.; Katenin, A.; Kholod, S.; Markon, C.; Melnikov, E.; et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 2005, 16, 267–282. [Google Scholar] [CrossRef]
- Rees, W.G.; Danks, F.S. Derivation and assessment of vegetation maps for reindeer pasture analysis in Arctic European Russia. Polar Rec. 2007, 43, 290–304. [Google Scholar] [CrossRef]
- Bartalev, S.; Belward, A.; Erchov, D.; Isaev, A. A new SPOT4-VEGETATION derived land cover map of Northern Eurasia. Int. J. Remote Sens. 2003, 24, 1977–1982. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A.; Krankina, O.N.; Baccini, A.; Woodcock, C.E.; Sibley, A.; Sun, G.; Kharuk, V.; Elsakov, V. Hierarchical mapping of Northern Eurasian land cover using MODIS data. Remote Sens. Environ. 2011, 115, 392–403. [Google Scholar] [CrossRef]
- De Grandi, G.; Spirolazzi, V.; Rauste, Y.; Curto, L.; Rosenqvist, A.; Shimada, M. The GBFM radar mosaic of the Eurasian Taiga: Selected topics on Geo-location and preliminary thematic products. In Proceedings of the IGARSS 2004: IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 507–510.
- Whitcomb, J.; Moghaddam, M.; McDonald, K.; Kellndorfer, J.; Podest, E. Mapping vegetated wetlands of Alaska using L-band radar satellite imagery. Can. J. Remote Sens. 2009, 35, 54–72. [Google Scholar] [CrossRef]
- Melentyev, V.V.; Matelenok, I.V. Technique for latitudinal discrimination of Siberian landscapes based on satellite passive microwave data. Contemp. Probl. Ecol. 2014, 7, 827–837. [Google Scholar] [CrossRef]
- Blunden, J.; Arndt, D.S. State of the Climate in 2015. Bull. Am. Meteorol. Soc. 2016, 97, SI–S275. [Google Scholar] [CrossRef]
- Loveland, T.; Reed, B.; Brown, J.; Ohlen, D.; Zhu, Z.; Yang, L.; Merchant, J. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Hansen, M.; Defries, R.; Townshend, J.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Friedl, M.; McIver, D.; Hodges, J.; Zhang, X.; Muchoney, D.; Strahler, A.; Woodcock, C.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Bartholome, E.; Belward, A. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Arino, O.; Bontemps, S.; Defourny, P.; Kalogirou, V.; Ramos Perez, J.J.; Van Bogaert, E.; Weber, J.L. Pan-European Land Cover/Use Map for 2009; Pangaea: Bremerhaven, Germany, 2010. [Google Scholar]
- Arino, O.; Bicheron, P.; Achard, F.; Latham, J.; Witt, R.; Weber, J.L. GLOBCOVER The most detailed portrait of Earth. Esa Bull.-Eur. Space Agency 2008, 136, 24–31. [Google Scholar]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Masson, V.; Champeaux, J.; Chauvin, F.; Meriguet, C.; Lacaze, R. A global database of land surface parameters at 1-km resolution in meteorological and climate models. J. Clim. 2003, 16, 1261–1282. [Google Scholar] [CrossRef]
- Champeaux, J.; Masson, V.; Chauvin, R. ECOCLIMAP: A global database of land surface parameters at 1 km resolution. Meteorol. Appl. 2005, 12, 29–32. [Google Scholar] [CrossRef]
- Frey, K.E.; Smith, L.C. How well do we know northern land cover? Comparison of four global vegetation and wetland products with a new ground-truth database for West Siberia. Glob. Biogeochem. Cycles 2007, 21. [Google Scholar] [CrossRef]
- Du, J.; Kimball, J.; Jones, L.; Watts, J. Implementation of satellite based fractional water cover indices in the pan-Arctic region using AMSR-E and MODIS. Remote Sens. Environ. 2016, 184, 469–481. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Krankina, O.N.; Cohen, W.B.; Friedl, M.A.; Sulla-Menashe, D.; Kennedy, R.E.; Nelson, P.; Loboda, T.V.; Kuemmerle, T.; Dyukarev, E.; et al. Comparison and assessment of coarse resolution land cover maps for Northern Eurasia. Remote Sens. Environ. 2011, 115, 3539–3553. [Google Scholar] [CrossRef]
- McCallum, I.; Obersteiner, M.; Nilsson, S.; Shvidenko, A. A spatial comparison of four satellite derived 1 km global land cover datasets. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 246–255. [Google Scholar] [CrossRef]
- Porada, P.; Ekici, A.; Beer, C. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale. Cryosphere Discuss. 2016, 2016, 1–31. [Google Scholar] [CrossRef]
- Mayaux, P.; Eva, H.; Gallego, J.; Strahler, A.H.; Herold, M.; Agrawal, S.; Naumov, S.; De Miranda, E.E.; Di Bella, C.M.; Ordoyne, C.; et al. Validation of the global land cover 2000 map. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1728–1739. [Google Scholar] [CrossRef]
- Bontemps, S.; Boettcher, M.; Brockmann, C.; Kirches, G.; Lamarche, C.; Radoux, J.; Santoro, M.; Vanbogaert, E.; Wegmüller, U.; Herold, M.; et al. Multi-year global land cover mapping at 300 m and characterization for climate modeling: Achievements of the Land Cover component of the ESA Climate Change Initiative. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 323–328. [Google Scholar] [CrossRef]
- Loveland, T.; Belward, A. The IGBP-DIS global 1 km land cover data set, DISCover: First results. Int. J. Remote Sens. 1997, 18, 3291–3295. [Google Scholar] [CrossRef]
- CCI LC Project. CCI-LC Product User Guide; Technical Report; UCL-Geomatics: Louvain-la-Neuve, Belgium, 2016. [Google Scholar]
- CAVM Team. Circumpolar Arctic Vegetation Map. Scale 1:7,500,000; Map 1, Conservation of Arctic Flora and Fauna (CAFF); U.S. Fish and Wildlife Service: Anchorage, AK, USA, 2003.
- Wullschleger, S.D.; Epstein, H.E.; Box, E.O.; Euskirchen, E.S.; Goswami, S.; Iversen, C.M.; Kattge, J.; Norby, R.J.; van Bodegom, P.M.; Xu, X. Plant functional types in Earth system models: Past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Ann. Bot. 2014, 114, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Langford, Z.; Kumar, J.; Hoffman, F.M.; Norby, R.J.; Wullschleger, S.D.; Sloan, V.L.; Iversen, C.M. Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets. Remote Sens. 2016, 8, 733. [Google Scholar] [CrossRef]
- Santoro, M.; Wegmueller, U. Multi-temporal synthetic aperture radar metrics applied to map open water bodies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3225–3238. [Google Scholar] [CrossRef]
- Santoro, M.; Beer, C.; Cartus, O.; Schmullius, C.; Shvidenko, A.; McCallum, I.; Wegmüller, U.; Wiesmann, A. Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements. Remote Sens. Environ. 2011, 115, 490–507. [Google Scholar] [CrossRef]
- Duguay, Y.; Bernier, M.; Levesque, E.; Tremblay, B. Potential of C and X band SAR for shrub growth monitoring in sub-Arctic environments. Remote Sens. 2015, 7, 9410–9430. [Google Scholar] [CrossRef]
- Fraser, R.H.; Olthof, I.; Lantz, T.C.; Schmitt, C. UAV photogrammetry for mapping vegetation in the low-Arctic. Arct. Sci. 2016, 2, 79–102. [Google Scholar] [CrossRef]
- Mora, C.; Vieira, G.; Pina, P.; Lousada, M.; Christiansen, H.H. Land cover classification using high-resolution aerial photography in Adventdalen, Svalbard. Geogr. Ann. Ser. A Phys. Geogr. 2015, 97, 473–488. [Google Scholar] [CrossRef]
- Tommervik, H.; Karlsen, S.R.; Nilsen, L.; Johansen, B.; Storvold, R.; Zmarz, A.; Beck, P.S.; Hogda, K.A.; Goetz, S.; Park, T.; et al. Use of unmanned aircraft systems (UAS) in a multi-scale vegetation index study of arctic plant communities in Adventdalen on Svalbard. In Proceedings of the EARSeL eProceedings, Special Issue: 34th EARSeL Symposium, European Association of Remote Sensing Laboratories, Warsaw, Poland, 16–20 June 2014; pp. 47–52.
- Schneider, J.; Grosse, G.; Wagner, D. The Lena River Delta—Land Cover Classification of Tundra Environments Based on Landsat 7 ETM+ Data and Its Application for Upscaling of Methane Emissions; Pangaea: Bremerhaven, Germany, 2009. [Google Scholar]
Site Name | Usa Basin (Non-Forest Part) | Kuparuk Basin | Lena Delta |
---|---|---|---|
Pixel size | 30 m | resampled from 80 down to 50 m | 30 m |
Year of input data | 1988/1995 (six images) | 1976–1985 | 2000/2001 (two images) |
Total area | 49,370 km2 | 25,300 km2 | 66,470 km2 |
Classification Method | semi-supervised classification of the spectrally-matched image mosaic (TM Bands 2–5, 7) (parallelepiped decision rule and maximum likelihood) | unsupervised ISODATA classification (MSS green, red and infrared bands) | unsupervised ISODATA classification (cloud masking) and supervised minimum distance classification (TM Bands 2–5, 7) |
Sources | Virtanen et al. [38] | Muller et al. [39] | Schneider et al. [40] |
Non-vegetated/Barrens | Mainly bare land Human infrastructures | Barren | Non-vegetated |
Shrub/Trees | Willow stands Dwarf birch heath Dwarf shrub moss tundra heath Dry dwarf shrub, lichen tundra | Moist dwarf shrub, Tussock-graminoid tundra Moist graminoid, prostrate shrub and other shrublands | Moist to dry dwarf shrub-dominated tundra Dry moss-, sedge- and dwarf shrub-dominated tundra |
Tundra/Other | Tundra with some bare peat Sparse alpine tundra Human-impacted tundra | Dry prostrate shrub tundra Moist graminoid, prostrate shrub tundra Wet graminoid tundra | Wet sedge- and moss-dominated tundra Moist grass- and moss-dominated tundra Dry grass-dominated tundra Dry tussock tundra |
ECOCLIMAP ll | GLC 2000 | ESA CCI Landcover | CAVM | |
---|---|---|---|---|
Time | 1999–2003 (multiannual) | 2000 | 5 years centered on 2000/2005/2010 | 1993, 1995 |
Input data | SPOT Vegetation | SPOT 4 (Vega2000) | MERIS, SPOT, AATSR | AVHRR |
Legend | LCCS (FAO) | LCCS (FAO) | LCCS (FAO) | dominant PFT, stature of woody shrubs (Walker et al. [5]) |
Classes | 6 (273) | 6 (22) | 5 (37) | 16 (19) |
Origin | Meteo France | JRC | ESA | USFWS, CAFF |
Strategy | ECOCLIMAP II uses the information contained in multiannual SPOT/VEGETATION, NDVI profiles to split LC classes in more homogenous sub-classes | Ad hoc processing, relying on a multiple thematic approach, subtractive based on LCCS (FAO) | Designed to be globally consistent while regionally tuned, developed with GlobCover [123] and MODIS knowledge | Integrates ancillary information and regional expertise of mapping scientist |
Accuracy and validation procedure | input (LAI from NDVI) is validated against in situ ground observations | Overall ∼68.6% (Mayaux et al. [132]); quality control by comparison with ancillary data and quantitative accuracy assessment based on stratified random sampling of reference data | 74.1 % compared to GlobCover (Bontemps et al. [133]); carried out externally; new validation tool (online interface for experts) was developed | Accuracy Level = 67.10%; validated by experts in LC-regions |
Spatial resolution | 1 km | 1 km | 300 m | 1 km, minimum polygon size 14 km |
Processing chains | Combination of 15 Types of LC, described by satellite data and Köppen’s world climate classes to discriminate LC-types number of “possible ecosystems”; Main LC-types from Global land cover map (University of Maryland, Hansen et al. [118]) derived from NOAA/AVHRR; snow/wetlands from IGBP-DIS map (Loveland and Belward [134]) | “regionally tuned” approach; different processing approaches according to the region: input data generation from multispectral and multitemporal datasets, fractional cover percentage or combination of multispectral and multitemporal data with additional indicators from time series | MERIS 10-year LC map as the baseline, SPOT time series for updating; three 5-year epochs centered on the years 2010 (2008–2012), 2005 (2003–2007) and 2000 (1998–2002) | A false color-infrared (CIR) image of AVHRR data was used as the base map for drawing map polygons (manual ‘photointerpretation’). The color for each pixel was determined by its reflectance at the time of maximum greenness. |
Classification mode | Hybrid-unsupervised classifier using 8 years of NDVI; comparison of NDVI annual profiles: if more than one month separation of minimum (maximum), then no aggregation; if two NDVI profiles for two ecosystems of the same cover type are found on several continents, then aggregation | Homogenous classification procedure (IGPB), unsupervised classifier (ISODATA) | Unsupervised classification chain, but improved by adding machine learning classification steps and the multi-year strategy (bi-monthly, seasonal and annual mosaics) | Classification steps: 1. Per pixel: supervised classification, identifying LC-classes that are not well represented; unsupervised classes, creating clusters of similar pixels; 2. Per cluster: cluster grouping in spectro-temporal classes according to their similarity in temporal space |
Literature | Masson et al. [125], Champeaux et al. [126] | Bartholome and Belward [121], Mayaux et al. [132] | CCI LC project [135] | CAVM Team [136] |
Type | Usa Basin (Non-Forest Part) | Kuparuk Basin | Lena Delta |
---|---|---|---|
CAVM | Nontussock sedge, dwarf shrub, moss tundra Erect dwarf shrub tundra Low shrub tundra Sedge, moss, low shrub wetland Non-carbonate mountain complex Carbonate mountain complex | Nontussock sedge, dwarf shrub, moss tundra Tussock sedge, dwarf shrub, moss tundra Erect dwarf shrub tundra Sedge/grass, moss wetland Sedge, moss, dwarf shrub wetland Sedge, moss, low shrub wetland Carbonate mountain complex | Prostrate dwarf shrub, herb tundra Graminoid, prostrate dwarf shrub, forb tundra Nontussock sedge, dwarf shrub, moss tundra Erect dwarf shrub tundra Low shrub tundra Sedge/grass, moss wetland Sedge, moss, dwarf shrub wetland Non-carbonate mountain complex Carbonate mountain complex |
ECOCLIMAP | Boreal evergreen needle-leaved forest NH sub-polar mixed forest NH sub-polar woodland NH sub-polar wooded grassland Asia polar closed shrub NH polar open shrub Asia sub-polar grassland | North America polar closed shrub NH polar open shrub | Asia polar closed shrub NH polar open shrub |
GLC2000 | Tree cover, needle-leaved, evergreen Mosaic: tree cover/other natural vegetation Shrub cover, closed-open, deciduous Herbaceous cover, closed-open Sparse herbaceous or sparse shrub cover Regularly flooded shrub and/or herbaceous cover Bare areas | Mosaic: tree cover/other natural vegetation Shrub cover, closed-open, evergreen Shrub cover, closed-open, deciduous Herbaceous cover, closed-open Sparse herbaceous or sparse shrub cover | Shrub cover, closed-open, deciduous Herbaceous cover, closed-open Sparse herbaceous or sparse shrub cover Regularly flooded shrub and/or herbaceous cover Bare areas |
CCI Landcover | Tree cover, needle-leaved, evergreen, closed to open (>15%) Mosaic tree and shrub (>50%)/herbaceous cover (<50%) Sparse vegetation (tree, shrub, herbaceous cover) (<15%) Shrub or herbaceous cover, flooded, fresh/saline/brackish | Lichens and mosses Sparse vegetation (tree, shrub, herbaceous cover) (<15%) Shrub or herbaceous cover, flooded, fresh/saline/brackish Bare areas | Tree cover, needle-leaved, deciduous, closed to open (>15%) Lichens and mosses Sparse vegetation (tree, shrub, herbaceous cover) (<15%) Shrub or herbaceous cover, flooded, fresh/saline/brackish Bare areas |
Regional map dom. class | Dwarf shrub moss tundra heath | Moist graminoid, prostrate shrub tundra | Wet sedge- and moss-dominated tundra |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartsch, A.; Höfler, A.; Kroisleitner, C.; Trofaier, A.M. Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges. Remote Sens. 2016, 8, 979. https://doi.org/10.3390/rs8120979
Bartsch A, Höfler A, Kroisleitner C, Trofaier AM. Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges. Remote Sensing. 2016; 8(12):979. https://doi.org/10.3390/rs8120979
Chicago/Turabian StyleBartsch, Annett, Angelika Höfler, Christine Kroisleitner, and Anna Maria Trofaier. 2016. "Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges" Remote Sensing 8, no. 12: 979. https://doi.org/10.3390/rs8120979
APA StyleBartsch, A., Höfler, A., Kroisleitner, C., & Trofaier, A. M. (2016). Land Cover Mapping in Northern High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining Challenges. Remote Sensing, 8(12), 979. https://doi.org/10.3390/rs8120979